3 research outputs found

    Age- and Sex-Related Differences in Motor Performance During Sustained Maximal Voluntary Contraction of the First Dorsal Interosseous

    Get PDF
    Age and sex affect the neuromuscular system including performance fatigability. Data on performance fatigability and underlying mechanisms in hand muscles are scarce. Therefore, we determined the effects of age and sex on force decline, and the mechanisms contributing to force decline, during a sustained isometric maximal voluntary contraction (MVC) with the index finger abductor (first dorsal interosseous, FDI). Subjects (n = 51, age range: 19-77 years, 25 females) performed brief and a 2-min sustained MVC with the right FDI. Abduction force and root mean squared electromyographic activity (rms-EMG) were recorded in both hands. Double-pulse stimulation was applied to the ulnar nerve during (superimposed twitch) and after (doublet-force) the brief and sustained MVCs. Compared to females, males were stronger (134%, p <0.001) and exhibited a greater decline in voluntary (difference: 8%, p = 0.010) and evoked (doublet) force (difference: 12%, p = 0.010) during and after the sustained MVC. Age did not affect MVC, force decline and superimposed twitch. The ratio between the doublet-and MVC-force was greater in females (0.33, p = 0.007) and in older (0.38, p = 0.06) individuals than in males (0.30) and younger (0.30) individuals; after the sustained MVC this ratio increased with age and the increase was larger for females compared to males (p = 0.04). The inadvertent contralateral, left force and rms-EMG activity increased over time (2.7-13.6% MVC and 5.4-17.7% MVC, respectively). Males had higher contralateral forces than females (p = 0.012) and contralateral force was higher at the start of the contralateral contraction in older compared with young subjects (difference: 29%, p = 0.008). In conclusion, our results suggest that the observed sex-differences in performance fatigability were mainly due to differences in peripheral muscle properties. Yet the reduced amount of contralateral activity and the larger difference in evoked versus voluntary force in female subjects indicate that sex-differences in voluntary activation should not be overlooked. These data obtained in neurological healthy adults provides a framework and help the interpretation and referencing of neurophysiological measures in patients suffering from neuromuscular diseases, who often present with symptoms of performance fatigability

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Age- and Sex-Related Differences in Motor Performance During Sustained Maximal Voluntary Contraction of the First Dorsal Interosseous

    No full text
    Age and sex affect the neuromuscular system including performance fatigability. Data on performance fatigability and underlying mechanisms in hand muscles are scarce. Therefore, we determined the effects of age and sex on force decline, and the mechanisms contributing to force decline, during a sustained isometric maximal voluntary contraction (MVC) with the index finger abductor (first dorsal interosseous, FDI). Subjects (n = 51, age range: 19–77 years, 25 females) performed brief and a 2-min sustained MVC with the right FDI. Abduction force and root mean squared electromyographic activity (rms-EMG) were recorded in both hands. Double-pulse stimulation was applied to the ulnar nerve during (superimposed twitch) and after (doublet-force) the brief and sustained MVCs. Compared to females, males were stronger (134%, p &lt; 0.001) and exhibited a greater decline in voluntary (difference: 8%, p = 0.010) and evoked (doublet) force (difference: 12%, p = 0.010) during and after the sustained MVC. Age did not affect MVC, force decline and superimposed twitch. The ratio between the doublet- and MVC-force was greater in females (0.33, p = 0.007) and in older (0.38, p = 0.06) individuals than in males (0.30) and younger (0.30) individuals; after the sustained MVC this ratio increased with age and the increase was larger for females compared to males (p = 0.04). The inadvertent contralateral, left force and rms-EMG activity increased over time (2.7–13.6% MVC and 5.4–17.7% MVC, respectively). Males had higher contralateral forces than females (p = 0.012) and contralateral force was higher at the start of the contralateral contraction in older compared with young subjects (difference: 29%, p = 0.008). In conclusion, our results suggest that the observed sex-differences in performance fatigability were mainly due to differences in peripheral muscle properties. Yet the reduced amount of contralateral activity and the larger difference in evoked versus voluntary force in female subjects indicate that sex-differences in voluntary activation should not be overlooked. These data obtained in neurological healthy adults provides a framework and help the interpretation and referencing of neurophysiological measures in patients suffering from neuromuscular diseases, who often present with symptoms of performance fatigability
    corecore