82 research outputs found

    Group Augmentation in Realistic Visual-Search Decisions via a Hybrid Brain-Computer Interface.

    Get PDF
    Groups have increased sensing and cognition capabilities that typically allow them to make better decisions. However, factors such as communication biases and time constraints can lead to less-than-optimal group decisions. In this study, we use a hybrid Brain-Computer Interface (hBCI) to improve the performance of groups undertaking a realistic visual-search task. Our hBCI extracts neural information from EEG signals and combines it with response times to build an estimate of the decision confidence. This is used to weigh individual responses, resulting in improved group decisions. We compare the performance of hBCI-assisted groups with the performance of non-BCI groups using standard majority voting, and non-BCI groups using weighted voting based on reported decision confidence. We also investigate the impact on group performance of a computer-mediated form of communication between members. Results across three experiments suggest that the hBCI provides significant advantages over non-BCI decision methods in all cases. We also found that our form of communication increases individual error rates by almost 50% compared to non-communicating observers, which also results in worse group performance. Communication also makes reported confidence uncorrelated with the decision correctness, thereby nullifying its value in weighing votes. In summary, best decisions are achieved by hBCI-assisted, non-communicating groups

    Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects

    Get PDF
    Recent advances in neuroscience have paved the way to innovative applications that cognitively augment and enhance humans in a variety of contexts. This paper aims at providing a snapshot of the current state of the art and a motivated forecast of the most likely developments in the next two decades. Firstly, we survey the main neuroscience technologies for both observing and influencing brain activity, which are necessary ingredients for human cognitive augmentation. We also compare and contrast such technologies, as their individual characteristics (e.g., spatio-temporal resolution, invasiveness, portability, energy requirements, and cost) influence their current and future role in human cognitive augmentation. Secondly, we chart the state of the art on neurotechnologies for human cognitive augmentation, keeping an eye both on the applications that already exist and those that are emerging or are likely to emerge in the next two decades. Particularly, we consider applications in the areas of communication, cognitive enhancement, memory, attention monitoring/enhancement, situation awareness and complex problem solving, and we look at what fraction of the population might benefit from such technologies and at the demands they impose in terms of user training. Thirdly, we briefly review the ethical issues associated with current neuroscience technologies. These are important because they may differentially influence both present and future research on (and adoption of) neurotechnologies for human cognitive augmentation: an inferior technology with no significant ethical issues may thrive while a superior technology causing widespread ethical concerns may end up being outlawed. Finally, based on the lessons learned in our analysis, using past trends and considering other related forecasts, we attempt to forecast the most likely future developments of neuroscience technology for human cognitive augmentation and provide informed recommendations for promising future research and exploitation avenues

    Enhancement of group perception via a collaborative brain-computer interface

    Get PDF
    Objective: We aimed at improving group performance in a challenging visual search task via a hybrid collaborative brain-computer interface (cBCI). Methods: Ten participants individually undertook a visual search task where a display was presented for 250 ms, and they had to decide whether a target was present or not. Local temporal correlation common spatial pattern (LTCCSP) was used to extract neural features from response-and stimulus-locked EEG epochs. The resulting feature vectorswere extended by including response times and features extracted from eye movements. A classifier was trained to estimate the confidence of each group member. cBCI-assisted group decisions were then obtained using a confidence-weighted majority vote. Results: Participants were combined in groups of different sizes to assess the performance of the cBCI. Results show that LTCCSP neural features, response times, and eye movement features significantly improve the accuracy of the cBCI over what we achieved with previous systems. For most group sizes, our hybrid cBCI yields group decisions that are significantly better than majority-based group decisions. Conclusion: The visual task considered here was much harder than a task we used in previous research. However, thanks to a range of technological enhancements, our cBCI has delivered a significant improvement over group decisions made by a standard majority vote. Significance: With previous cBCIs, groups may perform better than single non-BCI users. Here, cBCI-assisted groups are more accurate than identically sized non-BCI groups. This paves the way to a variety of real-world applications of cBCIs where reducing decision errors is vital

    Optimized Collaborative Brain-Computer Interfaces for Enhancing Face Recognition

    Get PDF
    : The aim of this study is to maximize group decision performance by optimally adapting EEG confidence decoders to the group composition. We train linear support vector machines to estimate the decision confidence of human participants from their EEG activity. We then simulate groups of different size and membership by combining individual decisions using a weighted majority rule. The weights assigned to each participant in the group are chosen solving a small-dimension, mixed, integer linear programming problem, where we maximize the group performance on the training set. We therefore introduce optimized collaborative brain-computer interfaces (BCIs), where the decisions of each team member are weighted according to both the individual neural activity and the group composition. We validate this approach on a face recognition task undertaken by 10 human participants. The results show that optimal collaborative BCIs significantly enhance team performance over other BCIs, while improving fairness within the group. This research paves the way for practical applications of collaborative BCIs to realistic scenarios characterized by stable teams, where optimizing the decision policy of a single group may lead to significant long-term benefits of team dynamics

    Cyborg groups enhance face recognition in crowded environments

    Get PDF
    Recognizing a person in a crowded environment is a challenging, yet critical, visual-search task for both humans and machine-vision algorithms. This paper explores the possibility of combining a residual neural network (ResNet), brain-computer interfaces (BCIs) and human participants to create “cyborgs” that improve decision making. Human participants and a ResNet undertook the same face-recognition experiment. BCIs were used to decode the decision confidence of humans from their EEG signals. Different types of cyborg groups were created, including either only humans (with or without the BCI) or groups of humans and the ResNet. Cyborg groups decisions were obtained weighing individual decisions by confidence estimates. Results show that groups of cyborgs are significantly more accurate (up to 35%) than the ResNet, the average participant, and equally-sized groups of humans not assisted by technology. These results suggest that melding humans, BCI, and machine-vision technology could significantly improve decision-making in realistic scenarios

    Past and Future of Multi-Mind Brain-Computer Interfaces

    Get PDF
    The great improvements in brain–computer interface (BCI) performance that are brought upon by merging brain activity from multiple users have made this a popular strategy that allows even for human augmentation. These multi-mind BCIs have contributed in changing the role of BCIs from assistive technologies for people with disabilities into tools for human enhancement. This chapter reviews the history of multi-mind BCIs that have their root in the hyperscanning technique; the collaborative and competitive approaches; and the different ways that exist to integrate the brain signals from multiple people and optimally form groups to maximize performance. The main applications of multi-mind BCIs, including control of external devices, entertainment, and decision making, are also surveyed and discussed, in order to help the reader understand what are the most promising avenues and find the gaps that are worthy of future exploration. The chapter also provides a step-by-step tutorial to the design and implementation of a multi-mind BCI, with theoretical guidelines and a sample application

    Target Detection in Video Feeds with Selected Dyads and Groups Assisted by Collaborative Brain-Computer Interfaces

    Get PDF
    We present a collaborative Brain-Computer Interface (cBCI) to aid group decision-making based on realistic video feeds. The cBCI combines neural features extracted from EEG and response times to estimate the decision confidence of users. Confidence estimates are used to weigh individual responses and obtain group decisions. Results obtained with 10 participants indicate that cBCI groups are significantly more accurate than equally-sized groups using standard majority. Also, selecting dyads on the basis of the average performance of their members and then assisting them with our cBCI halves the error rates with respect to majority-based performance. Also, this allows most participants to be included in at least one selected dyad, hence being quite inclusive. Results indicate that this selection strategy makes cBCIs even more effective as methods for human augmentation in realistic scenarios
    • …
    corecore