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Optimized Collaborative Brain-Computer
Interfaces for Enhancing Face Recognition

Cecilia Salvatore , Davide Valeriani , Veronica Piccialli , and Luigi Bianchi , Member, IEEE

Abstract— The aim of this study is to maximize group
decision performance by optimally adapting EEG confi-
dence decoders to the group composition. We train linear
support vector machines to estimate the decision con-
fidence of human participants from their EEG activity.
We then simulate groups of different size and membership
by combining individual decisions using a weighted major-
ity rule. The weights assigned to each participant in the
group are chosen solving a small-dimension, mixed, integer
linear programming problem, where we maximize the group
performance on the training set. We therefore introduce
optimized collaborative brain-computer interfaces (BCIs),
where the decisions of each team member are weighted
according to both the individual neural activity and the
group composition. We validate this approach on a face
recognition task undertaken by 10 human participants. The
results show that optimal collaborative BCIs significantly
enhance team performance over other BCIs, while improv-
ing fairness within the group. This research paves the way
for practical applications of collaborative BCIs to realistic
scenarios characterized by stable teams, where optimizing
the decision policy of a single group may lead to significant
long-term benefits of team dynamics.

Index Terms— Brain-computer interfaces, decision-
making, electroencephalography,face recognition, machine
learning.

I. INTRODUCTION

A. Group Decision Making

IMPORTANT decisions are often made in groups, lever-
aging their superior cognition and capabilities (wisdom of

crowds [1]). A fundamental question in group decision-making
is how to integrate individual judgments to obtain a group
decision. A popular approach in this context is to use majority
voting, which is backed by the Condorcet Jury Theorem and
has proven to enable groups to be more accurate than individ-
uals in a variety of domains [2]. Yet, majority voting is often
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sub-optimal, given that individual judgments are typically not
independent, and are affected by both false positives and false
negatives [3].

A way to achieve optimal group decision making is to weigh
individual judgments by the confidence of the contributor [4].
This approach may allow to correct group decisions even
when the majority of the team members made an erroneous
choice [5]. Ideally, the decision confidence represents the
probability of that decision being correct [6]. However, sub-
jective confidence judgments are often inaccurate, as several
personality and external factors affect the ability of humans in
correctly estimating their own confidence [7], [8].

B. Face Recognition

Face recognition is the ability of identifying a target face.
This is critical in our daily lives to recognize people, as well
as in security and surveillance to enhance safety [9]. The
importance of this task is recognized by our brain having
dedicated regions to process faces [10]. In many scenarios,
humans find face recognition very challenging, even when
highly-skilled [11], [12].

Face recognition is also particularly challenging for artificial
intelligence (AI) systems. Recent studies have shown that AIs
are significantly more accurate than the average human [13],
but no better than the best humans [12]. Notably, machines
fail in face recognition for different reasons than humans. For
example, while limitations of the human visual system make
us miss giant targets [14], machines perform poorly in less
constrained situations involving moving targets [15], [16].

Recent research has shown that the best group decisions
in face recognition are made when human and AI agents
work together. For example, Phillips and colleagues showed
how single forensic facial examiners combined with optimal
AIs were more accurate than the combination of two human
examiners [12]. Similar results were obtained when combining
the decisions of novice humans with those of an AI system,
taking into account the confidence of each decision maker [13].
To achieve effective fusion of human and AI decisions in face
recognition, it is critical to precisely measure the reliability of
each agent, for example, through the decision confidence.

C. Optimal Brain-Computer Interfaces

Brain-Computer Interfaces (BCIs) are devices typically used
to restore communication and motor capabilities in people with
severe disabilities [17]. In the last few decades, BCIs have
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also expanded their application domains to human augmen-
tation [18], gaming [19], and brain monitoring [20]. In the
context of decision-making, BCIs have demonstrated to be a
critical tool to improve the correctness of our decisions. For
example, BCIs can decode the decision of multiple partic-
ipants with better accuracy and faster than single non-BCI
users [21]–[23]. Moreover, this collaborative BCI approach
has also been applied to traditional BCI paradigms, such as
motor imagery [24], [25], to boost performance. These BCIs
often rely on single event-related potentials (ERPs), e.g., P300,
to discriminate between different decisions. However, the
combination of tracking and fusing information from multiple
ERPs further increases BCI decoding performance [26].

Recent research has shown that BCIs can also improve
group decision-making performance. In particular, BCIs
could use machine learning [27] to decode more calibrated
confidence estimates directly from the electroencephalo-
graphic (EEG) brain signals of the participants. When using
BCI confidence to weigh individual opinions, groups become
more accurate than equally-sized groups based on standard
majority or on subjective confidence judgments in a variety of
decision-making tasks, including visual search [28] and face
recognition [13]. These BCI decoders rely on neural correlates
of confidence that are common across tasks and people [29]
and are extracted using spatio-temporal transformations of
multi-electrode EEG activity, such as common spatial pat-
terns [30]. Yet, in these studies, a different BCI was trained for
each user to promote decoding accuracy and user training [31].

This approach of optimizing a BCI on each user is par-
ticularly common in P300 spellers, where participants select
letters from a grid by focusing on it, so that their brain elicits
different patterns for the target (rare) stimuli as opposed to
non-target (frequent) ones. However, several stimuli must be
provided and processed to select one single letter to spell,
as the signal-to-noise ratio of the recorded EEG neural signal
of interest is low. Alternatively, early stopping techniques can
be used to detect when the decoder is confident enough about
its predictions and stop the stimulation. A reliability score
can be computed after a preliminary calibration phase, so that
each neural response can be assigned a different weight, thus
varying its contribution to the final classification [32]. In this
way, responses contaminated by noise, for example, should be
assigned a low score and then only marginally contribute to
the selection of a letter.

While P300 spellers are typically controlled by a single
person, a similar approach has also been applied to groups
jointly controlling a P300 speller [33]. This was done using a
freely available dataset [34], where the letters to be spelled and
the stimulation sequences were the same for all participants,
allowing to simulate a collaborative environment as if all
recordings were performed simultaneously. In this context,
users’ brain responses are aggregated to identify the letter to be
spelled. This resulted in faster and more accurate performances
than those achieved by every single subject. Moreover, an opti-
mized BCI can help identify the smallest subgroup achieving
the most accurate decision on what letter to spell, saving
resources and allowing to leave out those members whose

exclusion does not decrease team performance. However,
while this simulated framework was helpful to demonstrate
the effectiveness of the algorithm proposed in [33], it was not
realistic because, typically, people do not want to communicate
the same letters and words.

D. Contributions
Previous research on collaborative BCIs for group decision

making has shown how decoding confidence from neural sig-
nals can provide better estimates of the accuracy of each group
member than reported confidence, leading to more accurate
team decisions. This approach allows to maintain humans in
the loop, instead of replacing them with one or more artificial
agents (as for multi-classifier systems [35]), which may lead to
suboptimal decisions [14] and generate ethical concerns [36],
[37]. Importantly, these BCIs were trained on each partici-
pant’s neural data to provide objective confidence estimates,
irrespective to the context in which they were used. However,
to counteract biases in group decision making arising from
diverse personalities, genders, and cultural backgrounds of the
team members [38], confidence weights should also optimally
adapt to the group the user is working with.

This paper extends previous collaborative BCIs for group
decision making along three main directions.

First, we streamline the confidence decoders by using the
preprocessed response-locked EEG signals of each participant,
without any further transformation or feature selection used
in previous research [13], [28]. We also replaced logistic
regression with linear support vector machine (SVM) to
transform brain activity into confidence estimates, as SVM
has been shown to provide the most accurate performance
in event-related BCIs [39]. Streamlining collaborative BCIs
represents another step towards making confidence decoders
compatible with online BCIs [40] and applicable to everyday
life.

Second, we introduce an additional step to our BCI decoders
aimed at optimizing confidence weights to the group the
participant is working with. By solving a small-dimension,
mixed, integer linear programming problem for each group,
we assign a confidence weight to each team member to
maximize group performance in the training set. Hence, the
decisions of each team member are weighted according to
both the individual neural activity (as in previous collaborative
BCI approaches) and the group composition (contribution
of this study). We study the performance of groups using
this multi-objective approach in a realistic face recognition
task [13]. We simulate groups of different size and mem-
bership by aggregating decisions of multiple participants,
and compare team performance achieved by groups using
different decision methods, including traditional collaborative
BCI as described in [13] (gold standard) and the proposed
optimized BCI.

Third, the introduction of an optimization step for our BCI
decoders based on group membership allows us to also take
into account other social factors, such as fairness and equity.
Specifically, we introduce a hyperparameter to control the
balance between the confidence weights of group members.
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Fig. 1. Experimental protocol of the face recognition task.

This allows, during training, to establish how much to allow
leadership behaviors (i.e., one/few participants deciding for
the whole group) and promote fairness, with the extreme case
being the standard majority rule (maximum fairness) at the
expense of team accuracy. We investigate the impact that this
parameter has on team performance, as in many scenarios,
a trade-off between group accuracy and fairness is required.

II. METHODS

A. Participants

Ten healthy participants (37.8 ± 4.8 years old, seven
females, all right-handed) with normal or corrected-to-normal
vision took part in the experiment [13]. Participants were
compensated with £16-20, based on their accuracy in the task.
This research received University of Essex ethical approval in
July 2014. All participants signed an informed consent form
before taking part in the experiment.

B. Data Recording and Processing

Neural and behavioral data were collected while participants
were undertaking a face recognition decision-making task [13].
The experiment was split into six blocks of 48 trials. At the
beginning of each block, participants were shown a picture of
the face of the target person for that block. Each trial (Fig. 1)
started with a fixation cross, shown for 1 s, followed by a
grayscale picture of a crowded indoor environment for 300 ms.
Then, participants were shown again the image of the target
face, and were asked to decide, as quickly as possible, if the
target was present in the picture. Finally, they were asked to
rate their confidence in that decision, in a range from 0 to 100.
In each block, 25% of the images contained the target.

Neural data were recorded using a 64-channel BioSemi
Active Two EEG system. Electrodes were placed according to
the international 10-20 system. Each channel was referenced
to the average voltage recorded from the electrodes placed on
each earlobe, and sampled at 2,048 Hz. To reduce artifacts
and increase the signal-to-noise ratio of EEG signals, data
were band-pass filtered between 0.15 and 40 Hz, and artifacts
caused by ocular movements were removed with a standard
correlation-based subtraction algorithm [41].

Response-locked epochs starting 1 s before the user’s
response and lasting 1.5 s were extracted from the EEG data
for each trial, baseline corrected with the average voltage
recorded in the 200 ms before the stimulus onset, and down-
sampled to 128 Hz. Epochs were then split into two groups,
“confident” and “not confident”, depending on whether the
associated decision made by the participant was correct or
not, respectively.

Behavioral data were recorded through a USB mouse, and
included the responses provided by participants (decision and

reported confidence) and response times. The left/right mouse
buttons were used to report presence/absence of a target.
Confidence was reported using the mouse wheel, scrolling
up/down to increase/decrease the confidence by 10%.

C. Confidence Decoding
Decision confidence ws,t for participant s during trial t is

estimated by solving the binary classification problem where,
for each trial, the output is whether the participant made
the correct decision (label +1) or not (label −1). We build
a separation hyperplane using SVM, and we measure the
confidence looking at the distribution of the trials with respect
to the separating hyperplane, drawing inspiration from the
Optimized Score-Based decision Function (OSBF) proposed
for P300 spellers [32]. We, therefore, call this method collab-
orative Optimized Score-Based decision Function (cOSBF).
Specifically, we assume that a trial that is far away from the
hyperplane on the positive side corresponds to high confidence
of participant s for that decision, whereas the more the trial
moves towards the “wrong” side of the hyperplane, the lower
we assume the confidence. To better quantify the subjects’
confidence on a given trial, we define an optimization problem
that automatically chooses the weights for each participant
for that trial. Considering the hyperplanes together, we gain a
complete view of the subjects’ behavior on each trial, whereas
the hyperplane is built by looking at the single participant.
The objective function and constraints of the optimization
problem aim to increase the overall accuracy on a validation
set and impose some fairness constraints, if needed, to ensure
a contribution to the decision of each participant.

To calibrate the cOSBF, we define the training set as:
T s = {(xs,t, ȳs,t) : xs,t ∈ R

l , ȳs,t ∈ {−1, 1} ∀t ∈ {1, . . . , n}}
∀s ∈ {1, . . . , m}

(1)

where:
• m is the number of participants in the group;
• n is the number of trials in the training phase;
• xs,t are the pre-processed EEG recordings for subject s

during trial t ;
• l is the number of features considered;
• ȳs,t describes the outcome of the decision of participant

s for trial t . In particular, ȳs,t = 1 if s made the correct
decision during trial t , ȳs,t = −1 otherwise.

The calibration phase is constituted by two different training
steps: (1) a linear SVM is trained for each participant to
estimate his/her confidence from the neural signals, and (2) a
mixed integer linear programming problem is solved to eval-
uate the confidence estimated by the SVM of each individual,
trial and group. Each of these steps requires a distinct portion
of the training set. For this reason, the set of trials {1, . . . , n}
belonging to the calibration phase is partitioned in two parts
(T1 and T2):

Ts,i = {(xs,t , ȳs,t) ∈ Ts : t ∈ Ti } ∀s ∈ {1, . . . , m}, i = 1, 2,

(2)

which are given in input to two sequential training phases.
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1) COSBF - First Training Phase: In this phase, a pool of
m SVMs is trained on the first portion of data Ts,1 for each
participant s ∈ {1, . . . , m}, although, in principle, any linear
classifier could be used. A SVM learns a separating hyperplane
(w, b), where w ∈ R

l contains classification weights and
b ∈ R is a bias term; the values of (w, b) are learned in a
supervised way during the training phase. The discriminant
function is:

f (x) = sign(wT x + b), (3)

where wT x + b is the decision value, and its absolute value
is proportional to the distance of x from the hyperplane.

The aim of each SVM trained on Ts,1 is to discriminate
between correct and incorrect decisions, and use its decision
values to estimate the decision confidence of a specific user
during a trial. We denote with {(ws, bs)∀s ∈ {1, . . . , m}} the
pool of separating hyperplanes computed in this phase.

2) COSBF - Second Training Phase: This phase aims to
quantify decision confidence of each subject s ∈ {1, . . . , m}
during a generic trial t by solving a Mixed Integer Linear
Programming (MILP). The input data of this phase are both
the output of the first phase (i.e., a set of m separating
hyperplanes) and the second portion of training data Ts,2 of
all participants s ∈ {1, . . . , m}. The MILP assigns the weights
to each subject who takes part in a group decision, and the
assigned weight depends both on the specific subject and on
the group composition, so that the accuracy of the decision is
maximized given the group composition.

Each hyperplane (ws, bs) trained during the first phase is
used to compute the decision values of data in Ts,2:

dvs = {wT
s xs,t + bs ∀t ∈ T2} ∀s ∈ {1, . . . , m} (4)

The set of decision values dvs are used to partition the l-
dimensional space in four ordered confidence zones a − d ,
on the basis of the trials distribution with respect to the
separating hyperplane. Zone a includes trials with the highest
decision confidence, and zone d consists of trials with a low
decision confidence. These confidence zones are identified by
the quartiles q1, q2 and q3 of the distribution of the decision
values dvs , as represented in Fig. 2. A score corresponds to
each confidence zone, so that the confidence weight ws,t is
the score of the confidence zone where trial t belongs to
for individual s. The values of the scores are specific to an
individual and a group, and they are computed by solving
the MILP.

The MILP takes in input a zone assignment vector z:

zs,t,v =
{

1, if trial t is assigned to zone v for individual s

0, otherwise

(5)

where s ∈ {1, . . . , m}, t ∈ T2, v ∈ {a, b, c, d} and returns in
output a pool of score vectors w̃s = {a, b, c, d}.

We can then express the confidence weight of participant s
at trial t as:

ws,t = w̃T
s zs,t (6)

Fig. 2. Representation of the score distribution, reflecting the displace-
ment of the points w.r.t. the distribution of the decision values. The
different areas represent the confidence of the classification w.r.t. the
target class. In this simplified example, data are described by just two
features x1 and x2.

The MILP to be solved to find the vectors of score w̃s is:

min
∑
t∈T2

ξt + M
m∑

s=1

∑
v∈{a,b,c}

ζs,v (7)

w̃s,a ≤ u ∀s ∈ {1, . . . , m} (8)

w̃s,d ≥ 0 ∀s ∈ {1, . . . , m} (9)

w̃s,v ≥ w̃s,v+1 ∀s ∈ {1, . . . , m}, v ∈ {a, b, c} (10)

w̃s,v ≥ w̃s,v+1 + 0.1 − ζs,v ∀s ∈ {1, . . . , m}, v ∈ {a, b, c}
(11)

w̃s1,v ≥ w̃s2,v ∀s1, s2 ∈ {1, . . . , m} : accs1 > accs2,

∀v ∈ {a . . . d} (12)
m∑

s=1

ȳs,tw̃
T
s zs,t ≥ 1 − ξt ∀t ∈ T2 (13)

∑
t∈T2

w̃T
s zs,t ≥ η

m

m∑
s̄=1

∑
t∈T2

w̃T
s̄ zs̄,t ∀s ∈ {1, . . . , m} (14)

ξt ≥ 0 ∀t ∈ T2 (15)

where:
• the objective function (7) requires to minimize both

incorrect group decisions, expressed in terms of slack
variables ξ related to constraints (13), and slack variables
ζ from constraints (11);

• constraints (8) and (9) impose an upper and lower bound
over the score of the maximum and minimum confidence
zones a and d: these bounds ensure existence of solution
and non-negative scores;

• constraints (10) impose that, for each participant, the
value of the scores are ordered according to the con-
fidence level, so that zone a has an higher score than
zone b, etc. Furthermore, constraints (11) require that
a distance of 0.1 is required between two consecutive
scores; since this is a strong condition that can cause
infeasibility, we add some slack variables ζ ;

• constraints (12) impose that the weight assigned to indi-
viduals should reflect the confidence in their classifica-
tion’s accuracy (note that accs1 and accs2 are the SVM’s
accuracies on Ts,1 and Ts,2, respectively). Thus, if the
SVM built for s1 is strictly more accurate than the one
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built for s2, then the weight assigned to any zone for
s1 cannot be lower than the weight assigned to the
corresponding zones for s2;

• constraints (13) impose that the group decision for trial
t should be correct, with a slack variable ξt allowing the
failure if needed;

• constraints (14) impose a balance condition on the relative
weight of the individuals in the group, which depends on
a hyperparameter 0 ≤ η ≤ 1. In case η = 0, the constraints
are trivially satisfied, thus no balance is required and
leaders may emerge; for η = 1, it is required that all par-
ticipants equally contribute to decisions. These constraints
allow to adapt our approach to different requirements
in group decision, whether the priority is maximizing
accuracy or inclusiveness and representation. Importantly,
introducing the MILP problem allows us to easily include
any constraint or requirement on the subjects’ participa-
tion in the decision, which would be more complicated
with a fixed strategy of weights choice.

A correct group decision can be imposed by:

rsign

(
m∑

s=1

ȳs,tw̃
T
s zs,t

)
= 1 ⇒

m∑
s=1

ȳs,tw̃
T
s zs,t > 0 (16)

⇒
m∑

s=1

ȳs,tw̃
T
s zs,t ≥ � (17)

when rsign is a randomizing sign operator which returns +1 if
its argument is positive, −1 if it is negative, and randomly
chooses between +1 and −1 if its argument is 0. Finally,
condition (13) is obtained by rescaling w̃s by � and by adding
a slack variable ξt to guarantee feasibility.

Fig. 3 summarizes the algorithmic framework proposed.

D. Experimental Setup

The 288 trials collected in our experiment for each par-
ticipant were split into a training set composed of the first
60% of the trials (N = 172), and a test set (W) composed of
the last 40% of the trials (N = 116). The calibration trials were
further temporally partitioned into T1 (60% of the training set,
N = 103) and T2 (remaining 40% of training trials, N = 69).
For the MILP problem, we empirically chose the values
u = 10 and η = 0.7. The value of u does not have a significant
impact on the results, as opposed to η (see Section III-C).

The choice to temporally partition the training set was
motivated by practical considerations of implementing a col-
laborative BCI, that would first require a calibration phase
for each participant before being used online to augment
group decision making. However, due to the non-stationarity
of brain signals, BCIs are typically recalibrated over time
to ensure their stable performance [42]. Hence, the results
obtained in our study represent a lower-bound of BCI decoding
performance, which could be further enhanced with periodic
recalibration.

To evaluate the performance of cOSBF-based groups, we
compare it with the performance of the same groups
adopting several alternative strategies for obtaining group
decisions:

Fig. 3. Flowchart of the algorithmic framework procedure. The proposed
framework requires a first single participant phase during which brain sig-
nals recorded during the experiment are partitioned into four confidence
zones. The collaborative phase will then use the learned zone partitions
to assign to each participant a score vector, that will be used to compute
the group decisions during the online testing phase.

• Majority, where all group members have always the same
weight (i.e., ws,t = 1);

• Logistic, where the confidence weights are computed as
in [13] using logistic regression and the same training set
as cOSBF;

• Confidence, where the confidence weights are the con-
fidence rates reported by the participants after each
decision;

• SVM, where the confidence weights are the decision
values of the same SVM trained for cOSBF scaled to
the interval (0, 1].

E. Performance Evaluation

The performance of groups of different sizes and
decision-making strategies are evaluated using accuracy, speci-
ficity and sensitivity, computed as follows:

Accuracy = T P + T N

T P + T N + F P + F N
, (18)

Speci f ici ty = T N

T N + F P
, (19)

Sensi tivi ty = T P

T P + F N
, (20)

where TP, TN, FP, FN indicate the number of true positives,
true negatives, false positives, and false negatives on the test
set, respectively.

We also introduce a metric to evaluate the average influence
Ii of each participant i on the group decisions, measured as
the relative weight of i on all m trials in the test set W :

Ii = 1

|W|
∑
t∈W

wi,t∑m
s=1 ws,t

(21)



1228 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 4. Mean performance of groups of increasing size for the three methods. Shaded areas show standard error of the mean.

To evaluate the ability of the cOSBF method to capture
the objective confidence of each group member, for each
participant i and group j we compute the following confusion
matrix on the test set W :

Subject i correct Subject i incorrect
Group j correct Aij : % agree Bij : % disagree
Group j incorrect Cij : % disagree Dij : % agree

(22)

An optimal group would have high values on the first row
and low values on the second row. For each participant i ,
we then average the confusion matrices obtained for all the
groups Sj of a given size s j both for cOSBF and for the BCI
based on logistic regression (gold standard, equation 23).

Subject i correct Subject i incorrect

Average group correct A =
∑

j∈S j
Ai j

|S j | B =
∑

j∈S j
Bi j

|S j |
Average group incorrect C =

∑
j∈S j

Ci j

|S j | D =
∑

j∈S j
Di j

|S j |
(23)

Finally, for each element of the confusion matrix we com-
pute the difference between the value corresponding to the
cOSBF and the value corresponding to the Logistic (equa-
tion 24). Note that, on the second row, we inverted the sign
of the difference, so that positive differences mean that cOSBF
is performing better than Logistic in all matrices, whereas
negative differences mean that the Logistic is performing better
than cOSBF.

AcOS BF −ALog

ALog
BcOS BF −B Log

B Log

−CcOS BF −C Log

C Log − DcOS BF −DLog

DLog

(24)

III. RESULTS

A. Individual and Group Performance

Individual accuracy of participants in the experiment
ranged from 52.8% to 92.4% (mean ± standard deviation =
72.3 ± 12.0%), hence being better than random performance
(50%). Average reaction times ranged from 0.750 s to
1.737 s (mean ± standard deviation =1.153 ± 0.287 s). Aver-
age specificity was 77.4 ± 15.8% and average sensitivity was
56.9 ± 10.9%.

Fig. 4 shows the average accuracy, sensitivity and specificity
of groups of increasing size in the test set using the proposed
cOSBF method, as well as the other weighting strategies
described in Section II-D.

Across the three evaluation metrics, cOSBF outperforms all
other strategies, and the improvement increases with the size of
the group. As seen in Table I, these differences are statistically
significant for all group sizes 5-8, and often also for smaller
group sizes 2-4. Particularly noteworthy is the sensitivity of
groups, which increases with the group size only for cOSBF.
For Majority, the reduction of sensitivity over group sizes is
due to the Condorcet’s theorem, as the average sensitivity of
the participants in the test set is lower than random (50%).
Moreover, the Logistic suffered from the temporal train/test
split, as in [13] with cross-validation splits it was capable of
increasing sensitivity over group size.

To better investigate the reasons behind this performance
improvement, we computed the “normalized accuracy”, i.e.,
the percentage of trials in which the group made a correct
decision among those trials where at least one team member
made the correct decision. In other words, we removed from
the calculation of accuracy the trials where all team members
made an incorrect decision. Hence, the normalized accuracy
ranges between 0 and 100%. In the rest of the analysis we
will focus our attention on the comparison between cOSBF,
Majority (baseline performance) and Logistic (gold standard
cBCI method [13]).

Fig. 5 shows the normalized accuracy for all groups of
size 2, 3 and 4. As observed in Fig. 4, the improvement
increases with the group size, and the majority of groups
benefit from cOSBF.

Fig. 6 shows the average confusion matrices computed
according to equation 24 for cOSBF and Logistic. Logistic and
cOSBF are equivalent on trials where the participant and the
group made the correct decision. However, on other elements
of the confusion matrices, cOSBF is consistently better than
the Logistic (i.e., red colors are more frequent than blue).
This confirms the ability of our weighing strategy to better
estimate the participant’s decision confidence. Moreover, the
column “M” within each confusion matrix shows that the
improvement achieved by cOSBF increases with the group
size, as previously seen in Fig. 4. Statistical comparisons
between cOSBF and Logistic performance for each group
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TABLE I
WILCOXON TWO-SIDED p VALUES COMPARING COSBF-BASED GROUP DECISIONS WITH DECISIONS OBTAINED BY THE MAJORITY RULE, THE

WEIGHTED MAJORITY RULE BASED ON LOGISTIC REGRESSION, THE WEIGHTED MAJORITY RULE BASED ON SVM SCORES, AND THE WEIGHTED

MAJORITY RULE BASED ON REPORTED CONFIDENCE FOR DIFFERENT GROUP SIZES. VALUES IN BOLD INDICATE p VALUES BELOW THE

BONFERRONI-CORRECTED STATISTICAL SIGNIFICANCE LEVEL 0.05/96 = 0.00052. THE LAST ROW INDICATES THE NUMBER OF

GROUP SIZES FOR WHICH COSBF IS SIGNIFICANTLY BETTER THAN THE OTHER METHOD

Fig. 5. Normalized accuracy of groups of size 2-4, comparing cOSBF, Logistic and Majority performance for each group. Groups (x-axis) are sorted
by increasing improvement of cOSBF over Majority and Logistic.

size (Fig. 6) through either Wilcoxon paired test and sign test
returned p values below the Bonferroni corrected statistical
significance level 0.05/10 = 0.005 for all group sizes 4-9.

B. Influence of Single Participants
As it can be seen in Fig. 4 and in previous collaborative BCI

research [13], [28], the average performance of groups of size
3 is particularly difficult to improve for confidence-weighted
majority strategies. This is because, in weighted majority, the

sum of the weights of a minority, correct subgroup must be
higher than the sum of the weights of the majority, incorrect
subgroup, in order to for the group to make the correct
decision. For group size 3, this scenario occurs only when one
team member made a correct decision, and its single weight
is higher than the sum of the other two members’ weights.

To investigate why cOSBF is capable of bringing significant
improvements also for groups of size 3, in Fig. 7 we report the
influence of three representative participant on all the groups of
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Fig. 6. Comparison between the capability of cOSBF and Logistic
strategies of detecting the outcome of individual’s decisions as described
in equation 24. M columns show the means across participants.

Fig. 7. Average influence of three representative participants on groups
of size 3 for η = 0.7. If the influence is below 0.333, the participant is,
on average, not affecting the group decision; if the influence is between
0.333 and 0.5, the participant contributes to group decisions; if the
influence is > 0.5, the participant determines the team decision.

size 3 for which that individual is a member of. The influence
changes depending on the group considered, but the most
accurate participants (e.g., 5) have always a higher influence
than others; if the influence of a given user is greater than 0.5,
that participant determines the group decision, no matter the
opinions of the other members. Conversely, the participants
with the worst accuracy (e.g., 1) have always a relatively low
influence. This shows that cOSBF is able to capture the target
detection capability of each user. Thanks to constraint (14),
however, all participants still have some influence on the group
decision. In fact, we should note that the influence of each user
depends both on the group composition and on the neural
signals of that participant. This multi-objective confidence
decoding strategy allows cOSBF to outperform other methods.
The influence variation depends also on the parameter η in
constraint (14), as we will see in the next subsection.

C. Influence of the Balance Constraint
To investigate the effects of the parameter η in constraint

(14), Fig. 8 shows the leadership percentage and the average
accuracy of groups of size 3 for increasing values of η. The
leadership percentage is computed as the percentage of trials

Fig. 8. Leadership percentage and average accuracy of groups of size
3 for increasing values of η. The leadership percentage is computed as
the percentage of trials where the influence of one of the participants to
the decision is larger than 0.5.

where the influence of one participant on the decision is larger
than 0.5. Both the leadership percentage and the accuracy are,
as expected, inversely proportional to η: when η increases we
require more fairness in group decisions, and this can reduce
the average accuracy of the groups to the benefit of inclusion.
In the experimental setup, we decided to use the value η = 0.7,
which corresponds to a mean level of leadership while keeping
high levels of accuracy.

To further understand how the influence of the individual
varies depending on the trial and on the choice of η, in Fig. 9
we analyzed the influence of each user on each trial for
two representative groups of size 3 and two representative
values of η. We selected η = 0.7 (as in our experimental setup)
and η = 0.5, which requires a less stringent constraint on the
balance among team members.

As a first example, we considered a group formed by
participants 5, 6, and 7. For both η = 0.5 and η = 0.7, par-
ticipant 5 (blue dots) has always a very high impact on the
team decision. However, imposing the stronger constraint on
the weight balance among participants (η = 0.7) allows to
reduce the mean influence of member 5 and to increase the
influence of participants 6 and 7. Indeed, for η = 0.5 the
group accuracy coincides with the accuracy of user 5, as this
participant has an influence greater than 0.5 in all trials and, so,
it determines the group decision all the times. Conversely, for
η = 0.7, in some trials, the influence of participant 5 is lower
than the sum of the influence of the other two participants,
which leads to increased group accuracy.

As another example„ we considered the group composed
of participants 6, 8, and 9. Contrarily from before, in this
case when η = 0.7 the accuracy decreases with respect to the
accuracy obtained with η = 0.5. The difference between these
two examples is that, for the group composed of 5, 6, 7, all
participants are very accurate when considered alone, so that
the group benefits from the contribution of all participants,
while in the second example, participant 6 is much more
accurate than subjects 8 and 9 and, so, allowing the presence
of a leader can be beneficial.

In summary, these results show that cOSBF allows to sub-
stantially improve group fairness with a minimal cost in terms
of group accuracy. In fact, cOSBF is able to identify the most
accurate team members, while ensuring all participants within
a group contribute to the team decision as much as possible,
which leads to significantly better group performance.
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Fig. 9. Influence of each participant of two representative groups of size 3 in the test set with η = 0.5 or η = 0.7. For reference, participants 5-9
had an accuracy of 0.88793, 0.86207, 0.73276, 0.55172 and 0.51724, respectively.

IV. CONCLUSION

We developed a novel collaborative BCI capable of simul-
taneously decoding decision confidence from EEG neural
activity and optimize it based on group composition. These
confidence estimates were then used to integrate individual
responses to obtain a group decision. Our optimized collabo-
rative BCI significantly improves group accuracy in a realistic
face recognition task of up to 14% depending on the group size
when compared to non-optimal collaborative BCIs, weighted
majority voting based on reported confidence, and standard
majority voting. We also showed that this system increases
fairness within the group, ensuring that all team members
contribute to the group decision.

This research demonstrates how collaborative BCIs could
be used in realistic scenarios to facilitate and enhance group
decision-making, while maintaining humans in the loop, pro-
moting fairness and reducing biases. The simultaneous opti-
mization of the BCIs on a user- and group-basis makes
them directly applicable to stable teams, which are more
likely to develop trust than constantly-changing groups and,
therefore, often more efficacious. For example, this collabo-
rative BCI could assist a group of police officers monitoring
security cameras footage to better identify suspects and threats.
As suggested by earlier research [13], these BCIs can also
promote the creation of human-machine teams, leading to
higher accuracy than state-of-the-art face recognition algo-
rithms. Similarly, a team of brokers could use this collaborative
BCI to better decide buy/sell operations, leading to increase
earnings and reduced losses.
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