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Abstract

Recognizing a person in a crowded environment is a challenging, yet critical, visual-search

task for both humans and machine-vision algorithms. This paper explores the possibility of

combining a residual neural network (ResNet), brain-computer interfaces (BCIs) and human

participants to create “cyborgs” that improve decision making. Human participants and a

ResNet undertook the same face-recognition experiment. BCIs were used to decode the

decision confidence of humans from their EEG signals. Different types of cyborg groups

were created, including either only humans (with or without the BCI) or groups of humans

and the ResNet. Cyborg groups decisions were obtained weighing individual decisions by

confidence estimates. Results show that groups of cyborgs are significantly more accurate

(up to 35%) than the ResNet, the average participant, and equally-sized groups of humans

not assisted by technology. These results suggest that melding humans, BCI, and machine-

vision technology could significantly improve decision-making in realistic scenarios.

Introduction

Visual search is the process of looking for an item of interest in a scene. Everyone engages in

visual search many times every day [1]. For example, when people look for their keys in a

drawer, or when a bear hunts for fish in a river. Evolution has made animals very effective at

searching in natural environments [2]. Yet, our performance is far from ideal [1, 3]. For exam-

ple, when the item of interest has a size that is inconsistent with the rest of the scene, we are

more likely to miss it [4]. Phenomena such as inattentional blindness [5] and illusory conjunc-

tions [6] lead us to miss objects or perceive them with wrong features.

These difficulties are present also when searching for a target face in pictures of crowded

environments, a critical task in security and surveillance [7]. This challenging visual-search

task requires humans to scan an image, detect faces, and compare them with the memory

representation we have of a target person [8]. Even if our brain has dedicated regions to pro-

cess face information [9], humans still find this task demanding and difficult, even when

highly-skilled [10].
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Searching for a target face in a crowded environment is a challenging task also for fully-

automated computer-vision systems [11], albeit not for the same reasons as humans. Firstly, a

module of the system needs to scan the input image and extract all the faces with their location

(face detection) [12]. Secondly, another module has to compare each extracted face against the

image of the target face and return a degree of match (face identification) [12]. If the match is

above a certain threshold, the image is classified as containing the target. Both face detection

and face identification unavoidably produce false alarms and misses. Despite these difficulties,

research has shown that deep neural networks do not suffer from some limitations of the

human visual system [4]. In principle this means that computer-vision systems could become

more accurate than the average human [13], especially in tasks where visual information is

presented for a brief amount of time. Unlike humans, the performance of computer-vision sys-

tems does not degrade over time (e.g., due to fatigue). However, it usually degrades way below

that of humans when moving from constrained to realistic environments [14, 15].

To partially address the limitations of the human visual system, people can work together to

search a scene. When making perceptual decisions, groups are generally more accurate than

their members [16]. This “wisdom of crowds” [17] has been found in a variety of tasks, ranging

from estimating uncertain quantities [18] to medical diagnosis [19] and face matching [20].

However, there are circumstances in which groups decisions are worse than individual ones.

For example, when the opinions of group members are too correlated [16], when a strong

leader dominates the discussion [21], or when group interactions are not effective [22, 23].

The strategy used to aggregate individual opinions critically influences performance in

group decision making. In the case of binary judgements, standard majority is the most

straightforward strategy to use. However, in many circumstances it is suboptimal [24]. A well-

chosen strategy could let groups make correct decisions even if the majority (but not all) of the

members are wrong [25]. For instance, this could be achieved using a strategy consisting in

weighing opinions on the basis of individual confidence [26], which can be thought to approx-

imate the probability of a decision being correct [27]. Nevertheless, an accurate assessment of

the reliability of the decision is difficult to obtain. Humans may be miscalibrated in estimating

their own confidence [28], e.g., people may report high values of confidence when they made

an incorrect decision. This miscalibration is even accentuated by experience [29] and social

influence [30].

In principle, decision confidence could be more objectively assessed via means other than

self-reporting. There is ample evidence that physiological correlates of decision confidence

exist. For instance, several brain-activity patterns as recorded via electroencephalography

(EEG) are known to provide information about decision confidence (e.g., the P300 event-

related potential (ERP) and the error related negativity [31, 32]), and visual search perfor-

mance (e.g., the N2pc [33] and N1 [34] ERPs). Moreover, it has been known for a long time

that response times (RTs) negatively correlate with the confidence in a decision [35–37]. An

important question is, however, whether these findings can be converted into practical systems

to aid decision making.

In recent research, we developed a series of hybrid Brain-Computer Interfaces (hBCIs) to

test whether it is indeed possible to decode the decision confidence of single users from their

EEG signals, RTs and other physiological measurements. In all cases, the hBCI relies heavily

on machine-learning technology, which is used to specialise the interface to each particular

user and to learn to predict the probability that, in a certain trial, the user made a correct deci-

sion. The confidence estimates provided by the hBCI were then used to weigh individual opin-

ions and obtain group decisions. That is, our hBCI did not make automated decisions, it only

produced weights for integrating behavioural decisions provided by the operators. These

hBCI-assisted group decisions were then compared to decisions obtained by other forms of
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opinion aggregation. After initial tests of our system with a simple visual-matching task [38],

which showed that hBCI-assisted groups were significantly more accurate than equally-sized

groups based on standard majority, we progressed to much more realistic situations. For

instance, we have shown that similar accuracy improvements could be obtained in visual

search in crowded environments [39, 40], where participants were presented with cluttered

scenes for 250 ms and had to decide whether a target object was present. The confidence esti-

mated by our hBCI was also a more reliable predictor of correctness than the confidence

reported by the participants themselves [40]. More recently, we have used our hBCI to assist

humans searching for a target face in a crowded, indoor environment [41], which is of critical

importance in many domains and is the application area considered also in this article. Once

again, even in this real-world situation, groups of humans assisted by our hBCI were signifi-

cantly more accurate than traditional groups based on standard majority or reported confi-

dence [41]. While this is encouraging, with or without the assistance of an hBCI, even trained

operators find this task hard and very fatiguing.

Given advantages and limitations of both humans (alone or in a group, and with or without

the assistance of an hBCI) and computer-vision systems, one may wonder whether we could

usefully combine these together. At least in principle, within such “cyborgs”, automated algo-

rithms could compensate for the weaknesses of humans and vice versa, thereby producing

more reliable and accurate decisions. For example, in a situation where most users in a group

missed a target face (e.g., because the target appeared in an unusual/unsuspected location),

both traditional and hBCI-assisted groups would likely make a wrong decision. Conversely, a

machine-vision algorithm might still identify the target with confidence. So, if it was included

as a member in a group of humans, the machine-vision algorithm could potentially swing the

group decision towards a correct decision.

This study explores the benefits and drawbacks of this idea. Prior research has shown that

aggregating decisions from a superrecognizer and a deep convolutional neural network in a

face identification task led to significant more accurate decisions than two superrecognizers

[42]. We used a state-of-the-art residual deep neural network (ResNet), our BCI estimating the

decision confidence using only neural features, and human participants to create different

types of cyborgs and investigate whether they can improve decision making and why. We eval-

uated these approaches in the context of the same face-recognition experiment as in [41],

where participants had to search an image of a crowded, indoor environment and decide

whether or not it contained a target face, a more challenging task than the face identification

task used in [42].

Methods

Ethics statement

This research received UK Ministry of Defence Research Ethics Committee (MoDREC, ref.

520/MODREC/14) and University of Essex ethical approval in July 2014. All participants

signed an informed consent form before taking part in the experiment.

Participants

Ten healthy participants (37.8 ± 4.8 years old, seven females, all right-handed) with normal or

corrected-to-normal vision and no reported history of epilepsy took part in the experiment.

Each participant was paid GBP 16 for taking part in the experiment plus an additional amount

of up to GBP 4 proportional to the participant’s percentage of correct decisions. The latter was

used to encourage participants to focus on the task and achieve maximum performance.
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Stimuli and procedure

Participants were comfortably seated at about 80 cm from a LCD screen (refresh rate 60 Hz) in

an experimental room with normal white illumination (Fig 1(a)).

The experiment consisted of six blocks of 48 trials. At the beginning of each block, partici-

pants were shown a cropped face image of the person to be considered as a target for that

block and were asked to memorise it before starting the presentation of the trials in the block.

Each trial (Fig 1(b)) started with the presentation of a fixation cross for 1 s, followed by an

image of a crowded scene presented for 300 ms in fullscreen, subtending approximately 14.4

degrees horizontally and 11.0 degrees vertically. Then, participants were presented with a dis-

play showing (again) the image of the target face and were asked to decide whether or not the

target person was present in the scene, by clicking the left or the right mouse buttons, respec-

tively. All volunteers were instructed to make decisions as quickly as possible. Finally, partici-

pants were asked to indicate, within 4 s, their subjective degree of confidence in that decision

(0–100%) using the mouse wheel to vary the selected value in steps of 10%. Subjective confi-

dence values were not used in this study as in preliminary analysis [41] we found that these

confidence estimates were less accurate and robust than the confidence estimated by the BCI

from the brain signals.

The images used as stimuli were obtained from the sequences P2L_S5 and P2E_S5 of the

ChokePoint video dataset [43]. The two sequences contained video streams of 700+ frames,

representing 29 people (six females) walking indoor through two different portals. For each

sequence, three videos were recorded from cameras positioned at the top-left (L), top-center

(C), and top-right (R) of each portal, respectively. From each sequence, we selected one person

as a “target”. Then, we randomly selected 48 frames out of the 700+ available, 12 where the

“target” person was visible in the scene and 36 where it was not. Since each frame was repre-

sented by three images taken from the three viewpoints, we selected a total of 2 × 48 × 3 = 288

images. Each image, containing between 2 and 11 people, was converted to greyscale and had

its histogram equalised.

In each block of the experiment, the images selected from a given sequence (1 or 2) and

viewpoint (L, C or R) were presented. All six possible combinations of sequences and view-

points have been tested. The order of presentation of the images in a particular block was the

same for all participants. However, the order of presentation of the blocks was pseudo-ran-

domly chosen for each participant, for counterbalancing reasons. In each block 25% of the

images contained the target.

Briefing, preparation and task familiarisation (via two blocks of 10 trials each) took about

45 minutes, while the experiment took roughly 25 minutes. The images used as stimuli during

Fig 1. Experimental protocol. (a) Participant during one recording session. (b) Sequence of stimuli presented in a trial. Images representing people have been blurred

for publication requirements.

https://doi.org/10.1371/journal.pone.0212935.g001
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familiarisation were pseudo-randomly selected for each participant from the dataset used in

the experiment.

Data recording and BCI confidence estimation

Neural data were recorded at 2048 Hz from 64 electrode locations with a BioSemi ActiveTwo

EEG system. Each channel was referenced to the average voltage recorded from the electrodes

placed on each earlobe and band-pass filtered between 0.15 and 40 Hz. Artefacts caused by

ocular movements were removed with a standard correlation-based subtraction algorithm.

From each trial, response-locked epochs starting 1 s before the user’s response and lasting 1.5 s

were extracted from the EEG data, baseline corrected with the average voltage recorded in the

200 ms before the stimulus onset, and downsampled to 32 Hz. Each epoch was then associated

to the class “correct” (confident) or “incorrect” (not confident) depending on whether the

decision made by the participant in that trial was correct or not, respectively.

Common Spatial Pattern (CSP) [44] filtering was used to transform the data in a subspace

where the variance between the “correct” and “incorrect” classes was maximum. For each par-

ticipant, we computed the CSP transformation matrix using the epochs in the training set, and

used such a matrix to transform the data in the test set. The logarithm of the variances of the

first and the last rows were computed and used as neural features.

For each participant p, we trained a logistic regression classifier with L2 penalty to predict

the decision confidence wp, i.e., the probability of a particular decision being correct. Hence,

each participant had his/her own BCI able to assess the objective decision confidence of the

decision maker. We used 8-fold cross-validation to ensure that the results were not unfairly

affected by overfitting. In each fold, 252 trials were used as training set and the remaining 36 as

test set, to evaluate the groups’ performance.

ResNet architecture and training

We used a residual neural network (ResNet) (see face_recognition Python library

v1.2.3 available at https://github.com/ageitgey/face_recognition) to decide whether or not the

target person was present in each image used as a stimulus in our experiment. The ResNet was

formed of 29 convolutional layers (similarly to the ResNet-34 described by He et al. [45]), and

had previously been trained on about 3 million faces derived from a number of datasets and

tested on the “Labeled Faces in the Wild” benchmark [46], where it achieved 99.38% accuracy.

We ran our analysis using Python 3.6.7.

In each trial of our experiment, the ResNet firstly scanned the input image to identify and

extract individual faces using a pre-trained face-detection model integrated in the face_re-
cognition library. The image of each face was then mapped to a 128-dimensional vector

space where images of the same person are likely to be near to each other (i.e., face encoding).

Then, the ResNet computed the difference between the encoding of each face and the encoding

of the target face, normalised using the Frobenius norm. If any extracted face had a difference

smaller than a threshold, t, the stimulus was labelled as “target”, otherwise it was labelled as

“nontarget”. The threshold was set to the value that maximised the accuracy on the training set

using 8-fold cross-validation (average threshold across the eight folds, t = 0.526 ± 0.006).

In each trial, the confidence weight of the ResNet, wResNet, was computed as follows:

wResNet ¼

(
2

1þ e� 10�t� dt
� 1; if d < t ð“target”Þ

2

1þ e� 10�d� t
1� t
� 1; if d � t ð“nontarget”Þ

; ð1Þ
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where d is the difference between the encodings of the face extracted from the image and the

target face (normalised using the Frobenius norm). If more than one face was extracted from

an image, only the face with the minimum d was considered. Fig 2 shows a plot of the function

in Eq (1) for the average t. This formula ensures that the ResNet has substantially bigger confi-

dence weights when the difference between the target face and the stimulus is very small or

very big (confident decisions) than when it is close to the threshold (not confident decisions).

Trials where the ResNet did not identify any face in the image were labelled as “nontarget”,

given the prevalence of nontarget stimuli in the training set (i.e., 75%). In such trials, the corre-

sponding weights wResNet were set to 0, so that, in cyborg groups, the ResNet vote would be

ignored and only the humans influenced the decision.

Making group decisions

Groups of size m = 2, . . ., 10 were formed off-line by combining the N = 10 participants in all

possible N
m

� �
ways. This procedure led to have 45 groups of size 2, 120 groups of size 3, etc.

Fig 2. Function used with the ResNet to transform the difference between the encodings of the stimulus and target faces, d, into confidence weights for the

average value of the threshold t over the eight folds. Examples of stimuli with d = 0.301 (left), d = 0.535 (middle), and d = 0.750 (right) are also shown at the

bottom. In each image, the bounding box of the face with the minimum d is highlighted. The reference image of the target person is shown on the top left. Images

representing people have been blurred for publication requirements.

https://doi.org/10.1371/journal.pone.0212935.g002
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Group decisions were then obtained using different methods. These are illustrated in Fig 3 and

are described in detail below.

Traditional and BCI-assisted groups were composed only by human participants (Fig 3(a)

and 3(b), respectively). In this case, the decision of a group of size m in a trial was given by:

dgroup ¼ rsign

Xm

p¼1

wp � dp

 !

;

where dp = −1 if user p decided the trial represented a “target” and dp = + 1 for a “nontarget”,

wp is the corresponding weight, and rsign a randomising sign operator which returns +1

(“nontarget”) if its argument is positive, −1 (“target”) if it is negative, and randomly chooses

between +1 and −1 if its argument is 0. Traditional group decisions were obtained using stan-

dard majority, i.e., wp = 1 for all trials and users, while BCI-assisted group decisions used the

decision confidence estimated by the BCI from the brain signals as weight wp.

ResNet-assisted and BCI-and-ResNet-assisted groups (Fig 3(c) and 3(d), respectively) were

composed by m human participants plus the ResNet. Their decisions in a trial were given by:

dResNet group ¼ rsign

Xm

p¼1

wp � dp þ wResNet � dResNet

 !

;

where dResNet 2 {−1, 1} is the decision of the ResNet in the trial, and wResNet is the correspond-

ing weight. ResNet-assisted group decisions were obtained by using standard majority, i.e., wp

= wResNet = 1 for all trials and participants, while BCI-and-ResNet-assisted group decisions

were obtained by using the decision confidence estimated by the BCI from the brain signals as

weight wp, and the confidence of the ResNet wResNet as weight for its decision.

Fig 3. Summary of the different methods for obtaining decisions of groups of size m. (a) Traditional groups of human participants based on standard majority. (b)

Groups of human participants weighing individual decisions with the confidence estimated by the BCI. (c) Traditional groups based on standard majority with an

additional member being the ResNet. (d) BCI-assisted groups with the ResNet as an additional member, with its degree of confidence. (e) Groups where each participant

is assisted by the BCI and paired with the ResNet, and the decisions of these pairs are then integrated using standard majority.

https://doi.org/10.1371/journal.pone.0212935.g003
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Finally, groups of m BCI-and-ResNet-assisted humans (Fig 3(e)) were obtained by firstly

pairing each participant with the ResNet and computing their dResNet_group decisions. These m
decisions were then integrated using standard majority to obtain the decision of a group of

BCI-and-ResNet-assisted humans:

dResNet humans group ¼ rsign

Xm

p¼1

rsignðwp � dp þ wResNet � dResNetÞ

 !

:

This last approach was suggested by literature for human groups [47] showing that aggre-

gating votes from smaller inner crowds outperforms pooling votes from larger groups of indi-

vidual decision makers.

Results

The ResNet performs better than the average individual, but with lower

sensitivity

The accuracy of the participants in the experiment was quite varied, ranging from 52.8% to

92.4%, with an average accuracy of 72.3% and a standard deviation (SD) of 12.0%. We have

also looked at the ability of each participant of identifying nontargets and targets by computing

their specificity and sensitivity as:

Specificity ¼
True Negatives

True Negativesþ False Positives
;

Sensitivity ¼
True Positives

True Positivesþ False Negatives
:

The participants’ average specificity was 77.4% (SD = 15.8%) and their average sensitivity

was 56.9% (SD = 10.9%). Hence, they recognised nontarget stimuli much better than target

ones.

The ResNet had an average accuracy of 84.4%, a specificity of 98.6% and a sensitivity of

41.7%. Hence, it was substantially more accurate than the average participant. However, the

ResNet was particularly good in assessing nontarget images (i.e., high specificity), but quite

weak in detecting targets (i.e., low sensitivity) compared to the average participant. Since target

stimuli appeared only in 25% of the trials, the ResNet could still achieve high accuracy, which

was the metrics used to choose the threshold t (see Methods). In two nontarget trials and one

target trial, the ResNet did not identify any face in the image and, therefore, classified the pic-

ture as “nontarget” (see Methods). Hence, only one error made by the ResNet was caused by

its first step (i.e., extracting faces), which we could assume to be a trivial task for humans.

One may wonder whether a ResNet using a different metrics to optimise the choice of the

threshold t could achieve better sensitivity. When choosing t in order to maximise the F1 score

in cross-validation instead of the accuracy, the ResNet reduced its accuracy (82.6%) and speci-

ficity (94.0%), and increased its sensitivity (48.6%). The average value of the threshold t over

the eight folds was 0.559, while it was 0.526 when maximising accuracy. Similar results were

obtained when maximising Cohen’s kappa to optimise t (average t = 0.543, accuracy = 81.6%,

specificity = 94.0%, and sensitivity = 44.4%). In all cases, the sensitivity of the ResNet was

worse than that of the average participant.
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The ResNet distinguishes itself from the crowd

To exhibit error-correction capability, groups require their members to make errors in differ-

ent trials [48]. In fact, if all group members make the same, incorrect decision in a trial, the

group will also make an incorrect decision. To assess error-correction capability of pairs, we

used the Hamming loss, i.e., the fraction of trials in which the decisions of the two users were

different. We computed the Hamming loss of each pair of participants, as well as the Ham-

ming loss of each user when paired with the ResNet. We also computed the Hamming loss

between the decisions of each user or the ResNet and the ideal user (i.e., one that is always cor-

rect), which corresponds to their error rates.

Participants had performance better than random and, therefore, their decisions were the

same in the majority of the trials. However, the Hamming loss between two participants ran-

ged from 12.5% and 47.2% (mean = 30.67%, SD = 7.92%). This suggests that the pairs exhib-

ited error-correction capability in a large percentage of trials.

When looking at the Hamming loss between the ResNet and each participant, we found

similar results. In this case, the Hamming loss ranged between 12.2% and 48.3%

(mean = 28.92%, SD = 11.60%). A Wilcoxon signed-rank test showed no differences between

the Hamming loss of humans and ResNet (p = 0.646). Given its high performance, of course

the ResNet had minimum Hamming loss with the participants with the highest accuracy (i.e.,

P5 and P6). Yet, even when paired with them, the pair still exhibited error-correction capabil-

ity in more than 12% of the trials.

Different decision makers can be seen as nodes in a weighted graph, with the Hamming

loss measure between pairs of decision makers representing the weight (dissimilarity) between

corresponding nodes. Then, utilising a graph layout algorithm one can flattened the graph to

obtain an intuition of similarities and differences in decision-making behaviour. Fig 4 shows

the result of this process when using the program neato from the Graphviz library.

This diagram as well as the previous analyses show how the ResNet behaves differently

from virtually all other participants.

Cyborgs have significantly higher performance than purely human groups

Fig 5 reports the average accuracy, specificity and sensitivity of groups of increasing number of

human members (m) using the five different methods for making group decisions analysed in

this study (see Fig 3). The average performance of individuals and of the ResNet are also

reported for reference.

Let us first focus on the accuracy (Fig 5(a)). As one would expect [16], the more opinions

are integrated in the group decisions, the more accurate the group becomes. However, it is also

apparent from the figure that the method chosen to integrate individual opinions and obtain

group decisions is at least as important in determining group performance as the group size.

In particular, it is clear that traditional groups of humans (red line in Fig 5(a)) using standard

majority are outperformed by all other four methods, regardless the group size.

Of course, one may expect methods which use some form of confidence estimation on a

decision-by-decision basis to break ties, such as the BCI-assisted groups (blue line in Fig 5(a)),

to be superior to methods using simple majority and breaking ties randomly. However, the

performance of ResNet-assisted groups (green line in Fig 5(a)), which do not make use of con-

fidence estimates, appears to contradict this expectation. Such groups are not only more accu-

rate than equally-sized traditional groups, but also more accurate than BCI-assisted groups of

sizes 2–6. This happens because the ResNet acts as an additional, very accurate member within

the group (the ResNet is not only significantly better than the average participant, but only sec-

ond to P5 and P6 in terms of accuracy). Since ResNet-assisted groups are based on standard
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majority, the smaller the group, the bigger the influence of the ResNet on the group decision.

Indeed, the biggest improvement brought by ResNet-assisted groups over traditional groups

occurs for m = 2, where the addition of the ResNet allows us to turn most of the ties generated

by the two humans into correct decisions. This results in a boost in accuracy of more than 10%

Fig 5. Average performance of individuals, ResNet, and groups of increasing size making decisions using the approaches described in Fig 3. (a) Accuracy. (b)

Specificity (true negative rate). (c) Sensitivity (true positive rate).

https://doi.org/10.1371/journal.pone.0212935.g005

Fig 4. Graphical representation of the Hamming loss between the decisions of human participants (grey nodes),

ResNet (light blue node) and ideal decision maker (green node). The weight of each edge is inversely proportional to

the Hamming loss between the two nodes connected by that edge, hence representing how similar were the decisions

made by the two nodes.

https://doi.org/10.1371/journal.pone.0212935.g004
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over traditional pairs. For bigger group sizes, the difference in average performance between

ResNet-assisted and traditional groups gradually diminishes. We should expect the perfor-

mance of ResNet-assisted groups to eventually converge to that of traditional groups. Yet, even

for the larger group sizes considered in our study, ResNet-assisted groups were still better that

traditional groups by 2–3%.

Given the benefits provided by assisting groups with the BCI and the ResNet individually, it

is not surprising to see that assisting groups with both (orange line in Fig 5(a)) yields even bet-

ter performance—in fact, the best performance over all other methods of obtaining group

decisions.

Interestingly, when using groups of BCI-and-ResNet-assisted humans (grey line in Fig 5(a)),

groups were generally more accurate than ResNet-assisted groups (the only exceptions being

groups of size m = 2 and m = 4), but less accurate than BCI-and-ResNet-assisted groups. This

indicates that, contrary to what is suggested in the literature for human groups [47], aggregat-

ing votes from smaller inner crowds does not outperform pooling votes from larger groups of

individual decision makers, when crowds are composed by humans and artificial agents.

To statistically validate the aforementioned observations, we used the Wilcoxon signed-

rank test to perform pairwise comparisons of the accuracy of groups of increasing sizes using

the five methods analysed in the study. Table 1 reports the two-sided p-values returned by the

test. Statistical analyses for groups of size 10 was not possible as we only had one such group.

As expected, BCI-assisted groups are significantly more accurate than equally-sized tradi-

tional groups based on standard majority for all group sizes—see “(a) vs (b)” column in

Table 1. This confirms previous results obtained with this collaborative BCI both with the

same set up (but using a combination of different neural features and reaction times) [41], and

in other visual-search experiments [40]. Moreover, ResNet-assisted groups were also signifi-

cantly more accurate than traditional groups of only humans for all group sizes, as per “(a) vs

(c)” column in Table 1. When comparing ResNet-assisted and BCI-assisted groups (“(b) vs

(c)” column in Table 1), the test confirms that the former are significantly more accurate than

the latter in small groups (i.e., m = 2–6). Conversely, BCI-assisted groups are significantly

Table 1. Two-sided p-values of the Wilcoxon signed-rank test comparing the performance of: (a) traditional groups, (b) BCI-assisted groups, (c) ResNet-assisted

groups, (d) BCI-and-ResNet-assisted groups, and (e) groups of BCI-and-ResNet-assisted humans. Values in bold represent p< 0.05 confidence level.

Group size

(# groups)

(a) vs (b) (a) vs (c) (b) vs (c) (c) vs (d) (b) vs (d) (d) vs (e)

1

(n = 10)

− 1.7 × 10−2 1.7 × 10−2 8.8×10−1 2.8 × 10−2 −

2

(n = 45)

1.1 × 10−7 7.6 × 10−9 3.7 × 10−8 3.2 × 10−1 2.5 × 10−8 8.5 × 10−6

3

(n = 120)

6.0 × 10−15 2.5 × 10−20 1.2 × 10−19 5.1 × 10−18 1.2 × 10−20 2.1 × 10−7

4

(n = 210)

1.5 × 10−35 3.3 × 10−36 2.8 × 10−28 6.7 × 10−21 7.9 × 10−33 2.5 × 10−13

5

(n = 252)

2.4 × 10−39 9.2 × 10−43 7.7 × 10−27 2.4 × 10−42 4.7 × 10−43 4.0 × 10−17

6

(n = 210)

3.3 × 10−36 3.2 × 10−36 4.2 × 10−8 2.2 × 10−32 3.2 × 10−34 5.0 × 10−19

7

(n = 120)

2.8 × 10−21 1.9 × 10−21 5.3 × 10−2 2.8 × 10−21 2.6 × 10−21 8.2 × 10−14

8

(n = 45)

5.1 × 10−9 5.1 × 10−9 8.4 × 10−4 5.1 × 10−9 7.4 × 10−9 2.7 × 10−7

9

(n = 10)

5.0 × 10−3 5.1 × 10−3 9.3 × 10−3 5.0 × 10−3 4.9 × 10−3 9.3 × 10−3

https://doi.org/10.1371/journal.pone.0212935.t001
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better than ResNet-assisted groups for large group sizes (m = 8–9). The two methods were on

par for groups of size 7. For all group sizes m, BCI-and-ResNet-assisted groups (orange line in

Fig 5) are significantly more accurate than groups assisted by only the ResNet or the BCI (“(c)

vs (d)” and “(b) vs (d)” columns of Table 1, respectively) for all group sizes except for m = 2,

where BCI-and-ResNet-assisted groups and ResNet-assisted groups are on par. BCI-and-

ResNet-assisted groups are also significantly more accurate than groups of BCI-and-ResNet-

assisted humans (“(d) vs (e)” column in Table 1).

Let us now analyse the ability of groups of correctly detecting nontargets and targets by

looking at their specificity (Fig 5(b)) and sensitivity (Fig 5(c)). Here we should remember that,

as seen in the previous section, the ResNet achieved its high accuracy thanks to the high speci-

ficity, while it suffered from low sensitivity. On the one hand, similarly to what happened with

accuracy, the specificity also increased with the group size. Interestingly, in this case groups of

BCI-and-ResNet-assisted humans (grey line) have better specificity than equally-sized BCI-

and-ResNet-assisted groups (orange line) for m = 3 − 10, while the opposite happened for

accuracy. On the other hand, the sensitivity of groups of different sizes (Fig 5(c)) seemed to

saturate around the average human sensitivity (black cross). This suggests that participants

found the target difficult to spot in the same trials. To validate this hypothesis, we computed

the percentage of target trials in which more than half of the participants did not spot the tar-

get. The majority of participants did not spot the target in 39% of the trials. Yet, the average

participants had a sensitivity better than random, while the ResNet did not. As a result, when

pairing the ResNet with a human participant to make groups of BCI-and-ResNet-assisted

humans (grey line), the sensitivity degraded with the increase of the group size. Interestingly,

when the ResNet was included in groups as an additional, equal team member (orange and

green lines in Fig 5(c)), groups were able to improve their sensitivity as the number of human

team members increased. These results confirm that BCI-and-ResNet-assisted groups were

our best method for making group decisions.

BCI and ResNet confidence correlates with correctness

Fig 6 shows the distribution of confidence values estimated by the BCI for the human partici-

pants (left) and the distribution of confidence values of the ResNet (right), for incorrect and

correct decisions. The diagram on the left has been drawn with data from 799 incorrect trials

and 2081 correct ones, while the diagram on the right has been obtained from 45 incorrect tri-

als and 243 correct ones.

Fig 6(left) indicates that, as we found in other experiments [40], the BCI is able to assign sig-

nificantly higher values of confidence to trials in which participants are correct than to trials in

which they are incorrect (Kruskal-Wallis test p = 1.6 × 10−21). The median BCI confidence val-

ues for incorrect and correct trials are 0.747 and 0.850, respectively. The ResNet is also able to

assess its degree of confidence via Eq 1 (see Methods) and its confidence values are lower in

incorrect trials (median = 0.793) than in correct ones (median = 0.834), although not signifi-

cantly due to the smaller sample size (Kruskal-Wallis p = 0.191).

From Fig 6 it is clear that, for both the BCI and the ResNet, incorrect trials have a much

sparser distribution than correct ones. Indeed, the standard deviations of the BCI confidence

for incorrect and correct trials are 0.268 and 0.239, respectively, while for the ResNet they are

0.342 and 0.238, respectively, and these differences are significant (Levene test p = 2.9 × 10−7

and p = 2.0 × 10−3, respectively). Once again, the difference in standard deviations between

correct and incorrect confidence values is bigger for the ResNet.

Taken together, these statistical differences suggest that both the BCI and the ResNet are

able to assess the decision confidence, albeit not perfectly. Of course, this is not entirely
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unexpected. The BCI bases its confidence estimates on the brain signals of the users, hence fac-

ing two major challenges that affect its certainty. Firstly, EEG signals are generally affected by a

high level of noise caused by various sources (e.g., muscular activity, electrical interference,

etc.). Secondly, humans participants may be overconfident or underconfident, two behaviours

which might in turn also impact their brain patterns, thereby making it potentially difficult for

our algorithms to reliably infer the probability of a decision being correct. The ResNet deci-

sions and confidence are also affected by noise from different sources (e.g., partial occlusion of

the target face).

Irrespective of the reasons for the differences in confidence distributions between ResNet

and BCI-assisted humans reported in Fig 6, due to such differences, in a scenario where a BCI-

assisted human works in pair with the ResNet and there is a tie, the human is likely to break

the tie in his/her favour. While this may or may not be optimal from a group decision perspec-

tive, it may make working like a cyborg much more acceptable to the human in the team.

Discussion

A cyborg is typically defined as the combination of a human and a machine, which is either

invasively embedded inside the human or replaces/extends a body part, with the aim of restor-

ing some function or augmenting human capabilities. These types of cyborgs were once only

the domain of science fiction, but are nowadays becoming a reality thanks to the advance-

ments in neural engineering and prosthetics. However, we believe that the terms cyborg and

cyborg group are also appropriate to describe non-invasive combinations of one or more

humans and one or more machines, such as the systems described in this paper to augment

performance in face recognition.

Of course, such systems can also be considered as forms of Human-Machine Interaction

(HMI), consisting of a machine analysing information, and humans using this analysis to

Fig 6. Distribution of confidence values for incorrect and correct decisions for the BCI (left) and the ResNet (right). Black lines

indicate median values of each set. The p values of a Kruskal-Wallis test comparing the correct and incorrect distributions are also

reported.

https://doi.org/10.1371/journal.pone.0212935.g006
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make informed decisions. In this area fall hybrid BCIs [49] that allow users to control certain

parts of an external device with their mind, while other parts are controlled by another system.

In this scenario, we generally refer to shared-control systems, where the artificial component of

the HMI generally takes care of all low-level decisions [50]. For example, when driving a car

[51] or controlling a wheelchair [52] with a hybrid BCI, the autonomous control system usu-

ally performs the obstacle avoidance, while the BCI, relying on noisy brain measures, only

issues high-level commands [53]. However, in those scenarios humans and machines do not

fully interact: they simply control different aspects of the device.

A more recent and promising avenue of research has been looking at Human-Machine

Cooperation (HMC), which further extend HMI to allow the human and the machine to coop-

erate on a more equal footing and at a higher (cognitive) level [54]. This novel approach could

allow us to create a team of human and artificial operators with no a priori dichotomy between

high-level (human) and low-level (machine) elements. Instead, the contribution of each opera-

tor to the control strategy or the decision-making process depends on a time-dependent and

situation-dependent assessment of each actor’s strengths and weaknesses. It is clear that in

tasks which are challenging for both humans and machines, joining forces may allow us to sig-

nificantly improve performance. However, it is not clear how the cooperation can be made to

work practically.

The cyborgs and cyborg groups proposed in this study represent operational solutions to

the problem of how HMC could be implemented in an uncentralised and self-organising man-

ner in the domain of decision making. The simplest solution would be creating groups where

humans and machines have an equal weight in the decision making (majority-based groups).

In our face-recognition task, the ResNet achieved significantly better performance than the

average participant, hence allowing ResNet-assisted groups to significantly improve perfor-

mance over traditional groups of humans. However, this approach is situation-independent,

i.e., it is not able to discriminate in which cases the machine or the human should be trusted

more.

Cyborg group performance could be significantly boosted by assessing the decision confi-

dence of team members (computers or humans) in each decision and weighing their decisions

accordingly. We have shown that machine-vision algorithms could be designed that also esti-

mate their degree of confidence, while BCIs could be used to decode the decision confidence

of humans from their brain activity. These BCI-and-ResNet-assisted groups fully implement

the HMC strategy, allowing to decide the contribution to the group decision of each team

member (human or machine) on a decision-by-decision basis, depending on the degree of

confidence of each actor. Moreover, contrary to what has been suggested in the literature for

human groups [47], cyborg groups function better when human and machine decisions are

integrated at the same level, instead of integrating decisions of human-machine pairs.

The cyborgs proposed in this study also take into account ethical and liability issues con-

cerning automated decision making. We have shown that the confidence values provided by

the BCI for humans are higher than the confidence of the ResNet, leading to humans counting

often more than the ResNet in uncertain decisions. When cyborg groups are used at an opera-

tional level, it is ethically simpler (albeit not necessarily optimal) to let humans decide in cases

where there is no clear majority of opinions between humans and ResNet. However, when

humans in a group cannot agree on a decision, it is more reasonable to trust fully-automated

systems than flipping a coin to break ties.

Overall, all strategies explored in this study on how to integrate humans and machines have

shown significant advantages in face-recognition performance over traditional groups of only

humans. When fully-automated machine-vision algorithms are not reliable enough, BCIs

could be used to significantly boost the performance of groups of human operators. In other
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situations, pairing machines and BCI-assisted humans may provide the best performance.

Future work will verify these findings with other tasks where automated algorithms could be

developed. Furthermore, ensemble of ResNets or similar artificial agents could be created and

their performance compared with that of groups of humans or humans and machines, to fur-

ther verify the need of humans in the loop to achieve maximum accuracy.
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