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Abstract— We present a collaborative Brain-Computer In-
terface (cBCI) to aid group decision-making based on realistic
video feeds. The cBCI combines neural features extracted from
EEG and response times to estimate the decision confidence
of users. Confidence estimates are used to weigh individual
responses and obtain group decisions. Results obtained with 10
participants indicate that cBCI groups are significantly more
accurate than equally-sized groups using standard majority.
Also, selecting dyads on the basis of the average performance
of their members and then assisting them with our cBCI halves
the error rates with respect to majority-based performance.
Also, this allows most participants to be included in at least
one selected dyad, hence being quite inclusive. Results indicate
that this selection strategy makes cBCIs even more effective as
methods for human augmentation in realistic scenarios.

I. INTRODUCTION

Research on collective intelligence has shown that groups
are generally superior to individuals in a variety of decision-
making tasks involving animals and humans [1]. These in-
clude estimating uncertain quantities [2], perceptual tasks [3],
[4], and medical decision making [5].

To exploit their augmented capabilities and intelligence,
groups should either be allowed to communicate freely [3]
or have individuals decide in isolation and make collective
judgements taking into account the decision confidence of
each group’s member [6]. However, communication be-
tween group members is not always possible, and calibrated
decision confidence estimates (i.e., unbiased predictors of
decision correctness [7]) may not be available [8], [9]. In
these cases, group decision making could be suboptimal [10].

Recently we have shown that it is possible to use collabo-
rative Brain-Computer Interfaces (cBCIs) to estimate the de-
cision confidence from the brain signals and response times
(RTs) of isolated users performing a matching task [11].
We used confidence estimates to weigh individual decisions
and make group decisions, which were significantly better
than those of individuals and equally-sized groups using
standard majority. Similar results were then obtained with
more realistic tasks based on static images [4], [9], [12].
We also showed that cBCI confidence estimates were better
calibrated than the confidence reported by participants after
each decision [9].
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While these previous studies focused on the performance
of average groups assisted by cBCIs without any form of
selection, it is clear that certain groups perform better than
others. For example, dyads (i.e., pairs of users) or triads
made by individuals with similar performance were found
to exhibit maximum collective benefits in [13], [14].

This study extends previous work on cBCIs for augmented
decision making along two directions. Firstly, we investigate
whether cBCIs could improve group performance when users
are exposed to video feeds from a realistic, dynamic environ-
ment. Secondly, we introduce a method for selecting groups
that maximises performance without excluding a priori any
individual.

II. METHODOLOGY

A. Participants

Twelve healthy participants (seven females, four left-
handed, age = 35.4±7.4 years), with normal or corrected-to-
normal vision and no reported history of epilepsy, took part
in a decision-making experiment. All volunteers signed an
informed consent form before taking part in the study and
were paid GBP 16 for approximately 2 hours of their time.
Data from two participants were discarded because the EEG
signals were too noisy or did not get recorded at all. This
experiment received Ministry of Defence Research Ethics
Committee (MODREC) ethical approval in July 2017.

B. Stimuli and Procedure

Participants were presented with 12 blocks of 28 trials,
for a total of 336 trials. In each block (Fig. 1), a video
sequence was presented (with a 4 Hz frame rate) representing
the viewpoint of a user walking along a corridor, where
individuals can appear from doorways located at both sides.
When a person appeared, participants had to decide, within
2.5 s, whether the individual was wearing a helmet or a cap
by pressing the left or the right mouse button, respectively.
After the decision, they were asked to indicate, within 2 s,
the degree of confidence in their decision (0-100%) using
the mouse wheel (although these data were not used in
this study). The video sequence presented in each block
contained 42 pairs of doorways: one third with individuals
wearing a helmet, one third with individuals wearing a cap,
and one third empty (no decisions required), in random order.

Participants were comfortably seated at about 80 cm from
an LCD screen. Prior to the start of the experimental session,
each participant underwent a brief training session of 14 trials
to familiarise with the task.
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Fig. 1: (a) Sequence of stimuli presented in a trial. (b)
Examples of the avatars wearing a helmet (left) and a cap
(right) used in the experiment.

C. Data Acquisition and Processing

A Biosemi ActiveTwo EEG system was used to record
the neural signals from 64 electrode sites following the 10-
20 international system. The EEG data were sampled at
2048 Hz, referenced to the mean of the electrodes placed on
the earlobes, and band-pass filtered between 0.15 and 40 Hz.
Artefacts caused by ocular movements were removed using
a standard subtraction algorithm based on correlations. Then,
response-locked epochs starting 1 s before the response and
lasting 1.5 s were extracted from the neural data associated
to each trial, detrended, baseline corrected using the average
voltage recorded in a time window of 200 ms before the
beginning of the trial, and finally filtered and downsampled
to 32 Hz. Each epoch was then labelled as confident or
not confident, depending on whether the participant made
a correct or incorrect decision, respectively.

Common Spatial Pattern (CSP) [15] was used to extract
neural features from each epoch. We used 8-fold cross
validation to split the data into training and test sets, to ensure
the results were not affected by over-fitting. The training set
is used to compute the CSP matrix, which transforms the
response-locked EEG data into a lower-dimensional subspace
where the two classes (correct and incorrect) are more
distinguishable. The logarithm of the variances of the first
and the last rows of the CSP-transformed data have then
been used as neural features in our cBCI to predict the
confidence of the user in each decision. The variances for
the two classes (i.e., correct and incorrect responses) are
largest in the first and the last rows of the subspace and,
hence, they are most distinguishable. Thus, the logarithm of
the variances of the first and the last spatial subspaces were
used as neural features in our cBCI.

We studied the performance of both a cBCI where the
feature vector was composed by these two CSPs only, and
a cBCI using the RT of the participant, which is known to
correlate with the decision confidence [16], in addition to the
two CSPs. RTs were measured by timestamping the click of
an ordinary USB mouse.

D. Confidence Estimation and Group Decisions

For each participant p, a logistic regression model was
used to predict the confidence weight of trial i, wp,i, from the
feature vector. The model was fitted using L2 normalization
and a regularization strength C=1000. Group decisions were

then made as follows:

dgroup,i = sign

(
m∑

p=1

wp,i · dp,i

)
,

where dp,i is the decision of participant p in trial i, wp,i is
the corresponding confidence weight.

Groups of size m=2, . . . , 10 were formed offline by
considering the

(
10
m

)
combinations of the 10 participants.

The performance of groups assisted by the cBCI based only
on CSP and the one also based on RT was then compared
with the performance obtained by traditional groups using
standard majority (i.e., wp,i=1, for all p and i).

E. Dyad Selection

In the case of dyads (i.e., groups of size 2), we also
studied the performance of the subset of the original 45 dyads
which had standard-majority performance, β, over a certain
threshold. We should note that the majority performance of
dyads is the average performance of their members.

When a dyad is asked to make a decision in a binary
decision-making task, three possible scenarios can happen:

1) both users make the correct decision;
2) both users make the incorrect decision;
3) users make opposite decisions, hence generating a tie.

A tie represents an opportunity for the dyad to correct a
mistake made by one of the members if an effective tie-
breaking strategy is available to decide which member should
be trusted. Standard majority uses coin-flipping to break ties,
hence turning only half of the ties into correct decisions. Its
performance is, therefore, given by:

β = S11 +
1

2
· T,

where S11 is the fraction of decisions in which both members
made a correct decision and T is the fraction of ties. Dyads
with high β have a high number of unanimous correct
decisions S11, a high percentage of ties T that were turned
into correct decisions by a good tie-breaking strategy (such
as our cBCIs), or a combination of both.

Our proposed selection method for cBCI-assisted dyads is
to accept only dyads with β > βt, where βt is a constant.
While, by definition, it is clear that the higher the β, the
better the performance of a dyad when using majority, it was
not immediately obvious whether such a selection strategy
would also lead to good cBCI-assisted groups.

III. RESULTS

A. Individual Performance

Fig. 2 shows the error rates of 10 participants in the
experiment. On average, the participants made incorrect
decisions in 21.55% of the trials. Seven of the ten participants
had error rates below the mean, the mean being negatively
affected by participant 3, 5 and 6 who presented error rates
of 30% or more.
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Fig. 2: Error rates for each participant of the experiment.
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Fig. 3: Error rates obtained by groups of sizes 1 to 10
when using standard majority (black), a cBCI based on CSP
features (green), and a cBCI based on CSP and RT features
(orange).

B. Group Performance

Fig. 3 shows the error rates of groups of size 1 to 10. The
difference between error distributions within each group size
for different methods were statistically tested using the one-
tailed Wilcoxon signed-rank test.

The results indicate that, for groups of sizes 2 to 9, the
cBCI based on neural features (labelled “cBCI (CSPs)” in
the figure) is significantly better than the standard majority
method (Wilcoxon p<0.003). Moreover, the cBCI based on
both neural features and RT (labelled “cBCI (CSPs+RT)”)
outperformed the cBCI based solely on the neural features
(p<0.004) for groups of sizes 2 to 9.

C. Performance of Selected Dyads

Fig. 3 also showed that dyads assisted by the cBCI based
on neural features and RT reduce their error rates from
21.55% (obtained using standard majority) to 14.56% thanks
to the cBCI breaking ties better than random. This is the
performance improvement obtained without any selection.

Fig. 4 compares the error rates of selected dyads using
standard majority and the cBCI based on neural features
and RT, for different threshold values βt. The number of
dyads selected when adopting each threshold values are
shown at the top of the figure. The error rates of cBCI-
assisted dyads were significantly lower than those obtained
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Fig. 4: Error rates of selected dyads using standard majority
(black) and assisted by the cBCI based on neural features
and RT (orange) for increasing values of the threshold βt.
The corresponding p-values of the Wilcoxon signed-rank test
comparing the two methods are also shown in red. Sample
sizes are shown at the top.

Fig. 5: Majority performance of all 45 dyads as a function of
the error rates obtained when assisting dyads with the cBCI
based on neural features and RT. The green region marks the
dyads selected when the threshold βt is set to the average
individual performance.

with standard majority for all threshold values (one-tailed
Wilcoxon signed-rank p < 0.05, red line in the figure).
Interestingly, error rates decrease as βt increases also when
considering cBCI-assisted dyads.

To further analyse the effects of our group selection
strategy, Fig. 5 reports the values of β of all original dyads
as a function of the error rates obtained using the cBCI
based on neural features and RT. The green area shows
which dyads are selected when setting βt = 78.45% (average
individual performance). The results clearly show that the
best cBCI-assisted dyads (left-most dots, i.e., low error rates)
are also the best majority-based dyads (top-most dots, i.e.,
high β). Hence by selecting dyads using our strategy based
on behavioural performance, one also approximately selects
the optimal cBCI-assisted dyads.

D. Membership of Selected Dyads

Fig. 6 shows the number of dyads in which each partic-
ipant was a member after performing dyad selection with
βt=78.45%. Without selection, each participant took part in
nine dyads. After selection, all users except for participant 5
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Fig. 6: Number of dyads in which each participant was a
member after selection using βt=78.45%. The error rates of
each participant are indicated on top.

still appeared in at least one dyad. The reason why partici-
pant 5 was excluded by our strategy is that it was the user
with the highest individual error rate. Hence, dyads including
this participant were more likely to perform worse than
the average individual when using standard majority. The
second- and third-worst performers (i.e., participants 3 and 6)
worked well only with the best performer (participant 8),
who worked well with all other participants (except 5). The
other participants worked well with one another. We should
note that had we selected individuals, instead of dyads, based
on whether their performance was above average, we would
have excluded participants 3, 5 and 6 completely.

IV. CONCLUSION

This paper has showed that weighing individual deci-
sions by the confidence estimated by a collaborative brain-
computer interface using neural features and response times
can significantly improve group performance even in realistic
decision environments involving video feeds. The biggest
improvement brought by the cBCI over majority occurs in
dyads thanks to the tie-breaking strategy yielded by the cBCI
being better than random. These findings make another step
towards applying cBCIs in real-world critical tasks, such as
threat detection.

The performance of cBCI-assisted dyads was further im-
proved by selecting only the dyads with a majority perfor-
mance above a certain threshold. The error rate of such dyads
when the threshold was set to the average individual accuracy
and when they were assisted by our cBCI was nearly halved
w.r.t. the error rate of dyad using standard majority and in
the absence of selection. Also, while our selection strategy
discarded half of the original dyads, it only discarded one
participant, hence being very inclusive.
lead to methods for “neural fingerprinting”, which could

In future research, we plan to verify that our group
selection method also works in other decision-making tasks,
and to extend it to work with bigger groups. Furthermore,
other methods for group selection could be introduced, e.g.,
only selecting those participants that exhibit robust brain
patterns correlated with the decision confidence. This could

be combined with our group selection strategy to further
enhance group decision making accuracy.
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