2,004 research outputs found

    Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Get PDF
    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large resistivity of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.Comment: 14 pages, 6 figures. Accepted in 2D Materials. https://doi.org/10.1088/2053-1583/aa882

    Various versions of analytic QCD and skeleton-motivated evaluation of observables

    Get PDF
    We present skeleton-motivated evaluation of QCD observables. The approach can be applied in analytic versions of QCD in certain classes of renormalization schemes. We present two versions of analytic QCD which can be regarded as low-energy modifications of the ``minimal'' analytic QCD and which reproduce the measured value of the semihadronic tau decay ratio r{tau}. Further, we describe an approach of calculating the higher order analytic couplings Ak (k=2,3,...) on the basis of logarithmic derivatives of the analytic coupling A1(Q^2). This approach can be easily applied in any version of analytic QCD. We adjust the free parameters of the afore-mentioned two analytic models in such a way that the skeleton-motivated evaluation reproduces the correct known values of r{tau} and of the Bjorken polarized sum rule (BjPSR) db(Q^2) at a given point (e.g., at Q^2=2 GeV^2). We then evaluate the low-energy behavior of the Adler function dv(Q^2) and the BjPSR db(Q^2) in the afore-mentioned evaluation approach, in the three analytic versions of QCD. We compare with the results obtained in the ``minimal'' analytic QCD and with the evaluation approach of Milton et al. and Shirkov.Comment: 30 pages, 14 eps-figures; v3: parameters of the analytic QCD models M1 and M2 were refined, the numerical results modified accordingly, new paragraph at the end of Sec.II and at the end of Sec.III, discussion of Figs.4 extended, references added; version to appear in PR

    Quantum Phase Tomography of a Strongly Driven Qubit

    Get PDF
    The interference between repeated Landau-Zener transitions in a qubit swept through an avoided level crossing results in Stueckelberg oscillations in qubit magnetization. The resulting oscillatory patterns are a hallmark of the coherent strongly-driven regime in qubits, quantum dots and other two-level systems. The two-dimensional Fourier transforms of these patterns are found to exhibit a family of one-dimensional curves in Fourier space, in agreement with recent observations in a superconducting qubit. We interpret these images in terms of time evolution of the quantum phase of qubit state and show that they can be used to probe dephasing mechanisms in the qubit.Comment: 5 pgs, 4 fg

    Optical Response for the d-density wave model

    Full text link
    We have calculated the optical conductivity and the Raman response for the d-density wave model, proposed as a possible explanation for the pseudogap seen in high Tc cuprates. The total optical spectral weight remains approximately constant on opening of the pseudogap for fixed temperature. This occurs because there is a transfer of weight from the Drude peak to interband transitions across the pseudogap. The interband peak in the optical conductivity is prominent but becomes progressively reduced with increasing temperature, with impurity scattering, which distributes it over a larger energy range, and with ineleastic scattering which can also shift its position, making it difficult to have a direct determination of the value of the pseudogap. Corresponding structure is seen in the optical scattering rate, but not necessarily at the same energies as in the conductivity.Comment: 14 pages, 15 figures, final revised version published in PR

    Anomalously Weak Dynamical Friction in Halos

    Full text link
    A bar rotating in a pressure-supported halo generally loses angular momentum and slows down due to dynamical friction. Valenzuela & Klypin report a counter-example of a bar that rotates in a dense halo with little friction for several Gyr, and argue that their result invalidates the claim by Debattista & Sellwood that fast bars in real galaxies require a low halo density. We show that it is possible for friction to cease for a while should the pattern speed of the bar fluctuate upward. The reduced friction is due to an anomalous gradient in the phase-space density of particles at the principal resonance created by the earlier evolution. The result obtained by Valenzuela & Klypin is probably an artifact of their adaptive mesh refinement method, but anyway could not persist in a real galaxy. The conclusion by Debattista & Sellwood still stands.Comment: To appear in "Island Universes - Structure and Evolution of Disk Galaxies" ed. R. S. de Jong, 8 pages, 4 figures, .cls and .sty files include

    A novel integral representation for the Adler function

    Get PDF
    New integral representations for the Adler D-function and the R-ratio of the electron-positron annihilation into hadrons are derived in the general framework of the analytic approach to QCD. These representations capture the nonperturbative information encoded in the dispersion relation for the D-function, the effects due to the interrelation between spacelike and timelike domains, and the effects due to the nonvanishing pion mass. The latter plays a crucial role in this analysis, forcing the Adler function to vanish in the infrared limit. Within the developed approach the D-function is calculated by employing its perturbative approximation as the only additional input. The obtained result is found to be in reasonable agreement with the experimental prediction for the Adler function in the entire range of momenta 0Q2<0 \le Q^2 < \infty.Comment: 11 pages, 3 figure

    On the Issue of the \zeta Series Convergence and Loop Corrections in the Generation of Observable Primordial Non-Gaussianity in Slow-Roll Inflation. Part II: the Trispectrum

    Full text link
    We calculate the trispectrum T_\zeta of the primordial curvature perturbation \zeta, generated during a {\it slow-roll} inflationary epoch by considering a two-field quadratic model of inflation with {\it canonical} kinetic terms. We consider loop contributions as well as tree level terms, and show that it is possible to attain very high, {\it including observable}, values for the level of non-gaussianity \tau_{NL} if T_\zeta is dominated by the one-loop contribution. Special attention is paid to the claim in JCAP {\bf 0902}, 017 (2009) [arXiv:0812.0807 [astro-ph]] that, in the model studied in this paper and for the specific inflationary trajectory we choose, the quantum fluctuations of the fields overwhelm the classical evolution. We argue that such a claim actually does not apply to our model, although more research is needed in order to understand the role of quantum diffusion. We also consider the probability that an observer in an ensemble of realizations of the density field sees a non-gaussian distribution. In that respect, we show that the probability associated to the chosen inflationary trajectory is non-negligible. Finally, the levels of non-gaussianity f_{NL} and \tau_{NL} in the bispectrum B_\zeta and trispectrum T_\zeta of \zeta, respectively, are also studied for the case in which \zeta is not generated during inflation.Comment: LaTex File, 27 pages, 8 figures. v2: Previous Section 2 has been removed. Two new sections (3 and 4) discussing the classicality condition given by Byrnes, Choi, and Hall, in JCAP 0902, 017 (2009), and the probability that an observer sees a non-gaussian distribution have been added. v3: Version accepted for publication in Physical Review

    Spin Hall effect transistor

    Full text link
    Spin transistors and spin Hall effects have been two separate leading directions of research in semiconductor spintronics which seeks new paradigms for information processing technologies. We have brought the two directions together to realize an all-semiconductor spin Hall effect transistor. Our scheme circumvents semiconductor-ferromagnet interface problems of the original Datta-Das spin transistor concept and demonstrates the utility of the spin Hall effects in microelectronics. The devices use diffusive transport and operate without electrical current, i.e., without Joule heating in the active part of the transistor. We demonstrate a spin AND logic function in a semiconductor channel with two gates. Our experimental study is complemented by numerical Monte Carlo simulations of spin-diffusion through the transistor channel.Comment: 11 pages, 3 figure

    Analyzing the Effect of Crowds on Passenger Behavior Inside Urban Trains through Laboratory Experiments—A Pilot Study

    Get PDF
    The objective is to study the distribution of passengers inside urban trains for different levels of crowding. The study is carried out through the observation of videos made by laboratory experiments in which a mock-up of a carriage represented the boarding and alighting process. The Fruin’s Level of Service (LOS) was adopted, but with a different approach, in which the train is divided into five zones (central hall, central aisle, side aisle, central seats and side seats). The experiments are based on the behavior of passengers in the London Underground; however, this study could be expanded to any conventional rail or LRT system. For the laboratory experiments, it is proposed to build a metro carriage and a corresponding platform section, and the scenarios will include different levels of crowding of passengers boarding and alighting to produce a variation in the density on the platform. According to the crowding level, the results allow obtaining the distribution and movements generated by passengers in the five zones for different instants of time during the process of boarding and alighting. It is observed that passengers are distributed according to safety and efficiency conditions. For example, passengers tried to avoid contact with each other unless it is inevitable. In relation to comfort, the seats of the carriage are always used even if there is a low level of crowding. If the crowding level increases, the boarding and alighting time go up. In addition, passengers will spend one or two seconds more if the “let’s get off before getting on the carriage” behavior is breached. This kind of experiment can be used in further research as a way to test “what-if” scenarios using this new method of discretization of the space inside the train, which cannot be tested in existing stations due to restrictions such as the weather, variability of the train frequency, current design of the trains, among others. New experiments are necessary for future research to include other types of passengers such as people with disabilities or reduced mobility
    corecore