1,588 research outputs found
Clumpy Disc and Bulge Formation
We present a set of hydrodynamical/Nbody controlled simulations of isolated
gas rich galaxies that self-consistently include SN feedback and a detailed
chemical evolution model, both tested in cosmological simulations. The initial
conditions are motivated by the observed star forming galaxies at z ~ 2-3. We
find that the presence of a multiphase interstellar media in our models
promotes the growth of disc instability favouring the formation of clumps which
in general, are not easily disrupted on timescales compared to the migration
time. We show that stellar clumps migrate towards the central region and
contribute to form a classical-like bulge with a Sersic index, n > 2. Our
physically-motivated Supernova feedback has a mild influence on clump survival
and evolution, partially limiting the mass growth of clumps as the energy
released per Supernova event is increased, with the consequent flattening of
the bulge profile. This regulation does not prevent the building of a
classical-like bulge even for the most energetic feedback tested. Our Supernova
feedback model is able to establish a self-regulated star formation, producing
mass-loaded outflows and stellar age spreads comparable to observations. We
find that the bulge formation by clumps may coexit with other channels of bulge
assembly such as bar and mergers. Our results suggest that galactic bulges
could be interpreted as composite systems with structural components and
stellar populations storing archaeological information of the dynamical history
of their galaxy.Comment: Accepted for publication in MNRAS - Aug. 20, 201
Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
Spin Hall effects have surged as promising phenomena for spin logics
operations without ferromagnets. However, the magnitude of the detected
electric signals at room temperature in metallic systems has been so far
underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the
signal in monolayer graphene/Pt devices when compared to their fully metallic
counterparts. The enhancement stems in part from efficient spin injection and
the large resistivity of graphene but we also observe 100% spin absorption in
Pt and find an unusually large effective spin Hall angle of up to 0.15. The
large spin-to-charge conversion allows us to characterise spin precession in
graphene under the presence of a magnetic field. Furthermore, by developing an
analytical model based on the 1D diffusive spin-transport, we demonstrate that
the effective spin-relaxation time in graphene can be accurately determined
using the (inverse) spin Hall effect as a means of detection. This is a
necessary step to gather full understanding of the consequences of spin
absorption in spin Hall devices, which is known to suppress effective spin
lifetimes in both metallic and graphene systems.Comment: 14 pages, 6 figures. Accepted in 2D Materials.
https://doi.org/10.1088/2053-1583/aa882
Forming Disk Galaxies in Lambda CDM Simulations
We used fully cosmological, high resolution N-body + SPH simulations to
follow the formation of disk galaxies with rotational velocities between 135
and 270 km/sec in a Lambda CDM universe. The simulations include gas cooling,
star formation, the effects of a uniform UV background and a physically
motivated description of feedback from supernovae. The host dark matter halos
have a spin and last major merger redshift typical of galaxy sized halos as
measured in recent large scale N--Body simulations. The simulated galaxies form
rotationally supported disks with realistic exponential scale lengths and fall
on both the I-band and baryonic Tully Fisher relations. An extended stellar
disk forms inside the Milky Way sized halo immediately after the last major
merger. The combination of UV background and SN feedback drastically reduces
the number of visible satellites orbiting inside a Milky Way sized halo,
bringing it in fair agreement with observations. Our simulations predict that
the average age of a primary galaxy's stellar population decreases with mass,
because feedback delays star formation in less massive galaxies. Galaxies have
stellar masses and current star formation rates as a function of total mass
that are in good agreement with observational data. We discuss how both high
mass and force resolution and a realistic description of star formation and
feedback are important ingredients to match the observed properties of
galaxies.Comment: Revised version after the referee's comments. Conclusions unchanged.
2 new plots. MNRAS in press. 20 plots. 21 page
Quantum Phase Tomography of a Strongly Driven Qubit
The interference between repeated Landau-Zener transitions in a qubit swept
through an avoided level crossing results in Stueckelberg oscillations in qubit
magnetization. The resulting oscillatory patterns are a hallmark of the
coherent strongly-driven regime in qubits, quantum dots and other two-level
systems. The two-dimensional Fourier transforms of these patterns are found to
exhibit a family of one-dimensional curves in Fourier space, in agreement with
recent observations in a superconducting qubit. We interpret these images in
terms of time evolution of the quantum phase of qubit state and show that they
can be used to probe dephasing mechanisms in the qubit.Comment: 5 pgs, 4 fg
Versatile multicolor nanodiamond probes for intracellular imaging and targeted labeling
© 2018 The Royal Society of Chemistry. We report on the sizable production of fluorescent nanodiamonds (FNDs) containing a near infrared (NIR) color center-namely the silicon vacancy (SiV) defect, and their first demonstration inside cells for bio-imaging. We further demonstrate a concept of multi-color bio-imaging using FNDs to investigate intercellular processes using two types of FNDs. Due to their specific spectral properties, SiV FNDs can be distinguished from common nitrogen-vacancy (NV) FNDs and show a distinct initial spreading throughout the cell interior. The reported results are the first demonstration of multi-color labeling with FNDs that are especially interesting for in vivo bio-imaging due to their stable fluorescence
Forming disc galaxies in ΛCDM simulations
We used fully cosmological, high-resolution N-body + smooth particle hydrodynamic (SPH) simulations to follow the formation of disc galaxies with rotational velocities between 135 and 270 km s−1 in a Λ cold dark matter (CDM) universe. The simulations include gas cooling, star formation, the effects of a uniform ultraviolet (UV) background and a physically motivated description of feedback from supernovae (SNe). The host dark matter haloes have a spin and last major merger redshift typical of galaxy-sized haloes as measured in recent large-scale N-body simulations. The simulated galaxies form rotationally supported discs with realistic exponential scalelengths and fall on both the I band and baryonic Tully-Fisher relations. An extended stellar disc forms inside the Milky Way (MW)-sized halo immediately after the last major merger. The combination of UV background and SN feedback drastically reduces the number of visible satellites orbiting inside a MW-sized halo, bringing it in fair agreement with observations. Our simulations predict that the average age of a primary galaxy's stellar population decreases with mass, because feedback delays star formation in less massive galaxies. Galaxies have stellar masses and current star formation rates as a function of total mass that are in good agreement with observational data. We discuss how both high mass and force resolution and a realistic description of star formation and feedback are important ingredients to match the observed properties of galaxie
Anomalously Weak Dynamical Friction in Halos
A bar rotating in a pressure-supported halo generally loses angular momentum
and slows down due to dynamical friction. Valenzuela & Klypin report a
counter-example of a bar that rotates in a dense halo with little friction for
several Gyr, and argue that their result invalidates the claim by Debattista &
Sellwood that fast bars in real galaxies require a low halo density. We show
that it is possible for friction to cease for a while should the pattern speed
of the bar fluctuate upward. The reduced friction is due to an anomalous
gradient in the phase-space density of particles at the principal resonance
created by the earlier evolution. The result obtained by Valenzuela & Klypin is
probably an artifact of their adaptive mesh refinement method, but anyway could
not persist in a real galaxy. The conclusion by Debattista & Sellwood still
stands.Comment: To appear in "Island Universes - Structure and Evolution of Disk
Galaxies" ed. R. S. de Jong, 8 pages, 4 figures, .cls and .sty files include
Investigating the spin-orbit interaction in van der Waals heterostructures by means of the spin relaxation anisotropy
Graphene offers long spin propagation and, at the same time, a versatile platform to engineer its physical properties. Proximity-induced phenomena, taking advantage of materials with large spin-orbit coupling or that are magnetic, can be used to imprint graphene with large spin-orbit coupling and magnetic correlations. However, full understanding of the proximitized graphene and the consequences on the spin transport dynamics requires the development of unconventional experimental approaches. The investigation of the spin relaxation anisotropy, defined as the ratio of lifetimes for spins pointing out of and in the graphene plane, is an important step in this direction. This review discusses various methods for extracting the spin relaxation anisotropy in graphene-based devices. Within the experimental framework, current understanding on spin transport dynamics in single-layer and bilayer graphene is presented. Due to increasing interest, experimental results in graphene in proximity with high spin-orbit layered materials are also reviewed
- …