8 research outputs found

    Integral Approach to Vulnerability Assessment of Ship’s Critical Equipment and Systems

    Get PDF
    The digital transformation of the maritime industry is almost a fait accompli. Merchant ships today use computing and cyber-dependent technologies for navigation, communications, cargo operations, environmental monitoring, and many other purposes. Nowadays, entire industries and businesses are becoming increasingly dependent on data arrays, and the maritime sector is fully experiencing this transformation. A modern commercial ship is unthinkable without digital technology, and the reasons for the deep digitalization of the fleet are numerous. Emergency systems such as safety monitoring, fire detection and alarms are increasingly reliant on cyber technology. Therefore, cybersecurity is a critical component of ship and shipping safety, and cyber-attacks on maritime transport are a very likely problem. These risks will only increase with the further development of information technology. This article proposes approaches to identifying cyber threats as well as a probabilistic assessment of ship cybersecurity, which is based on an integral approach to assessing the vulnerability of shipboard critical equipment and systems. Estimated probabilities of target and non-target cybersecurity breaches of the ship, as well as their overall probability, which allows considering all chains of events leading to a certain consequence associated with potential losses. The model of probability assessment of ship cybersecurity violation and its consequences, which allows evaluation of possible losses as a result of these events, is presented and mathematically described

    Basic aspects ensuring shipping safety

    No full text
    Widespread use of innovative technologies in all spheres of life has brought the maritime transport industry, in particular, the process of ship navigation, to a completely new qualitative level. Various navigation systems recently introduced and used only as additional devices have gradually become an obligatory element of shipboard equipment and navigation complexes of modern vessels, extending their functionality and capabilities. The human factor influence caused by automation of ship operation processes becomes a separate challenge. Risks to shipping safety and consequences of breach of safety standards for crew, vessel and cargo are far from being a full list of the problems to be solved. This paper offers an overview of general issues of ensuring the level of safety of shipping, by examining the concept of "vessel safety", considering its individual sides, features, as well as constituent aspects of the concept, systematization of the vessel safety structure to develop solutions toward improving the integral safety and optimization of decision-making in emergencies. Achievement of the general purpose of shipping safety thus means the realization of ways of reducing the influence of the human factor on several accidents and an estimation of the degree of influence of a set of factors on a ship during operation

    IDENTIFYING THE PROPERTIES OF EPOXY COMPOSITES FILLED WITH THE SOLID PHASE OF WASTES FROM METAL ENTERPRISES

    No full text
    The article addresses the issue related to the disposal of dust from steel industry as a reinforcing filler for epoxy composites. The polymer composition of "cold welding" that has been developed and studied includes epoxy dian oligomer, amine hardener and the filler – finely dispersed waste of metals. Polyethylene polyamine was used as a hardener in order to improve heat resistance and strength characteristics. Manganese triacetate was used in order to decrease the temperature and reduce the time of curing. The possibility was established to dispose of finely dispersed metal-containing waste from metallurgical production to be used a filler for epoxy composites of cold curing. It was revealed that the optimal content of dusts from foundries in the composite is at the level of 45–60 %. At this content, there is the highest impact resistance at the level of 40–50 MPa and a softening temperature in the range of 170–190 Β°Π‘. It was established that at an increase in the amount of a filler from 40 % to 70 %, the cross-linking degree increases by 88 % to 98 %, respectively. However, at the content of the filler less than 45 % or exceeding 60 %, the impact resistance of the resulting composites decreases. At the content of a filler in the composite less than 45 %, the cause of low values of impact resistance and softening temperature could be the low cross-linking degree, less than 90 %. A decrease in these properties of composites at the content of the filler exceeding 60 % could be associated with the formation of a heterogeneous structure of filler. In the compositions with the highest performance characteristics, there is an optimized content of the filler and catalyst. Using a hardener and a curing catalyst in quantities of 3–3.5 and 1.5–2 %, respectively, makes it possible to shorten curing time by up to 2 hours. In general, the resulting epoxy composites are superior in their performance to known cold-curing analogs. The dependences of impact resistance, softening temperature, and cross-linking degree on the content of waste in the composite were derived, which make it possible to calculate the optimal formulation for composites depending on the required propertie

    ВиявлСння закономірностСй формування властивостСй ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… стінових ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Π· використанням Π²Ρ–Π΄Ρ…ΠΎΠ΄Ρ–Π² газовидобування (Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π²)

    No full text
    This paper addresses the prospects of recycling waste from oil and gas extraction in order to manufacture building materials. The principal possibility has been established to apply the examined samples of drilling sludge as the basic raw material and a mineral additive in the compositions of masses to produce wall ceramics with the required consumer properties.The main technological parameters for obtaining wall ceramics using the samples of gas extraction waste have been investigated. The formulations for ceramic masses have been developed applying fusible medium-sintered loam and drilling sludge in the amount of 20–80Β % by weight. The properties of the obtained ceramic samples containing clay and high-carbonate drilling sludges have been analyzed. It has been found that increasing the amount of drilling sludge in the samples by 20Β % to 80Β % leads to a decrease in the density, strength, and an increase in the water absorption of the samples, which affects the quality of ceramics and the possibility of its practical use. We have established the regularities of change in the properties of the wall materials samples depending on the amount of the examined drilling sludge.The optimal number of drilling sludge samples for the manufacture of wall ceramics with the norm-compliant properties has been determined. It has been found that it is possible to use clay drilling sludge (20β€’80Β %) in the composition with fusible loam in order to obtain frost-resistant ceramic materials whose water absorption is at the level of 12Β %, of grade M 125β€’M 175. Adding high carbonate sludge to fusible loam in the amount of 20Β % makes it possible to receive frost-resistant ceramic materials of grade M 75, in the amount of 40Β % β€’ of grade M 100РассмотрСны пСрспСктивы ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² Π½Π°Ρ„Ρ‚ΠΎΠ³Π°Π·ΠΎΠ΄ΠΎΠ±Ρ‹Ρ‡ΠΈ Π² производствС ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². УстановлСна ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния исслСдованных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов ΠΊΠ°ΠΊ основного ΡΡ‹Ρ€ΡŒΡ ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Π² составах масс для получСния стСнной ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌΠΈ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΈΠΌΠΈ свойствами.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ основныС тСхнологичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ получСния стСнной ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с использованиСм ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² Π³Π°Π·ΠΎΠ΄ΠΎΠ±Ρ‹Ρ‡ΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ составы кСрамичСских масс с использованиСм Π»Π΅ΠΊΠ³ΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΡ€Π΅Π΄Π½Π΅ΡΠΏΠ΅ΠΊΠ°ΡŽΡ‰Π΅Π³ΠΎΡΡ суглинка ΠΈ Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов Π² количСствС 20-80 масс.Β %. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ свойства ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… кСрамичСских ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² с использованиСм глинистых ΠΈ высококарбонатных Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ содСрТания Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΎΡ‚ 20Β % Π΄ΠΎ 80Β % ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ плотности, прочности ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ водопоглощСния ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², Ρ‡Ρ‚ΠΎ влияСт Π½Π° качСства ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΈ возмоТности Π΅Π΅ практичСского использования. УстановлСны закономСрности измСнСния свойств ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² стСновых ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΎΡ‚ количСства исслСдованного Π±ΡƒΡ€ΠΎΠ²ΠΎΠ³ΠΎ шлама.ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ количСства ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов для изготовлСния стСнной ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ свойствами. УстановлСно, Ρ‡Ρ‚ΠΎ с использованиСм глинистого Π±ΡƒΡ€ΠΎΠ²ΠΎΠ³ΠΎ шлама (20–80Β %) Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ с Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΈΠΌ суглинком ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ морозоустойчивыС кСрамичСскиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ с Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 12Β % ΠΈ ΠΌΠ°Ρ€ΠΊΠΎΠΉ М 125β€“Πœ 175. Π”ΠΎΠ±Π°Π²ΠΊΠ° высококарбонатного шлама ΠΊ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠΌΡƒ суглинку Π² количСствС 20Β % Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ морозоустойчивыС кСрамичСскиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ с ΠΌΠ°Ρ€ΠΊΠΎΠΉ М 75, Π° Π² количСствС 40Β % – ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΌΠ°Ρ€ΠΊΠΈ М 100Розглянуто пСрспСктиви ΡƒΡ‚ΠΈΠ»Ρ–Π·Π°Ρ†Ρ–Ρ— Π²Ρ–Π΄Ρ…ΠΎΠ΄Ρ–Π² Π½Π°Ρ„Ρ‚ΠΎΠ³Π°Π·ΠΎΠ²ΠΈΠ΄ΠΎΠ±ΡƒΡ‚ΠΊΡƒ Ρƒ Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Ρ– Π±ΡƒΠ΄Ρ–Π²Π΅Π»ΡŒΠ½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π². ВстановлСна ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ²Π° ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ застосування дослідТСних Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π² як основної сировини Ρ– ΠΌΡ–Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΡ— Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Ρƒ складах мас для отримання стінової ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Π· Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΠΌΠΈ споТивчими властивостями.ДослідТСно основні Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ отримання стінової ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Π· використанням Π·Ρ€Π°Π·ΠΊΡ–Π² Π²Ρ–Π΄Ρ…ΠΎΠ΄Ρ–Π² газовидобування. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Ρ– склади ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… мас Π· використанням Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡΠΏΡ–ΠΊΠ»ΠΈΠ²ΠΎΠ³ΠΎ суглинку Ρ– Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π² Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 20–80 мас.Β %. ΠŸΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– властивості ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΡ–Π² Π· використанням глинистих Ρ‚Π° висококарбонатних Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π². ВиявлСно, Ρ‰ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ вмісту Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π² Π² Π·Ρ€Π°Π·ΠΊΠ°Ρ… Π²Ρ–Π΄ 20Β % Π΄ΠΎ 80Β % ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ змСншСння густини, міцності Ρ‚Π° ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Π½ΡŽ водопоглинСння Π·Ρ€Π°Π·ΠΊΡ–Π², Ρ‰ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° ΡΠΊΡ–ΡΡ‚ΡŒ ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Ρ‚Π° моТливості Ρ—Ρ— ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ використання. ВстановлСні закономірності Π·ΠΌΡ–Π½ΠΈ властивостСй Π·Ρ€Π°Π·ΠΊΡ–Π² стінових ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Π²Ρ–Π΄ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– дослідТСного Π±ΡƒΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΡˆΠ»Π°ΠΌΡƒ.Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ– ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π² для виготовлСння стінової ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Π· Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΈΠΌΠΈ властивостями. ВстановлСно, Ρ‰ΠΎ Π· використанням глинистого Π±ΡƒΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΡˆΠ»Π°ΠΌΡƒ (20-80Β %) Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— Π· Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΈΠΌ суглинком ΠΌΠΎΠΆΠ½Π° ΠΎΡ‚Ρ€ΠΈΠΌΡƒΠ²Π°Ρ‚ΠΈ морозостійкі ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½Ρ– ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Π· водопоглинанням Π½Π° Ρ€Ρ–Π²Π½Ρ– 12Β % Ρ– ΠΌΠ°Ρ€ΠΊΠΎΡŽ М 125-М 175. Π”ΠΎΠ±Π°Π²ΠΊΠ° висококарбонатного ΡˆΠ»Π°ΠΌΡƒ Π΄ΠΎ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ суглинку Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 20Β % Π΄Π°Ρ” Π·ΠΌΠΎΠ³Ρƒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ морозостійкі ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½Ρ– ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Π· ΠΌΠ°Ρ€ΠΊΠΎΡŽ М 75, Π° Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 40Β % - ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ ΠΌΠ°Ρ€ΠΊΠΈ М 10

    ВиявлСння закономірностСй формування властивостСй ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… стінових ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Π· використанням Π²Ρ–Π΄Ρ…ΠΎΠ΄Ρ–Π² газовидобування (Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π²)

    No full text
    This paper addresses the prospects of recycling waste from oil and gas extraction in order to manufacture building materials. The principal possibility has been established to apply the examined samples of drilling sludge as the basic raw material and a mineral additive in the compositions of masses to produce wall ceramics with the required consumer properties.The main technological parameters for obtaining wall ceramics using the samples of gas extraction waste have been investigated. The formulations for ceramic masses have been developed applying fusible medium-sintered loam and drilling sludge in the amount of 20–80Β % by weight. The properties of the obtained ceramic samples containing clay and high-carbonate drilling sludges have been analyzed. It has been found that increasing the amount of drilling sludge in the samples by 20Β % to 80Β % leads to a decrease in the density, strength, and an increase in the water absorption of the samples, which affects the quality of ceramics and the possibility of its practical use. We have established the regularities of change in the properties of the wall materials samples depending on the amount of the examined drilling sludge.The optimal number of drilling sludge samples for the manufacture of wall ceramics with the norm-compliant properties has been determined. It has been found that it is possible to use clay drilling sludge (20β€’80Β %) in the composition with fusible loam in order to obtain frost-resistant ceramic materials whose water absorption is at the level of 12Β %, of grade M 125β€’M 175. Adding high carbonate sludge to fusible loam in the amount of 20Β % makes it possible to receive frost-resistant ceramic materials of grade M 75, in the amount of 40Β % β€’ of grade M 100РассмотрСны пСрспСктивы ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² Π½Π°Ρ„Ρ‚ΠΎΠ³Π°Π·ΠΎΠ΄ΠΎΠ±Ρ‹Ρ‡ΠΈ Π² производствС ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². УстановлСна ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния исслСдованных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов ΠΊΠ°ΠΊ основного ΡΡ‹Ρ€ΡŒΡ ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Π² составах масс для получСния стСнной ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌΠΈ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΈΠΌΠΈ свойствами.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ основныС тСхнологичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ получСния стСнной ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с использованиСм ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² Π³Π°Π·ΠΎΠ΄ΠΎΠ±Ρ‹Ρ‡ΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ составы кСрамичСских масс с использованиСм Π»Π΅ΠΊΠ³ΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΡ€Π΅Π΄Π½Π΅ΡΠΏΠ΅ΠΊΠ°ΡŽΡ‰Π΅Π³ΠΎΡΡ суглинка ΠΈ Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов Π² количСствС 20-80 масс.Β %. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ свойства ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… кСрамичСских ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² с использованиСм глинистых ΠΈ высококарбонатных Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ содСрТания Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΎΡ‚ 20Β % Π΄ΠΎ 80Β % ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ плотности, прочности ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ водопоглощСния ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², Ρ‡Ρ‚ΠΎ влияСт Π½Π° качСства ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΈ возмоТности Π΅Π΅ практичСского использования. УстановлСны закономСрности измСнСния свойств ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² стСновых ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΎΡ‚ количСства исслСдованного Π±ΡƒΡ€ΠΎΠ²ΠΎΠ³ΠΎ шлама.ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ количСства ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π±ΡƒΡ€ΠΎΠ²Ρ‹Ρ… шламов для изготовлСния стСнной ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ свойствами. УстановлСно, Ρ‡Ρ‚ΠΎ с использованиСм глинистого Π±ΡƒΡ€ΠΎΠ²ΠΎΠ³ΠΎ шлама (20–80Β %) Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ с Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΈΠΌ суглинком ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ морозоустойчивыС кСрамичСскиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ с Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ 12Β % ΠΈ ΠΌΠ°Ρ€ΠΊΠΎΠΉ М 125β€“Πœ 175. Π”ΠΎΠ±Π°Π²ΠΊΠ° высококарбонатного шлама ΠΊ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠΌΡƒ суглинку Π² количСствС 20Β % Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ морозоустойчивыС кСрамичСскиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ с ΠΌΠ°Ρ€ΠΊΠΎΠΉ М 75, Π° Π² количСствС 40Β % – ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΌΠ°Ρ€ΠΊΠΈ М 100Розглянуто пСрспСктиви ΡƒΡ‚ΠΈΠ»Ρ–Π·Π°Ρ†Ρ–Ρ— Π²Ρ–Π΄Ρ…ΠΎΠ΄Ρ–Π² Π½Π°Ρ„Ρ‚ΠΎΠ³Π°Π·ΠΎΠ²ΠΈΠ΄ΠΎΠ±ΡƒΡ‚ΠΊΡƒ Ρƒ Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Ρ– Π±ΡƒΠ΄Ρ–Π²Π΅Π»ΡŒΠ½ΠΈΡ… ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π². ВстановлСна ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΎΠ²Π° ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ застосування дослідТСних Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π² як основної сировини Ρ– ΠΌΡ–Π½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΡ— Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Ρƒ складах мас для отримання стінової ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Π· Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΠΌΠΈ споТивчими властивостями.ДослідТСно основні Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ отримання стінової ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Π· використанням Π·Ρ€Π°Π·ΠΊΡ–Π² Π²Ρ–Π΄Ρ…ΠΎΠ΄Ρ–Π² газовидобування. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Ρ– склади ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… мас Π· використанням Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎΡΠΏΡ–ΠΊΠ»ΠΈΠ²ΠΎΠ³ΠΎ суглинку Ρ– Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π² Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 20–80 мас.Β %. ΠŸΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– властивості ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΡ–Π² Π· використанням глинистих Ρ‚Π° висококарбонатних Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π². ВиявлСно, Ρ‰ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ вмісту Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π² Π² Π·Ρ€Π°Π·ΠΊΠ°Ρ… Π²Ρ–Π΄ 20Β % Π΄ΠΎ 80Β % ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ змСншСння густини, міцності Ρ‚Π° ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Π½ΡŽ водопоглинСння Π·Ρ€Π°Π·ΠΊΡ–Π², Ρ‰ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° ΡΠΊΡ–ΡΡ‚ΡŒ ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Ρ‚Π° моТливості Ρ—Ρ— ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ використання. ВстановлСні закономірності Π·ΠΌΡ–Π½ΠΈ властивостСй Π·Ρ€Π°Π·ΠΊΡ–Π² стінових ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Π²Ρ–Π΄ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– дослідТСного Π±ΡƒΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΡˆΠ»Π°ΠΌΡƒ.Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ– ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΡ€ΠΎΠ²ΠΈΡ… ΡˆΠ»Π°ΠΌΡ–Π² для виготовлСння стінової ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Π· Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΈΠΌΠΈ властивостями. ВстановлСно, Ρ‰ΠΎ Π· використанням глинистого Π±ΡƒΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΡˆΠ»Π°ΠΌΡƒ (20-80Β %) Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ— Π· Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΈΠΌ суглинком ΠΌΠΎΠΆΠ½Π° ΠΎΡ‚Ρ€ΠΈΠΌΡƒΠ²Π°Ρ‚ΠΈ морозостійкі ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½Ρ– ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Π· водопоглинанням Π½Π° Ρ€Ρ–Π²Π½Ρ– 12Β % Ρ– ΠΌΠ°Ρ€ΠΊΠΎΡŽ М 125-М 175. Π”ΠΎΠ±Π°Π²ΠΊΠ° висококарбонатного ΡˆΠ»Π°ΠΌΡƒ Π΄ΠΎ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ суглинку Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 20Β % Π΄Π°Ρ” Π·ΠΌΠΎΠ³Ρƒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ морозостійкі ΠΊΠ΅Ρ€Π°ΠΌΡ–Ρ‡Π½Ρ– ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Π· ΠΌΠ°Ρ€ΠΊΠΎΡŽ М 75, Π° Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 40Β % - ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ ΠΌΠ°Ρ€ΠΊΠΈ М 10

    ВиявлСння властивостСй Споксидних ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² ΠΏΡ€ΠΈ Π½Π°ΠΏΠΎΠ²Π½Π΅Π½Π½Ρ– Ρ‚Π²Π΅Ρ€Π΄ΠΎΡŽ Ρ„Π°Π·ΠΎΡŽ Π²Ρ–Π΄Ρ…ΠΎΠ΄Ρ–Π² ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΈΡ… підприємств

    No full text
    The article addresses the issue related to the disposal of dust from steel industry as a reinforcing filler for epoxy composites. The polymer composition of "cold welding" that has been developed and studied includes epoxy dian oligomer, amine hardener and the filler – finely dispersed waste of metals. Polyethylene polyamine was used as a hardener in order to improve heat resistance and strength characteristics. Manganese triacetate was used in order to decrease the temperature and reduce the time of curing. The possibility was established to dispose of finely dispersed metal-containing waste from metallurgical production to be used a filler for epoxy composites of cold curing. It was revealed that the optimal content of dusts from foundries in the composite is at the level of 45–60 %. At this content, there is the highest impact resistance at the level of 40–50 MPa and a softening temperature in the range of 170–190 Β°Π‘. It was established that at an increase in the amount of a filler from 40 % to 70 %, the cross-linking degree increases by 88 % to 98 %, respectively. However, at the content of the filler less than 45 % or exceeding 60 %, the impact resistance of the resulting composites decreases. At the content of a filler in the composite less than 45 %, the cause of low values of impact resistance and softening temperature could be the low cross-linking degree, less than 90 %. A decrease in these properties of composites at the content of the filler exceeding 60 % could be associated with the formation of a heterogeneous structure of filler. In the compositions with the highest performance characteristics, there is an optimized content of the filler and catalyst. Using a hardener and a curing catalyst in quantities of 3–3.5 and 1.5–2 %, respectively, makes it possible to shorten curing time by up to 2 hours. In general, the resulting epoxy composites are superior in their performance to known cold-curing analogs. The dependences of impact resistance, softening temperature, and cross-linking degree on the content of waste in the composite were derived, which make it possible to calculate the optimal formulation for composites depending on the required properties.Бтаття присвячСна ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌi ΡƒΡ‚ΠΈΠ»iΠ·Π°Ρ†iΡ— ΠΏΠΈΠ»Ρƒ ΠΌΠ΅Ρ‚Π°Π»ΡƒΡ€Π³iΠΉΠ½ΠΎΡ— промисловостi як Π°Ρ€ΠΌΡƒΡŽΡ‡ΠΎΠ³ΠΎ Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° Споксидних ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚iΠ². Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π° i дослiΠ΄ΠΆΠ΅Π½Π° ΠΏΠΎΠ»iΠΌΠ΅Ρ€Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†iя "Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΡ— Π·Π²Π°Ρ€ΠΊΠΈ", Ρ‰ΠΎ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” Споксидний Π΄iΠ°Π½ΠΎΠ²ΠΈΠΉ ΠΎΠ»iΠ³ΠΎΠΌΠ΅Ρ€, Π°ΠΌiΠ½Π½ΠΈΠΉ Π·Π°Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΠ²Π°Ρ‡ i Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡ – Π΄Ρ€iбнодиспСрснi Π²iΠ΄Ρ…ΠΎΠ΄ΠΈ ΠΌΠ΅Ρ‚Π°Π»iΠ². Π— ΠΌΠ΅Ρ‚ΠΎΡŽ ΠΏiдвищСння тСплостiйкостi i ΠΌiΡ†Π½iстних характСристик Π² якостi Π·Π°Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΠ²Π°Ρ‡Π° використовувався ΠΏΠΎΠ»iΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΏΠΎΠ»Π°ΠΌiΠ½. Для зниТСння Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ i скорочСння часу Π·Π°Ρ‚Π²Π΅Ρ€Π΄iння Π² якостi ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΠ²Π°Ρ‡Π° використовувався Ρ‚Ρ€ΠΈΠ°Ρ†Π΅Ρ‚Π°Ρ‚ ΠΌΠ°Ρ€Π³Π°Π½Ρ†ΡŽ. ВстановлСна ΠΌΠΎΠΆΠ»ΠΈΠ²iΡΡ‚ΡŒ ΡƒΡ‚ΠΈΠ»iΠ·Π°Ρ†iΡ— Π΄Ρ€iбнодиспСрсних ΠΌΠ΅Ρ‚Π°Π»ΠΎΠ²ΠΌiсних Π²iΠ΄Ρ…ΠΎΠ΄iΠ² ΠΌΠ΅Ρ‚Π°Π»ΡƒΡ€Π³iΠΉΠ½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π² Π² якостi Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° Споксидних ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚iΠ² Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π·Π°Ρ‚Π²Π΅Ρ€Π΄iння. ВиявлСно, Ρ‰ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΉ Π²ΠΌiст ΠΏΠΈΠ»Ρƒ Π»ΠΈΠ²Π°Ρ€Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π² Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚i Π·Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π½Π° Ρ€iΠ²Π½i 45–60 %. ΠŸΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π²ΠΌiстi спостСрiΠ³Π°Ρ”Ρ‚ΡŒΡΡ Π½Π°ΠΉΠ²ΠΈΡ‰Π° ΡƒΠ΄Π°Ρ€Π½Π° ΠΌiΡ†Π½iΡΡ‚ΡŒ Π½Π° Ρ€iΠ²Π½i 40–50 МПа i Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Ρ€ΠΎΠ·ΠΌ'якшСння Π² iΠ½Ρ‚Π΅Ρ€Π²Π°Π»i 170–190 oΠ‘. ВстановлСно, Ρ‰ΠΎ iΠ· Π·Π±iльшСнням ΠΊiΠ»ΡŒΠΊΠΎΡΡ‚i Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° Π²iΠ΄ 40 % Π΄ΠΎ 70 % ступiнь зшивання зростає Π²iΠ΄ 88 % Π΄ΠΎ 98 % Π²iΠ΄ΠΏΠΎΠ²iΠ΄Π½ΠΎ. ΠŸΡ€ΠΎΡ‚Π΅, ΠΏΡ€ΠΈ Π²ΠΌiстi Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° мСншС 45 % Π°Π±ΠΎ Π±iльшС 60 % Π·Π½ΠΈΠΆΡƒΡ”Ρ‚ΡŒΡΡ ΡƒΠ΄Π°Ρ€Π½Π° ΠΌiΡ†Π½iΡΡ‚ΡŒ ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚iΠ². Застосування Π·Π°Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΠ²Π°Ρ‡Π° i ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΠ²Π°Ρ‡Π° Π·Π°Ρ‚Π²Π΅Ρ€Π΄iння Π² ΠΊiΠ»ΡŒΠΊΠΎΡΡ‚ΡΡ… 3–3,5 i 1,5–2 % Π²iΠ΄ΠΏΠΎΠ²iΠ΄Π½ΠΎ дозволяє Π·Π½ΠΈΠ·ΠΈΡ‚ΠΈ час Π·Π°Ρ‚Π²Π΅Ρ€Π΄iння Π΄ΠΎ 2 Π³ΠΎΠ΄ΠΈΠ½. ΠŸΡ€ΠΈ Π²ΠΌiстi Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚i мСншС 45 % ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΡŽ Π½ΠΈΠ·ΡŒΠΊΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ ΡƒΠ΄Π°Ρ€Π½ΠΎΡ— ΠΌiцностi i Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Ρ€ΠΎΠ·ΠΌ'якшСння ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ низький ступiнь зшивання мСншС 90 %. ЗниТСння Π²ΠΊΠ°Π·Π°Π½ΠΈΡ… властивостСй ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚iΠ² ΠΏΡ€ΠΈ Π²ΠΌiстi Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° Π±iльшС 60 % ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ ΠΏΠΎΠ²'язано Π· утворСнням Π½Π΅ΠΎΠ΄Π½ΠΎΡ€iΠ΄Π½ΠΎΡ— структури Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π°. Π£ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†iях Π· Π½Π°ΠΉΠ²ΠΈΡ‰ΠΈΠΌΠΈ СксплуатацiΠΉΠ½ΠΈΠΌΠΈ характСристиками спостСрiΠ³Π°Ρ”Ρ‚ΡŒΡΡ ΠΎΠΏΡ‚ΠΈΠΌiΠ·ΠΎΠ²Π°Π½ΠΈΠΉ Π²ΠΌiст Π½Π°ΠΏΠΎΠ²Π½ΡŽΠ²Π°Ρ‡Π° i ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΠ²Π°Ρ‡Π°. Π’ Ρ†iΠ»ΠΎΠΌΡƒ, ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½i Споксиднi ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ Π·Π° своїми СксплуатацiΠΉΠ½ΠΈΠΌΠΈ характСристиками ΠΏΠ΅Ρ€Π΅Π²Π΅Ρ€ΡˆΡƒΡŽΡ‚ΡŒ Π²iΠ΄ΠΎΠΌi Π°Π½Π°Π»ΠΎΠ³ΠΈ Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π·Π°Ρ‚Π²Π΅Ρ€Π΄iння. ВстановлСнi залСТностi ΡƒΠ΄Π°Ρ€Π½ΠΎΡ— ΠΌiцностi, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Ρ€ΠΎΠ·ΠΌ'якшСння i ступСня зшивання Π²iΠ΄ Π²ΠΌiсту Π²iΠ΄Ρ…ΠΎΠ΄iΠ² Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚i, Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΠΎΠ²ΡƒΠ²Π°Ρ‚ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΠΉ склад ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚iΠ² Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²iΠ΄ Π½Π΅ΠΎΠ±Ρ…iΠ΄Π½ΠΈΡ… властивостСй

    Establishing the Regularities in Forming the Properties of Ceramic Wall Materials Containing Waste From Gas Extraction (Drilling Sludge)

    Full text link
    This paper addresses the prospects of recycling waste from oil and gas extraction in order to manufacture building materials. The principal possibility has been established to apply the examined samples of drilling sludge as the basic raw material and a mineral additive in the compositions of masses to produce wall ceramics with the required consumer properties.The main technological parameters for obtaining wall ceramics using the samples of gas extraction waste have been investigated. The formulations for ceramic masses have been developed applying fusible medium-sintered loam and drilling sludge in the amount of 20–80 % by weight. The properties of the obtained ceramic samples containing clay and high-carbonate drilling sludges have been analyzed. It has been found that increasing the amount of drilling sludge in the samples by 20 % to 80 % leads to a decrease in the density, strength, and an increase in the water absorption of the samples, which affects the quality of ceramics and the possibility of its practical use. We have established the regularities of change in the properties of the wall materials samples depending on the amount of the examined drilling sludge.The optimal number of drilling sludge samples for the manufacture of wall ceramics with the norm-compliant properties has been determined. It has been found that it is possible to use clay drilling sludge (20β€’80 %) in the composition with fusible loam in order to obtain frost-resistant ceramic materials whose water absorption is at the level of 12 %, of grade M 125β€’M 175. Adding high carbonate sludge to fusible loam in the amount of 20 % makes it possible to receive frost-resistant ceramic materials of grade M 75, in the amount of 40 % β€’ of grade M 10

    Identifying the Properties of Epoxy Composites Filled with the Solid Phase of Wastes From Metal Enterprises

    Full text link
    The article addresses the issue related to the disposal of dust from steel industry as a reinforcing filler for epoxy composites. The polymer composition of "cold welding" that has been developed and studied includes epoxy dian oligomer, amine hardener and the filler – finely dispersed waste of metals. Polyethylene polyamine was used as a hardener in order to improve heat resistance and strength characteristics. Manganese triacetate was used in order to decrease the temperature and reduce the time of curing.The possibility was established to dispose of finely dispersed metal-containing waste from metallurgical production to be used a filler for epoxy composites of cold curing. It was revealed that the optimal content of dusts from foundries in the composite is at the level of 45–60 %. At this content, there is the highest impact resistance at the level of 40–50 MPa and a softening temperature in the range of 170–190 Β°Π‘. It was established that at an increase in the amount of a filler from 40 % to 70 %, the cross-linking degree increases by 88 % to 98 %, respectively. However, at the content of the filler less than 45 % or exceeding 60 %, the impact resistance of the resulting composites decreases. At the content of a filler in the composite less than 45 %, the cause of low values of impact resistance and softening temperature could be the low cross-linking degree, less than 90 %. A decrease in these properties of composites at the content of the filler exceeding 60 % could be associated with the formation of a heterogeneous structure of filler. In the compositions with the highest performance characteristics, there is an optimized content of the filler and catalyst. Using a hardener and a curing catalyst in quantities of 3–3.5 and 1.5–2 %, respectively, makes it possible to shorten curing time by up to 2 hours. In general, the resulting epoxy composites are superior in their performance to known cold-curing analogs.The dependences of impact resistance, softening temperature, and cross-linking degree on the content of waste in the composite were derived, which make it possible to calculate the optimal formulation for composites depending on the required propertie
    corecore