8 research outputs found
Integral Approach to Vulnerability Assessment of Shipβs Critical Equipment and Systems
The digital transformation of the maritime industry is almost a fait accompli. Merchant ships today use computing and cyber-dependent technologies for navigation, communications, cargo operations, environmental monitoring, and many other purposes. Nowadays, entire industries and businesses are becoming increasingly dependent on data arrays, and the maritime sector is fully experiencing this transformation. A modern commercial ship is unthinkable without digital technology, and the reasons for the deep digitalization of the fleet are numerous. Emergency systems such as safety monitoring, fire detection and alarms are increasingly reliant on cyber technology. Therefore, cybersecurity is a critical component of ship and shipping safety, and cyber-attacks on maritime transport are a very likely problem. These risks will only increase with the further development of information technology. This article proposes approaches to identifying cyber threats as well as a probabilistic assessment of ship cybersecurity, which is based on an integral approach to assessing the vulnerability of shipboard critical equipment and systems. Estimated probabilities of target and non-target cybersecurity breaches of the ship, as well as their overall probability, which allows considering all chains of events leading to a certain consequence associated with potential losses. The model of probability assessment of ship cybersecurity violation and its consequences, which allows evaluation of possible losses as a result of these events, is presented and mathematically described
Basic aspects ensuring shipping safety
Widespread use of innovative technologies in all spheres of life has brought the maritime transport industry, in particular, the process of ship navigation, to a completely new qualitative level. Various navigation systems recently introduced and used only as additional devices have gradually become an obligatory element of shipboard equipment and navigation complexes of modern vessels, extending their functionality and capabilities. The human factor influence caused by automation of ship operation processes becomes a separate challenge. Risks to shipping safety and consequences of breach of safety standards for crew, vessel and cargo are far from being a full list of the problems to be solved. This paper offers an overview of general issues of ensuring the level of safety of shipping, by examining the concept of "vessel safety", considering its individual sides, features, as well as constituent aspects of the concept, systematization of the vessel safety structure to develop solutions toward improving the integral safety and optimization of decision-making in emergencies. Achievement of the general purpose of shipping safety thus means the realization of ways of reducing the influence of the human factor on several accidents and an estimation of the degree of influence of a set of factors on a ship during operation
IDENTIFYING THE PROPERTIES OF EPOXY COMPOSITES FILLED WITH THE SOLID PHASE OF WASTES FROM METAL ENTERPRISES
The article addresses the issue related to the disposal of dust from steel industry as a reinforcing filler for epoxy composites. The polymer composition of "cold welding" that has been developed and studied includes epoxy dian oligomer, amine hardener and the filler β finely dispersed waste of metals. Polyethylene polyamine was used as a hardener in order to improve heat resistance and strength characteristics. Manganese triacetate was used in order to decrease the temperature and reduce the time of curing.
The possibility was established to dispose of finely dispersed metal-containing waste from metallurgical production to be used a filler for epoxy composites of cold curing. It was revealed that the optimal content of dusts from foundries in the composite is at the level of 45β60 %. At this content, there is the highest impact resistance at the level of 40β50 MPa and a softening temperature in the range of 170β190 Β°Π‘. It was established that at an increase in the amount of a filler from 40 % to 70 %, the cross-linking degree increases by 88 % to 98 %, respectively. However, at the content of the filler less than 45 % or exceeding 60 %, the impact resistance of the resulting composites decreases. At the content of a filler in the composite less than 45 %, the cause of low values of impact resistance and softening temperature could be the low cross-linking degree, less than 90 %. A decrease in these properties of composites at the content of the filler exceeding 60 % could be associated with the formation of a heterogeneous structure of filler. In the compositions with the highest performance characteristics, there is an optimized content of the filler and catalyst. Using a hardener and a curing catalyst in quantities of 3β3.5 and 1.5β2 %, respectively, makes it possible to shorten curing time by up to 2 hours. In general, the resulting epoxy composites are superior in their performance to known cold-curing analogs.
The dependences of impact resistance, softening temperature, and cross-linking degree on the content of waste in the composite were derived, which make it possible to calculate the optimal formulation for composites depending on the required propertie
ΠΠΈΡΠ²Π»Π΅Π½Π½Ρ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½ΠΈΡ ΡΡΡΠ½ΠΎΠ²ΠΈΡ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ² Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π²ΡΠ΄Ρ ΠΎΠ΄ΡΠ² Π³Π°Π·ΠΎΠ²ΠΈΠ΄ΠΎΠ±ΡΠ²Π°Π½Π½Ρ (Π±ΡΡΠΎΠ²ΠΈΡ ΡΠ»Π°ΠΌΡΠ²)
This paper addresses the prospects of recycling waste from oil and gas extraction in order to manufacture building materials. The principal possibility has been established to apply the examined samples of drilling sludge as the basic raw material and a mineral additive in the compositions of masses to produce wall ceramics with the required consumer properties.The main technological parameters for obtaining wall ceramics using the samples of gas extraction waste have been investigated. The formulations for ceramic masses have been developed applying fusible medium-sintered loam and drilling sludge in the amount of 20β80Β % by weight. The properties of the obtained ceramic samples containing clay and high-carbonate drilling sludges have been analyzed. It has been found that increasing the amount of drilling sludge in the samples by 20Β % to 80Β % leads to a decrease in the density, strength, and an increase in the water absorption of the samples, which affects the quality of ceramics and the possibility of its practical use. We have established the regularities of change in the properties of the wall materials samples depending on the amount of the examined drilling sludge.The optimal number of drilling sludge samples for the manufacture of wall ceramics with the norm-compliant properties has been determined. It has been found that it is possible to use clay drilling sludge (20β80Β %) in the composition with fusible loam in order to obtain frost-resistant ceramic materials whose water absorption is at the level of 12Β %, of grade M 125βM 175. Adding high carbonate sludge to fusible loam in the amount of 20Β % makes it possible to receive frost-resistant ceramic materials of grade M 75, in the amount of 40Β % β of grade M 100Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π½Π°ΡΡΠΎΠ³Π°Π·ΠΎΠ΄ΠΎΠ±ΡΡΠΈ Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ² ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΡΡΡΡ ΠΈ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Π² ΡΠΎΡΡΠ°Π²Π°Ρ
ΠΌΠ°ΡΡ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΠΌΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΡΡΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π³Π°Π·ΠΎΠ΄ΠΎΠ±ΡΡΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΠΎΡΡΠ°Π²Ρ ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»Π΅ΠΊΠ³ΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π΄Π½Π΅ΡΠΏΠ΅ΠΊΠ°ΡΡΠ΅Π³ΠΎΡΡ ΡΡΠ³Π»ΠΈΠ½ΠΊΠ° ΠΈ Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ² Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 20-80 ΠΌΠ°ΡΡ.Β %. ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³Π»ΠΈΠ½ΠΈΡΡΡΡ
ΠΈ Π²ΡΡΠΎΠΊΠΎΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΡΡ
Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ². ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ² Π² ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΠΎΡ 20Β % Π΄ΠΎ 80Β % ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΠΏΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ², ΡΡΠΎ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π΅Π΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΡΠ΅Π½ΠΎΠ²ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΎΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π±ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΠ°.ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ² Π΄Π»Ρ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ Ρ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³Π»ΠΈΠ½ΠΈΡΡΠΎΠ³ΠΎ Π±ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΠ° (20β80Β %) Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ Ρ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΈΠΌ ΡΡΠ³Π»ΠΈΠ½ΠΊΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΌΠΎΡΠΎΠ·ΠΎΡΡΡΠΎΠΉΡΠΈΠ²ΡΠ΅ ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Ρ Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΡΠΎΠ²Π½Π΅ 12Β % ΠΈ ΠΌΠ°ΡΠΊΠΎΠΉ Π 125βΠ 175. ΠΠΎΠ±Π°Π²ΠΊΠ° Π²ΡΡΠΎΠΊΠΎΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΠ° ΠΊ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠΌΡ ΡΡΠ³Π»ΠΈΠ½ΠΊΡ Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 20Β % Π΄Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΌΠΎΡΠΎΠ·ΠΎΡΡΡΠΎΠΉΡΠΈΠ²ΡΠ΅ ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Ρ ΠΌΠ°ΡΠΊΠΎΠΉ Π 75, Π° Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 40Β % β ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΌΠ°ΡΠΊΠΈ Π 100Π ΠΎΠ·Π³Π»ΡΠ½ΡΡΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²ΠΈ ΡΡΠΈΠ»ΡΠ·Π°ΡΡΡ Π²ΡΠ΄Ρ
ΠΎΠ΄ΡΠ² Π½Π°ΡΡΠΎΠ³Π°Π·ΠΎΠ²ΠΈΠ΄ΠΎΠ±ΡΡΠΊΡ Ρ Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ²Ρ Π±ΡΠ΄ΡΠ²Π΅Π»ΡΠ½ΠΈΡ
ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ². ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ²Π° ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΈΡ
Π·ΡΠ°Π·ΠΊΡΠ² Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ² ΡΠΊ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΡ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΈ Ρ ΠΌΡΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΡ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Ρ ΡΠΊΠ»Π°Π΄Π°Ρ
ΠΌΠ°Ρ Π΄Π»Ρ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ ΡΡΡΠ½ΠΎΠ²ΠΎΡ ΠΊΠ΅ΡΠ°ΠΌΡΠΊΠΈ Π· Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΈΠΌΠΈ ΡΠΏΠΎΠΆΠΈΠ²ΡΠΈΠΌΠΈ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡΠΌΠΈ.ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΠΎΡΠ½ΠΎΠ²Π½Ρ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ ΡΡΡΠ½ΠΎΠ²ΠΎΡ ΠΊΠ΅ΡΠ°ΠΌΡΠΊΠΈ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π·ΡΠ°Π·ΠΊΡΠ² Π²ΡΠ΄Ρ
ΠΎΠ΄ΡΠ² Π³Π°Π·ΠΎΠ²ΠΈΠ΄ΠΎΠ±ΡΠ²Π°Π½Π½Ρ. Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Ρ ΡΠΊΠ»Π°Π΄ΠΈ ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½ΠΈΡ
ΠΌΠ°Ρ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π΄Π½ΡΠΎΡΠΏΡΠΊΠ»ΠΈΠ²ΠΎΠ³ΠΎ ΡΡΠ³Π»ΠΈΠ½ΠΊΡ Ρ Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ² Π² ΠΊΡΠ»ΡΠΊΠΎΡΡΡ 20β80Β ΠΌΠ°Ρ.Β %. ΠΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½ΠΈΡ
Π·ΡΠ°Π·ΠΊΡΠ² Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π³Π»ΠΈΠ½ΠΈΡΡΠΈΡ
ΡΠ° Π²ΠΈΡΠΎΠΊΠΎΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΠΈΡ
Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ². ΠΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π·Π±ΡΠ»ΡΡΠ΅Π½Π½Ρ Π²ΠΌΡΡΡΡ Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ² Π² Π·ΡΠ°Π·ΠΊΠ°Ρ
Π²ΡΠ΄ 20Β % Π΄ΠΎ 80Β % ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ Π³ΡΡΡΠΈΠ½ΠΈ, ΠΌΡΡΠ½ΠΎΡΡΡ ΡΠ° ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΈΠ½Π΅Π½Π½Ρ Π·ΡΠ°Π·ΠΊΡΠ², ΡΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ Π½Π° ΡΠΊΡΡΡΡ ΠΊΠ΅ΡΠ°ΠΌΡΠΊΠΈ ΡΠ° ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΡ ΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΡ Π·ΠΌΡΠ½ΠΈ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ Π·ΡΠ°Π·ΠΊΡΠ² ΡΡΡΠ½ΠΎΠ²ΠΈΡ
ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ² Π²ΡΠ΄ ΠΊΡΠ»ΡΠΊΠΎΡΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎΠ³ΠΎ Π±ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΡ.ΠΠΈΠ·Π½Π°ΡΠ΅Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Ρ ΠΊΡΠ»ΡΠΊΠΎΡΡΡ Π·ΡΠ°Π·ΠΊΡΠ² Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ² Π΄Π»Ρ Π²ΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Π½Ρ ΡΡΡΠ½ΠΎΠ²ΠΎΡ ΠΊΠ΅ΡΠ°ΠΌΡΠΊΠΈ Π· Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΈΠΌΠΈ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡΠΌΠΈ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π³Π»ΠΈΠ½ΠΈΡΡΠΎΠ³ΠΎ Π±ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΡ (20-80Β %) Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡΡ Π· Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΈΠΌ ΡΡΠ³Π»ΠΈΠ½ΠΊΠΎΠΌ ΠΌΠΎΠΆΠ½Π° ΠΎΡΡΠΈΠΌΡΠ²Π°ΡΠΈ ΠΌΠΎΡΠΎΠ·ΠΎΡΡΡΠΉΠΊΡ ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½Ρ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Π· Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΈΠ½Π°Π½Π½ΡΠΌ Π½Π° ΡΡΠ²Π½Ρ 12Β % Ρ ΠΌΠ°ΡΠΊΠΎΡ Π 125-Π 175. ΠΠΎΠ±Π°Π²ΠΊΠ° Π²ΠΈΡΠΎΠΊΠΎΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΡ Π΄ΠΎ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΡΠ³Π»ΠΈΠ½ΠΊΡ Π² ΠΊΡΠ»ΡΠΊΠΎΡΡΡ 20Β % Π΄Π°Ρ Π·ΠΌΠΎΠ³Ρ ΠΎΡΡΠΈΠΌΠ°ΡΠΈ ΠΌΠΎΡΠΎΠ·ΠΎΡΡΡΠΉΠΊΡ ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½Ρ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Π· ΠΌΠ°ΡΠΊΠΎΡ Π 75, Π° Π² ΠΊΡΠ»ΡΠΊΠΎΡΡΡ 40Β % - ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ ΠΌΠ°ΡΠΊΠΈ Π 10
ΠΠΈΡΠ²Π»Π΅Π½Π½Ρ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½ΠΈΡ ΡΡΡΠ½ΠΎΠ²ΠΈΡ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ² Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π²ΡΠ΄Ρ ΠΎΠ΄ΡΠ² Π³Π°Π·ΠΎΠ²ΠΈΠ΄ΠΎΠ±ΡΠ²Π°Π½Π½Ρ (Π±ΡΡΠΎΠ²ΠΈΡ ΡΠ»Π°ΠΌΡΠ²)
This paper addresses the prospects of recycling waste from oil and gas extraction in order to manufacture building materials. The principal possibility has been established to apply the examined samples of drilling sludge as the basic raw material and a mineral additive in the compositions of masses to produce wall ceramics with the required consumer properties.The main technological parameters for obtaining wall ceramics using the samples of gas extraction waste have been investigated. The formulations for ceramic masses have been developed applying fusible medium-sintered loam and drilling sludge in the amount of 20β80Β % by weight. The properties of the obtained ceramic samples containing clay and high-carbonate drilling sludges have been analyzed. It has been found that increasing the amount of drilling sludge in the samples by 20Β % to 80Β % leads to a decrease in the density, strength, and an increase in the water absorption of the samples, which affects the quality of ceramics and the possibility of its practical use. We have established the regularities of change in the properties of the wall materials samples depending on the amount of the examined drilling sludge.The optimal number of drilling sludge samples for the manufacture of wall ceramics with the norm-compliant properties has been determined. It has been found that it is possible to use clay drilling sludge (20β80Β %) in the composition with fusible loam in order to obtain frost-resistant ceramic materials whose water absorption is at the level of 12Β %, of grade M 125βM 175. Adding high carbonate sludge to fusible loam in the amount of 20Β % makes it possible to receive frost-resistant ceramic materials of grade M 75, in the amount of 40Β % β of grade M 100Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π½Π°ΡΡΠΎΠ³Π°Π·ΠΎΠ΄ΠΎΠ±ΡΡΠΈ Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅ ΡΡΡΠΎΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ² ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΡΡΡΡ ΠΈ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Π² ΡΠΎΡΡΠ°Π²Π°Ρ
ΠΌΠ°ΡΡ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΠΌΠΈ ΠΏΠΎΡΡΠ΅Π±ΠΈΡΠ΅Π»ΡΡΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π³Π°Π·ΠΎΠ΄ΠΎΠ±ΡΡΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΠΎΡΡΠ°Π²Ρ ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»Π΅ΠΊΠ³ΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΡΠ΅Π΄Π½Π΅ΡΠΏΠ΅ΠΊΠ°ΡΡΠ΅Π³ΠΎΡΡ ΡΡΠ³Π»ΠΈΠ½ΠΊΠ° ΠΈ Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ² Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 20-80 ΠΌΠ°ΡΡ.Β %. ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³Π»ΠΈΠ½ΠΈΡΡΡΡ
ΠΈ Π²ΡΡΠΎΠΊΠΎΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΡΡ
Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ². ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ² Π² ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΠΎΡ 20Β % Π΄ΠΎ 80Β % ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΠΏΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ², ΡΡΠΎ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π΅Π΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΡΠ΅Π½ΠΎΠ²ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΎΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π±ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΠ°.ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π±ΡΡΠΎΠ²ΡΡ
ΡΠ»Π°ΠΌΠΎΠ² Π΄Π»Ρ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΊΠ΅ΡΠ°ΠΌΠΈΠΊΠΈ Ρ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΡΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³Π»ΠΈΠ½ΠΈΡΡΠΎΠ³ΠΎ Π±ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΠ° (20β80Β %) Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ Ρ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΈΠΌ ΡΡΠ³Π»ΠΈΠ½ΠΊΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΌΠΎΡΠΎΠ·ΠΎΡΡΡΠΎΠΉΡΠΈΠ²ΡΠ΅ ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Ρ Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΡΠΎΠ²Π½Π΅ 12Β % ΠΈ ΠΌΠ°ΡΠΊΠΎΠΉ Π 125βΠ 175. ΠΠΎΠ±Π°Π²ΠΊΠ° Π²ΡΡΠΎΠΊΠΎΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΠ° ΠΊ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠΌΡ ΡΡΠ³Π»ΠΈΠ½ΠΊΡ Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 20Β % Π΄Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΌΠΎΡΠΎΠ·ΠΎΡΡΡΠΎΠΉΡΠΈΠ²ΡΠ΅ ΠΊΠ΅ΡΠ°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Ρ ΠΌΠ°ΡΠΊΠΎΠΉ Π 75, Π° Π² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ 40Β % β ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΌΠ°ΡΠΊΠΈ Π 100Π ΠΎΠ·Π³Π»ΡΠ½ΡΡΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²ΠΈ ΡΡΠΈΠ»ΡΠ·Π°ΡΡΡ Π²ΡΠ΄Ρ
ΠΎΠ΄ΡΠ² Π½Π°ΡΡΠΎΠ³Π°Π·ΠΎΠ²ΠΈΠ΄ΠΎΠ±ΡΡΠΊΡ Ρ Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ²Ρ Π±ΡΠ΄ΡΠ²Π΅Π»ΡΠ½ΠΈΡ
ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ². ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ²Π° ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΈΡ
Π·ΡΠ°Π·ΠΊΡΠ² Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ² ΡΠΊ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΡ ΡΠΈΡΠΎΠ²ΠΈΠ½ΠΈ Ρ ΠΌΡΠ½Π΅ΡΠ°Π»ΡΠ½ΠΎΡ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Ρ ΡΠΊΠ»Π°Π΄Π°Ρ
ΠΌΠ°Ρ Π΄Π»Ρ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ ΡΡΡΠ½ΠΎΠ²ΠΎΡ ΠΊΠ΅ΡΠ°ΠΌΡΠΊΠΈ Π· Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΈΠΌΠΈ ΡΠΏΠΎΠΆΠΈΠ²ΡΠΈΠΌΠΈ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡΠΌΠΈ.ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΠΎΡΠ½ΠΎΠ²Π½Ρ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈ ΠΎΡΡΠΈΠΌΠ°Π½Π½Ρ ΡΡΡΠ½ΠΎΠ²ΠΎΡ ΠΊΠ΅ΡΠ°ΠΌΡΠΊΠΈ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π·ΡΠ°Π·ΠΊΡΠ² Π²ΡΠ΄Ρ
ΠΎΠ΄ΡΠ² Π³Π°Π·ΠΎΠ²ΠΈΠ΄ΠΎΠ±ΡΠ²Π°Π½Π½Ρ. Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Ρ ΡΠΊΠ»Π°Π΄ΠΈ ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½ΠΈΡ
ΠΌΠ°Ρ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π΄Π½ΡΠΎΡΠΏΡΠΊΠ»ΠΈΠ²ΠΎΠ³ΠΎ ΡΡΠ³Π»ΠΈΠ½ΠΊΡ Ρ Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ² Π² ΠΊΡΠ»ΡΠΊΠΎΡΡΡ 20β80Β ΠΌΠ°Ρ.Β %. ΠΡΠΎΠ°Π½Π°Π»ΡΠ·ΠΎΠ²Π°Π½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½ΠΈΡ
Π·ΡΠ°Π·ΠΊΡΠ² Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π³Π»ΠΈΠ½ΠΈΡΡΠΈΡ
ΡΠ° Π²ΠΈΡΠΎΠΊΠΎΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΠΈΡ
Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ². ΠΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π·Π±ΡΠ»ΡΡΠ΅Π½Π½Ρ Π²ΠΌΡΡΡΡ Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ² Π² Π·ΡΠ°Π·ΠΊΠ°Ρ
Π²ΡΠ΄ 20Β % Π΄ΠΎ 80Β % ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ Π³ΡΡΡΠΈΠ½ΠΈ, ΠΌΡΡΠ½ΠΎΡΡΡ ΡΠ° ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΈΠ½Π΅Π½Π½Ρ Π·ΡΠ°Π·ΠΊΡΠ², ΡΠΎ Π²ΠΏΠ»ΠΈΠ²Π°Ρ Π½Π° ΡΠΊΡΡΡΡ ΠΊΠ΅ΡΠ°ΠΌΡΠΊΠΈ ΡΠ° ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΡ ΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΡΡΠ½ΠΎΡΡΡ Π·ΠΌΡΠ½ΠΈ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ Π·ΡΠ°Π·ΠΊΡΠ² ΡΡΡΠ½ΠΎΠ²ΠΈΡ
ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΡΠ² Π²ΡΠ΄ ΠΊΡΠ»ΡΠΊΠΎΡΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎΠ³ΠΎ Π±ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΡ.ΠΠΈΠ·Π½Π°ΡΠ΅Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Ρ ΠΊΡΠ»ΡΠΊΠΎΡΡΡ Π·ΡΠ°Π·ΠΊΡΠ² Π±ΡΡΠΎΠ²ΠΈΡ
ΡΠ»Π°ΠΌΡΠ² Π΄Π»Ρ Π²ΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Π½Ρ ΡΡΡΠ½ΠΎΠ²ΠΎΡ ΠΊΠ΅ΡΠ°ΠΌΡΠΊΠΈ Π· Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΈΠΌΠΈ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡΠΌΠΈ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π³Π»ΠΈΠ½ΠΈΡΡΠΎΠ³ΠΎ Π±ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΡ (20-80Β %) Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡΡ Π· Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΈΠΌ ΡΡΠ³Π»ΠΈΠ½ΠΊΠΎΠΌ ΠΌΠΎΠΆΠ½Π° ΠΎΡΡΠΈΠΌΡΠ²Π°ΡΠΈ ΠΌΠΎΡΠΎΠ·ΠΎΡΡΡΠΉΠΊΡ ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½Ρ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Π· Π²ΠΎΠ΄ΠΎΠΏΠΎΠ³Π»ΠΈΠ½Π°Π½Π½ΡΠΌ Π½Π° ΡΡΠ²Π½Ρ 12Β % Ρ ΠΌΠ°ΡΠΊΠΎΡ Π 125-Π 175. ΠΠΎΠ±Π°Π²ΠΊΠ° Π²ΠΈΡΠΎΠΊΠΎΠΊΠ°ΡΠ±ΠΎΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π°ΠΌΡ Π΄ΠΎ Π»Π΅Π³ΠΊΠΎΠΏΠ»Π°Π²ΠΊΠΎΠ³ΠΎ ΡΡΠ³Π»ΠΈΠ½ΠΊΡ Π² ΠΊΡΠ»ΡΠΊΠΎΡΡΡ 20Β % Π΄Π°Ρ Π·ΠΌΠΎΠ³Ρ ΠΎΡΡΠΈΠΌΠ°ΡΠΈ ΠΌΠΎΡΠΎΠ·ΠΎΡΡΡΠΉΠΊΡ ΠΊΠ΅ΡΠ°ΠΌΡΡΠ½Ρ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Π· ΠΌΠ°ΡΠΊΠΎΡ Π 75, Π° Π² ΠΊΡΠ»ΡΠΊΠΎΡΡΡ 40Β % - ΠΌΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ ΠΌΠ°ΡΠΊΠΈ Π 10
ΠΠΈΡΠ²Π»Π΅Π½Π½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ Π΅ΠΏΠΎΠΊΡΠΈΠ΄Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΡΠ² ΠΏΡΠΈ Π½Π°ΠΏΠΎΠ²Π½Π΅Π½Π½Ρ ΡΠ²Π΅ΡΠ΄ΠΎΡ ΡΠ°Π·ΠΎΡ Π²ΡΠ΄Ρ ΠΎΠ΄ΡΠ² ΠΌΠ΅ΡΠ°Π»Π΅Π²ΠΈΡ ΠΏΡΠ΄ΠΏΡΠΈΡΠΌΡΡΠ²
The article addresses the issue related to the disposal of dust from steel industry as a reinforcing filler for epoxy composites. The polymer composition of "cold welding" that has been developed and studied includes epoxy dian oligomer, amine hardener and the filler β finely dispersed waste of metals. Polyethylene polyamine was used as a hardener in order to improve heat resistance and strength characteristics. Manganese triacetate was used in order to decrease the temperature and reduce the time of curing. The possibility was established to dispose of finely dispersed metal-containing waste from metallurgical production to be used a filler for epoxy composites of cold curing. It was revealed that the optimal content of dusts from foundries in the composite is at the level of 45β60 %. At this content, there is the highest impact resistance at the level of 40β50 MPa and a softening temperature in the range of 170β190 Β°Π‘. It was established that at an increase in the amount of a filler from 40 % to 70 %, the cross-linking degree increases by 88 % to 98 %, respectively. However, at the content of the filler less than 45 % or exceeding 60 %, the impact resistance of the resulting composites decreases. At the content of a filler in the composite less than 45 %, the cause of low values of impact resistance and softening temperature could be the low cross-linking degree, less than 90 %. A decrease in these properties of composites at the content of the filler exceeding 60 % could be associated with the formation of a heterogeneous structure of filler. In the compositions with the highest performance characteristics, there is an optimized content of the filler and catalyst. Using a hardener and a curing catalyst in quantities of 3β3.5 and 1.5β2 %, respectively, makes it possible to shorten curing time by up to 2 hours. In general, the resulting epoxy composites are superior in their performance to known cold-curing analogs. The dependences of impact resistance, softening temperature, and cross-linking degree on the content of waste in the composite were derived, which make it possible to calculate the optimal formulation for composites depending on the required properties.Π‘ΡΠ°ΡΡΡ ΠΏΡΠΈΡΠ²ΡΡΠ΅Π½Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌi ΡΡΠΈΠ»iΠ·Π°ΡiΡ ΠΏΠΈΠ»Ρ ΠΌΠ΅ΡΠ°Π»ΡΡΠ³iΠΉΠ½ΠΎΡ ΠΏΡΠΎΠΌΠΈΡΠ»ΠΎΠ²ΠΎΡΡi ΡΠΊ Π°ΡΠΌΡΡΡΠΎΠ³ΠΎ Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ° Π΅ΠΏΠΎΠΊΡΠΈΠ΄Π½ΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡiΠ². Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Π° i Π΄ΠΎΡΠ»iΠ΄ΠΆΠ΅Π½Π° ΠΏΠΎΠ»iΠΌΠ΅ΡΠ½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡiΡ "Ρ
ΠΎΠ»ΠΎΠ΄Π½ΠΎΡ Π·Π²Π°ΡΠΊΠΈ", ΡΠΎ Π²ΠΊΠ»ΡΡΠ°Ρ Π΅ΠΏΠΎΠΊΡΠΈΠ΄Π½ΠΈΠΉ Π΄iΠ°Π½ΠΎΠ²ΠΈΠΉ ΠΎΠ»iΠ³ΠΎΠΌΠ΅Ρ, Π°ΠΌiΠ½Π½ΠΈΠΉ Π·Π°ΡΠ²Π΅ΡΠ΄ΠΆΡΠ²Π°Ρ i Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°Ρ β Π΄ΡiΠ±Π½ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½i Π²iΠ΄Ρ
ΠΎΠ΄ΠΈ ΠΌΠ΅ΡΠ°Π»iΠ². Π ΠΌΠ΅ΡΠΎΡ ΠΏiΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ ΡΠ΅ΠΏΠ»ΠΎΡΡiΠΉΠΊΠΎΡΡi i ΠΌiΡΠ½iΡΡΠ½ΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π² ΡΠΊΠΎΡΡi Π·Π°ΡΠ²Π΅ΡΠ΄ΠΆΡΠ²Π°ΡΠ° Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π²ΡΡ ΠΏΠΎΠ»iΠ΅ΡΠΈΠ»Π΅Π½ΠΏΠΎΠ»Π°ΠΌiΠ½. ΠΠ»Ρ Π·Π½ΠΈΠΆΠ΅Π½Π½Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ i ΡΠΊΠΎΡΠΎΡΠ΅Π½Π½Ρ ΡΠ°ΡΡ Π·Π°ΡΠ²Π΅ΡΠ΄iΠ½Π½Ρ Π² ΡΠΊΠΎΡΡi ΠΏΡΠΈΡΠΊΠΎΡΡΠ²Π°ΡΠ° Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π²ΡΡ ΡΡΠΈΠ°ΡΠ΅ΡΠ°Ρ ΠΌΠ°ΡΠ³Π°Π½ΡΡ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΌΠΎΠΆΠ»ΠΈΠ²iΡΡΡ ΡΡΠΈΠ»iΠ·Π°ΡiΡ Π΄ΡiΠ±Π½ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΠΈΡ
ΠΌΠ΅ΡΠ°Π»ΠΎΠ²ΠΌiΡΠ½ΠΈΡ
Π²iΠ΄Ρ
ΠΎΠ΄iΠ² ΠΌΠ΅ΡΠ°Π»ΡΡΠ³iΠΉΠ½ΠΈΡ
Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ² Π² ΡΠΊΠΎΡΡi Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ° Π΅ΠΏΠΎΠΊΡΠΈΠ΄Π½ΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡiΠ² Ρ
ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π·Π°ΡΠ²Π΅ΡΠ΄iΠ½Π½Ρ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΠΉ Π²ΠΌiΡΡ ΠΏΠΈΠ»Ρ Π»ΠΈΠ²Π°ΡΠ½ΠΈΡ
Π²ΠΈΡΠΎΠ±Π½ΠΈΡΡΠ² Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡi Π·Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡΡ Π½Π° ΡiΠ²Π½i 45β60 %. ΠΡΠΈ ΡΡΠΎΠΌΡ Π²ΠΌiΡΡi ΡΠΏΠΎΡΡΠ΅ΡiΠ³Π°ΡΡΡΡΡ Π½Π°ΠΉΠ²ΠΈΡΠ° ΡΠ΄Π°ΡΠ½Π° ΠΌiΡΠ½iΡΡΡ Π½Π° ΡiΠ²Π½i 40β50 ΠΠΠ° i ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° ΡΠΎΠ·ΠΌ'ΡΠΊΡΠ΅Π½Π½Ρ Π² iΠ½ΡΠ΅ΡΠ²Π°Π»i 170β190 oΠ‘. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ iΠ· Π·Π±iΠ»ΡΡΠ΅Π½Π½ΡΠΌ ΠΊiΠ»ΡΠΊΠΎΡΡi Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ° Π²iΠ΄ 40 % Π΄ΠΎ 70 % ΡΡΡΠΏiΠ½Ρ Π·ΡΠΈΠ²Π°Π½Π½Ρ Π·ΡΠΎΡΡΠ°Ρ Π²iΠ΄ 88 % Π΄ΠΎ 98 % Π²iΠ΄ΠΏΠΎΠ²iΠ΄Π½ΠΎ. ΠΡΠΎΡΠ΅, ΠΏΡΠΈ Π²ΠΌiΡΡi Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ° ΠΌΠ΅Π½ΡΠ΅ 45 % Π°Π±ΠΎ Π±iΠ»ΡΡΠ΅ 60 % Π·Π½ΠΈΠΆΡΡΡΡΡΡ ΡΠ΄Π°ΡΠ½Π° ΠΌiΡΠ½iΡΡΡ ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡiΠ². ΠΠ°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ Π·Π°ΡΠ²Π΅ΡΠ΄ΠΆΡΠ²Π°ΡΠ° i ΠΏΡΠΈΡΠΊΠΎΡΡΠ²Π°ΡΠ° Π·Π°ΡΠ²Π΅ΡΠ΄iΠ½Π½Ρ Π² ΠΊiΠ»ΡΠΊΠΎΡΡΡΡ
3β3,5 i 1,5β2 % Π²iΠ΄ΠΏΠΎΠ²iΠ΄Π½ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡ Π·Π½ΠΈΠ·ΠΈΡΠΈ ΡΠ°Ρ Π·Π°ΡΠ²Π΅ΡΠ΄iΠ½Π½Ρ Π΄ΠΎ 2 Π³ΠΎΠ΄ΠΈΠ½. ΠΡΠΈ Π²ΠΌiΡΡi Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ° Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡi ΠΌΠ΅Π½ΡΠ΅ 45 % ΠΏΡΠΈΡΠΈΠ½ΠΎΡ Π½ΠΈΠ·ΡΠΊΠΈΡ
Π·Π½Π°ΡΠ΅Π½Ρ ΡΠ΄Π°ΡΠ½ΠΎΡ ΠΌiΡΠ½ΠΎΡΡi i ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ ΡΠΎΠ·ΠΌ'ΡΠΊΡΠ΅Π½Π½Ρ ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ Π½ΠΈΠ·ΡΠΊΠΈΠΉ ΡΡΡΠΏiΠ½Ρ Π·ΡΠΈΠ²Π°Π½Π½Ρ ΠΌΠ΅Π½ΡΠ΅ 90 %. ΠΠ½ΠΈΠΆΠ΅Π½Π½Ρ Π²ΠΊΠ°Π·Π°Π½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡiΠ² ΠΏΡΠΈ Π²ΠΌiΡΡi Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ° Π±iΠ»ΡΡΠ΅ 60 % ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ ΠΏΠΎΠ²'ΡΠ·Π°Π½ΠΎ Π· ΡΡΠ²ΠΎΡΠ΅Π½Π½ΡΠΌ Π½Π΅ΠΎΠ΄Π½ΠΎΡiΠ΄Π½ΠΎΡ ΡΡΡΡΠΊΡΡΡΠΈ Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ°. Π£ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡiΡΡ
Π· Π½Π°ΠΉΠ²ΠΈΡΠΈΠΌΠΈ Π΅ΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡiΠΉΠ½ΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΡΠΏΠΎΡΡΠ΅ΡiΠ³Π°ΡΡΡΡΡ ΠΎΠΏΡΠΈΠΌiΠ·ΠΎΠ²Π°Π½ΠΈΠΉ Π²ΠΌiΡΡ Π½Π°ΠΏΠΎΠ²Π½ΡΠ²Π°ΡΠ° i ΠΏΡΠΈΡΠΊΠΎΡΡΠ²Π°ΡΠ°. Π ΡiΠ»ΠΎΠΌΡ, ΠΎΠ΄Π΅ΡΠΆΠ°Π½i Π΅ΠΏΠΎΠΊΡΠΈΠ΄Π½i ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈ Π·Π° ΡΠ²ΠΎΡΠΌΠΈ Π΅ΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡiΠΉΠ½ΠΈΠΌΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌΠΈ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΡΡΡΡ Π²iΠ΄ΠΎΠΌi Π°Π½Π°Π»ΠΎΠ³ΠΈ Ρ
ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π·Π°ΡΠ²Π΅ΡΠ΄iΠ½Π½Ρ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½i Π·Π°Π»Π΅ΠΆΠ½ΠΎΡΡi ΡΠ΄Π°ΡΠ½ΠΎΡ ΠΌiΡΠ½ΠΎΡΡi, ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ ΡΠΎΠ·ΠΌ'ΡΠΊΡΠ΅Π½Π½Ρ i ΡΡΡΠΏΠ΅Π½Ρ Π·ΡΠΈΠ²Π°Π½Π½Ρ Π²iΠ΄ Π²ΠΌiΡΡΡ Π²iΠ΄Ρ
ΠΎΠ΄iΠ² Π² ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡi, ΡΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡΡΡ ΡΠΎΠ·ΡΠ°Ρ
ΠΎΠ²ΡΠ²Π°ΡΠΈ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΠΉ ΡΠΊΠ»Π°Π΄ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡiΠ² Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²iΠ΄ Π½Π΅ΠΎΠ±Ρ
iΠ΄Π½ΠΈΡ
Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΠ΅ΠΉ
Establishing the Regularities in Forming the Properties of Ceramic Wall Materials Containing Waste From Gas Extraction (Drilling Sludge)
This paper addresses the prospects of recycling waste from oil and gas extraction in order to manufacture building materials. The principal possibility has been established to apply the examined samples of drilling sludge as the basic raw material and a mineral additive in the compositions of masses to produce wall ceramics with the required consumer properties.The main technological parameters for obtaining wall ceramics using the samples of gas extraction waste have been investigated. The formulations for ceramic masses have been developed applying fusible medium-sintered loam and drilling sludge in the amount of 20β80 % by weight. The properties of the obtained ceramic samples containing clay and high-carbonate drilling sludges have been analyzed. It has been found that increasing the amount of drilling sludge in the samples by 20 % to 80 % leads to a decrease in the density, strength, and an increase in the water absorption of the samples, which affects the quality of ceramics and the possibility of its practical use. We have established the regularities of change in the properties of the wall materials samples depending on the amount of the examined drilling sludge.The optimal number of drilling sludge samples for the manufacture of wall ceramics with the norm-compliant properties has been determined. It has been found that it is possible to use clay drilling sludge (20β80 %) in the composition with fusible loam in order to obtain frost-resistant ceramic materials whose water absorption is at the level of 12 %, of grade M 125βM 175. Adding high carbonate sludge to fusible loam in the amount of 20 % makes it possible to receive frost-resistant ceramic materials of grade M 75, in the amount of 40 % β of grade M 10
Identifying the Properties of Epoxy Composites Filled with the Solid Phase of Wastes From Metal Enterprises
The article addresses the issue related to the disposal of dust from steel industry as a reinforcing filler for epoxy composites. The polymer composition of "cold welding" that has been developed and studied includes epoxy dian oligomer, amine hardener and the filler β finely dispersed waste of metals. Polyethylene polyamine was used as a hardener in order to improve heat resistance and strength characteristics. Manganese triacetate was used in order to decrease the temperature and reduce the time of curing.The possibility was established to dispose of finely dispersed metal-containing waste from metallurgical production to be used a filler for epoxy composites of cold curing. It was revealed that the optimal content of dusts from foundries in the composite is at the level of 45β60 %. At this content, there is the highest impact resistance at the level of 40β50 MPa and a softening temperature in the range of 170β190 Β°Π‘. It was established that at an increase in the amount of a filler from 40 % to 70 %, the cross-linking degree increases by 88 % to 98 %, respectively. However, at the content of the filler less than 45 % or exceeding 60 %, the impact resistance of the resulting composites decreases. At the content of a filler in the composite less than 45 %, the cause of low values of impact resistance and softening temperature could be the low cross-linking degree, less than 90 %. A decrease in these properties of composites at the content of the filler exceeding 60 % could be associated with the formation of a heterogeneous structure of filler. In the compositions with the highest performance characteristics, there is an optimized content of the filler and catalyst. Using a hardener and a curing catalyst in quantities of 3β3.5 and 1.5β2 %, respectively, makes it possible to shorten curing time by up to 2 hours. In general, the resulting epoxy composites are superior in their performance to known cold-curing analogs.The dependences of impact resistance, softening temperature, and cross-linking degree on the content of waste in the composite were derived, which make it possible to calculate the optimal formulation for composites depending on the required propertie