9 research outputs found

    C/EBPα mediates the growth inhibitory effect of progestins on breast cancer cells

    Get PDF
    Steroid hormones are key gene regulators in breast cancer cells. While estrogens stimulate cell proliferation, progestins activate a single cell cycle followed by proliferation arrest. Here, we use biochemical and genome‐wide approaches to show that progestins achieve this effect via a functional crosstalk with C/EBPα. Using ChIP‐seq, we identify around 1,000 sites where C/EBPα binding precedes and helps binding of progesterone receptor (PR) in response to hormone. These regions exhibit epigenetic marks of active enhancers, and C/EBPα maintains an open chromatin conformation that facilitates loading of ligand‐activated PR. Prior to hormone exposure, C/EBPα favors promoter–enhancer contacts that assure hormonal regulation of key genes involved in cell proliferation by facilitating binding of RAD21, YY1, and the Mediator complex. Knockdown of C/EBPα disrupts enhancer–promoter contacts and decreases the presence of these architectural proteins, highlighting its key role in 3D chromatin looping. Thus, C/EBPα fulfills a previously unknown function as a potential growth modulator in hormone‐dependent breast cancer.The experimental work was supported by grants from the Departament d'InnovaciĂł Universitat i Empresa (DIUiE), and the Spanish Ministry of Economy and Competitiveness (SAF2016‐75006P), “Centro de Excelencia Severo Ochoa 2013‐2017”, SEV‐2012‐0208 and ERC Synergy Grant “4DGenome” nr: 609989

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    90 YEARS OF PROGESTERONE Progesterone receptor signaling in the normal breast and its implications for cancer

    No full text
    Progesterone is considered as the pregnancy hormone and acts on many different target tissues. Progesterone receptor (PR) signaling is important for normal development and the physiologic function of the breast and impinges on breast carcinogenesis. Both systemically and locally, in the breast epithelium, there are multiple layers of complexity to progesterone action, many of which have been revealed through experiments in mice. The hormone acts via its receptor expressed in a subset of cells, the sensor cells, in the breast epithelium with different signaling outcomes in individual cells eliciting distinct cell-intrinsic and paracrine signaling involving different mediators for different intercellular interactions. PR expression itself is developmentally regulated and the biological outcome of PR signaling depends on the developmental stage of the mammary gland and the endocrine context. During both puberty and adulthood PR activates stem and progenitor cells through Wnt4-driven activation of the myoepithelium with downstream Adamts18-induced changes in extracellualr matrix (ECM) / basal membrane (BM). During estrous cycling and pregnancy, the hormone drives a major cell expansion through Rankl. At all stages, PR signaling is closely tied to estrogen receptor a (ER) signaling. As the PR itself is a target gene of ER, the complex interactions are experimentally difficult to dissect and still poorly understood. Ex vivo models of the human breast and studies on biopsy samples show that major signaling axes are conserved across species. New intraductal xenograft models hold promise to provide a better understanding of PR signaling in the normal breast epithelium and in breast cancer development in the near future

    Intraductal xenografts show lobular carcinoma cells rely on their own extracellular matrix and LOXL1.

    No full text
    Invasive lobular carcinoma (ILC) is the most frequent special histological subtype of breast cancer, typically characterized by loss of E-cadherin. It has clinical features distinct from other estrogen receptor-positive (ER <sup>+</sup> ) breast cancers but the molecular mechanisms underlying its characteristic biology are poorly understood because we lack experimental models to study them. Here, we recapitulate the human disease, including its metastatic pattern, by grafting ILC-derived breast cancer cell lines, SUM-44 PE and MDA-MB-134-VI cells, into the mouse milk ducts. Using patient-derived intraductal xenografts from lobular and non-lobular ER <sup>+</sup> HER2 <sup>-</sup> tumors to compare global gene expression, we identify extracellular matrix modulation as a lobular carcinoma cell-intrinsic trait. Analysis of TCGA patient datasets shows matrisome signature is enriched in lobular carcinomas with overexpression of elastin, collagens, and the collagen modifying enzyme LOXL1. Treatment with the pan LOX inhibitor BAPN and silencing of LOXL1 expression decrease tumor growth, invasion, and metastasis by disrupting ECM structure resulting in decreased ER signaling. We conclude that LOXL1 inhibition is a promising therapeutic strategy for ILC

    C/EBPα mediates the growth inhibitory effect of progestins on breast cancer cells

    No full text
    Steroid hormones are key gene regulators in breast cancer cells. While estrogens stimulate cell proliferation, progestins activate a single cell cycle followed by proliferation arrest. Here, we use biochemical and genome-wide approaches to show that progestins achieve this effect via a functional crosstalk with C/EBPα. Using ChIP-seq, we identify around 1,000 sites where C/EBPα binding precedes and helps binding of progesterone receptor (PR) in response to hormone. These regions exhibit epigenetic marks of active enhancers, and C/EBPα maintains an open chromatin conformation that facilitates loading of ligand-activated PR. Prior to hormone exposure, C/EBPα favors promoter-enhancer contacts that assure hormonal regulation of key genes involved in cell proliferation by facilitating binding of RAD21, YY1, and the Mediator complex. Knockdown of C/EBPα disrupts enhancer-promoter contacts and decreases the presence of these architectural proteins, highlighting its key role in 3D chromatin looping. Thus, C/EBPα fulfills a previously unknown function as a potential growth modulator in hormone-dependent breast cancer.The experimental work was supported by grants from the Departament d’InnovaciĂł, Universitat i Empresa (DIUiE), and the Spanish Ministry of Economy and Competitiveness (SAF2016-75006P), “Centro de Excelencia Severo Ochoa 2013-2017”, SEV-2012-0208 and ERC Synergy Grant “4DGenome” nr: 60998

    IL6/STAT3 Signaling Hijacks Estrogen Receptor α Enhancers to Drive Breast Cancer Metastasis.

    Get PDF
    The cytokine interleukin-6 (IL6) and its downstream effector STAT3 constitute a key oncogenic pathway, which has been thought to be functionally connected to estrogen receptor α (ER) in breast cancer. We demonstrate that IL6/STAT3 signaling drives metastasis in ER+ breast cancer independent of ER. STAT3 hijacks a subset of ER enhancers to drive a distinct transcriptional program. Although these enhancers are shared by both STAT3 and ER, IL6/STAT3 activity is refractory to standard ER-targeted therapies. Instead, inhibition of STAT3 activity using the JAK inhibitor ruxolitinib decreases breast cancer invasion in vivo. Therefore, IL6/STAT3 and ER oncogenic pathways are functionally decoupled, highlighting the potential of IL6/STAT3-targeted therapies in ER+ breast cancer

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    No full text
    corecore