81 research outputs found

    On the development of the convective boundary layer in a shear-free thermally forced stably stratified fluid setting: a 2D and 3D experimental investigation using image analysis techniques coupled with temperature measurements

    Get PDF
    The motion of buoyancy driven plumes is, on all scales, the most common heat and momentum transfer mechanism in geophysical flows, well known as Free Convection. Similarly, density stratification due to heating inequalities is also an ordinary scenario in nature. Free Convection phenomenon coupled with a density stratified fluid setting leads to the so-called Penetrative Free Convection (PFC). When a fluid, in static equilibrium, is stably stratified a thermal forcing can produce an unstable configuration ensuing internal waves formation of increasing amplitude. If the perturbation is strong enough, it can definitely erode the initial stratification and cause the motion of turbulent buoyant updrafts, dome-shaped, compensated by denser downdrafts. The entrainment phenomenon occurring at the interface between the turbulent and non-turbulent region justifies the penetrative feature of convection and causes the non linear growth of the Convective Boundary Layer (CBL) of well mixed fluid against the adjacent stably stratified region. In addition to the wide engineering applications, the environmental impact mostly motivates PFC studies. The upper lakes and oceans, under calm conditions, usually exhibit a continuous, moderately stable density distribution. Turbulent convective flow can be generated both by the free-surface cooling and wind shear-stress, eroding the stable stratification on a daily or seasonal time scale. Domes with large downward velocities are generated at the free surface, balanced by updrafts with lower velocity but larger area. Because of the relatively rapid mixing, the density distribution is approximately uniform in the upper layer and it deepens with time as a result of the entrainment and erosion of the underlying denser water. An analogous phenomenon is observed in the lower troposphere when surface heating due to solar radiation results in a growing unstable layer adjacent to the ground which replaces a nocturnal inversion from below. In this case, the initially stable environment near the ground is affected by convection characterized by relatively narrow and fast plumes of rising horizontal surfaces balanced by larger regions of downward slower motion. Resulting internal waves generated within the stable layer take place at or below the Brunt-Väisälä frequency, which is related to the vertical temperature gradient. In nature, the dynamics of the CBL influences the transport and mixing features of a given stratified fluid-body. The amount of materials being mixed due to penetrative convection is a crucial issue both in water or air quality monitoring and forecast with important implications in environmentally-friendly studies. Focusing on the environmental aspect, the pollutant dispersion is a matter of particular importance. On one hand, mixing processes inside the CBL help increasing dispersion with some positive consequences: the concentration of potential harmful pollutants in high risk zones tends to decrease, the turnover and the redistribution of vital substances, like oxygen and nutrients, is guaranteed; the latter plays a major role in large water bodies. These advantages are essential for the safety of populations living close to urban or industrial areas, or for preserving coastal human activities and ecosystems. On the other hand each pollutant, released inside the CBL mainly by human activities, remains confined inside it because of the interface with the non-turbulent region, which acts as a barrier for outward transport. Considering the proximity of the CBL with biosphere, a deeper insight into dispersion and entrainment processes appears mandatory either for sustainable engineering design or for monitoring purposes. Given the great applicability of the topic in several scientific and engineering fields, large amount of experimental, theoretical and numerical investigations on CBL development in a continuously and linearly stratified fluid setting had been conducted in the past since sixties. It appears there is a lack of consensus about the dependence of integral parameters of convective entrainment (in particular the CBL growth rate) on the initial stratification strength and convective phenomenon evolution. Driven by all these premises the main aims of the present research are related to better understanding dispersion of a passive scalar inside the CBL with a lagrangian, non-local approach and a fully three-dimensional (3D 3C) experimental technique, which for the first time has been applied to the topic. When turbulent convection occurs, in fact, dispersion is mostly due to transport by large organized structures while molecular diffusion can be neglected. Given this assumption, a non local approach based on a fully advective-like behaviour of the tracer is necessary and a lagrangian description of flow may be more suitable. Moreover, the knowledge of the horizontal and vertical extension of the structures dominating the flow field appears to be mandatory. Furthermore, turbulence is fully three-dimensional on the scales of motion characterising the phenomena in nature. In order to better understanding and likely describing the evolution of turbulent structures inside the convective layer, a three dimensional experimental technique is strongly required. In the present work shear free convection experiments in a stably stratified environment were performed in a thermally controlled convection chamber. The experimental set up was arranged in different optical configurations to ensure the two components and three components of velocity to be measured in an illuminated plane and volume respectively through different image analysis techniques with sub-pixel accuracy. Temperature measurements were simultaneously acquired using thermocouples of accuracy less than 0.1 °C. The experiments highlighted the time evolution of the convective structure characteristic spatial scales (CBL height and horizontal spacing between thermals) and the non local description of transport and mixing inside the growing CBL. The main novelty of the present contribution covers the improvement of techniques and methods to achieve more reliable, statistically robust and likely results. The experimental effort based on image analysis techniques (mainly Feature Tracking and photogrammetric 3D-PTV) resulted suitable for reconstructing longer trajectories (always more than 103 trajectories longer than 20 consecutive snapshots) and analyzing larger particle density images (reliable results for more than 2000 particles in a volume of 15X15X15 cm3 for 3D-PTV). Velocity statistics are then more robust than those from classical Particle Tracking Velocimetry. Moreover, for the first time, a fully three-dimensional particle tracking technique has been applied to penetrative convection experiments. 3D-PTV allows a more realistic description of the velocity field, which occurs during the evolution of the convective mixed layer, than more traditional 2D techniques. Furthermore, photogrammetric 3D-PTV rather than “scanning” 3D-PTV results in more accuracy when the tracer particle density is high, because particles may be tracked directly in the 3D space rather than through matching of 2D projections. The broader impact of the research mainly refers to the prediction of the CBL growth as a function of initial and boundary conditions with better accuracy than conventional and well established techniques. The experimental study can thus give a positive contribution on real pollutant dispersion studies in urban and natural environments for environmental protection and sustainable design purposes. Field experiments aimed at measuring the turbulence budget of the CBL have shown that the mechanical generation of kinetic energy by wind shear is often confined close to the heat source supporting the validity of laboratory models in which no wind is present. According to this assumption, the similarity proposed by Deardorff (1970) is employed to compute scaling parameters and to make results comparable with real scales. Through normalizing the quantities measured at different stages of the experiment, the phenomenon can be considered as a succession of steady states, according to an evolution of the variables of interest that may be defined quasi-steady state. The experimental apparatus employed to run the experiments is the same as in Cenedese and Querzoli (1994), Querzoli (1996), Cenedese and Querzoli (1997) and Moroni and Cenedese (2006). The spatial resolution of velocity data is largely increased here by means of 2D and 3D image analysis techniques (Feature Tracking, FT, and 3D Particle Tracking Velocimetry, 3D-PTV) used instead of Laser-Doppler Anemometry or 2D Particle Tracking Velocimetry as in Cenedese and Querzoli, 1994; Querzoli, 1996 and Cenedese and Querzoli, 1997. Moreover the photogrammetric 3D-PTV here applied allows fully three-dimensional descriptions of both the Eulerian velocity field and Lagrangian particle trajectories for a more likely understanding of the phenomenon than through the 2D approach used in Moroni and Cenedese (2006). Furthermore, the combined use of thermocouples and flow visualization techniques allows cross-validating different methods to estimate the evolutions of the key parameters and the plume characteristic dimensions. Two different experimental arrangements were set-up, 2D and a 3D models. A large set of data were firstly acquired using a 2D model and employing FT. The preliminary investigation was mainly focused on better understanding the physics of the phenomenon, finding a time scaling law, testing different methods to compute the variables of interest and comparing results with classical methods found in literature. When 2D techniques are employed to detect the velocity field, the flow is illuminated with a thin light sheet and only the velocity components within this sheet can be evaluated. Driven by the idea that only a fully three-dimensional technique can significantly improve our laboratory model in term of a more likely description of free convection structures we run a second set of experiments, by using a stereoscopic arrangement of cameras focused on an illuminated volume. Although some methods do exist for reconstructing 3D velocities in a point (3D laser Doppler Anemometry; Hinsch and Hinrichs, 1996) or plane (3D stereo-PIV; Stuer et al., 1999), only a fully 3D technique based on the illumination of a flow volume rather than a flow sheet will give the information needed to construct the instantaneous 3D velocity fields. A number of imaging-based measurement techniques exist for determining 3D velocity fields in an observation volume. Among these are: scanning, photogrammetric, holographic or photogrammetric techniques dependending on which principle is recalled to reconstruct the third dimension from a 2D image/s: The present study was focused on 3D-PTV which is a 3D extension of the 2D particle-tracking methods. 3D-PTV is based on reconstructing 3D trajectories of reflecting tracer particles through a photogrammetric recording of image sequences. The 3D particle trajectories obtained can be used to calculate the 3D velocity field. The 3D-PTV optical system has been designed with the following capabilities: image a volume far away the boundary walls, lengthen the trajectories, and improve the accuracy of the procedure through a careful test on synthetically generated data. A physically-based photogrammetric calibration of the stereoscopic arrangement was employed and its accuracy tested. The effects of multimedia geometry on calibration parameters were taken into account. The combination of image- and object-space based information was employed to establish the correspondences between particle positions (structure from stereo reconstruction). A particle tracking algorithm was then employed to reconstructed 3D trajectories. Sensitivity tests conducted on the matching algorithm proved that the calibration accuracy is fundamental to obtain the correct matching and particle tracking; small errors in calibration parameters or neglecting water refraction effects reduce matching performance. On the other hand, accuracy less than 1 pixel was reached with our calibration procedure ensuring good results in the matching procedure. Tests on synthetic data demonstrated a multi-choice strategy with a 3 camera arrangement is the best solution for matching data. It is less sensitive to errors in the calibration data set when both the percentage of correctly matched triplets and the number of outputs of the algorithm were considered. Original and cross-validating methods to compute the CBL height and horizontal scale of thermals were applied based on temperature, velocity and fluorescence imaging. The spatial covariance of the velocity field, providing the plume horizontal spacing, allows the spatial extension of the mixed region to be determined. Dome characteristic vertical dimension is of the same order of magnitude as the mixing layer height, while their horizontal dimension becomes similar to the vertical one at the end of the experiment when the structure dimensions are comparable to the test section side and border effects are no longer negligible. The mixing layer growth was computed by exploiting both temperature and velocity data. Outputs were then compared to more classical methods as the zero-order mixed-layer model and the zero-heat flux level method. The accuracy of our methods was computed as well. Present results, normalized accordingly to the Deardorff similarity for free convection, were compared with literature data and LES meteorological models. Outcomes from different experimental configurations, literature and LES models are in fairly good agreement. The comparison with literature data at real scale demonstrates the validity of our experimental task and its applicability for the study of the real atmospheric boundary layer and its monitoring for environmental purposes. On the other hand the agreement with LES models at different boundary conditions and domain aspect ratios proves that both scale and border effects of the experimental model are negligible if data are not processed for too long time

    On the development of the convective boundary layer in a shear-free thermally forced stably stratified fluid setting: a 2D and 3D experimental investigation using image analysis techniques coupled with temperature measurements

    Get PDF
    The motion of buoyancy driven plumes is, on all scales, the most common heat and momentum transfer mechanism in geophysical flows, well known as Free Convection. Similarly, density stratification due to heating inequalities is also an ordinary scenario in nature. Free Convection phenomenon coupled with a density stratified fluid setting leads to the so-called Penetrative Free Convection (PFC). When a fluid, in static equilibrium, is stably stratified a thermal forcing can produce an unstable configuration ensuing internal waves formation of increasing amplitude. If the perturbation is strong enough, it can definitely erode the initial stratification and cause the motion of turbulent buoyant updrafts, dome-shaped, compensated by denser downdrafts. The entrainment phenomenon occurring at the interface between the turbulent and non-turbulent region justifies the penetrative feature of convection and causes the non linear growth of the Convective Boundary Layer (CBL) of well mixed fluid against the adjacent stably stratified region. In addition to the wide engineering applications, the environmental impact mostly motivates PFC studies. The upper lakes and oceans, under calm conditions, usually exhibit a continuous, moderately stable density distribution. Turbulent convective flow can be generated both by the free-surface cooling and wind shear-stress, eroding the stable stratification on a daily or seasonal time scale. Domes with large downward velocities are generated at the free surface, balanced by updrafts with lower velocity but larger area. Because of the relatively rapid mixing, the density distribution is approximately uniform in the upper layer and it deepens with time as a result of the entrainment and erosion of the underlying denser water. An analogous phenomenon is observed in the lower troposphere when surface heating due to solar radiation results in a growing unstable layer adjacent to the ground which replaces a nocturnal inversion from below. In this case, the initially stable environment near the ground is affected by convection characterized by relatively narrow and fast plumes of rising horizontal surfaces balanced by larger regions of downward slower motion. Resulting internal waves generated within the stable layer take place at or below the Brunt-Väisälä frequency, which is related to the vertical temperature gradient. In nature, the dynamics of the CBL influences the transport and mixing features of a given stratified fluid-body. The amount of materials being mixed due to penetrative convection is a crucial issue both in water or air quality monitoring and forecast with important implications in environmentally-friendly studies. Focusing on the environmental aspect, the pollutant dispersion is a matter of particular importance. On one hand, mixing processes inside the CBL help increasing dispersion with some positive consequences: the concentration of potential harmful pollutants in high risk zones tends to decrease, the turnover and the redistribution of vital substances, like oxygen and nutrients, is guaranteed; the latter plays a major role in large water bodies. These advantages are essential for the safety of populations living close to urban or industrial areas, or for preserving coastal human activities and ecosystems. On the other hand each pollutant, released inside the CBL mainly by human activities, remains confined inside it because of the interface with the non-turbulent region, which acts as a barrier for outward transport. Considering the proximity of the CBL with biosphere, a deeper insight into dispersion and entrainment processes appears mandatory either for sustainable engineering design or for monitoring purposes. Given the great applicability of the topic in several scientific and engineering fields, large amount of experimental, theoretical and numerical investigations on CBL development in a continuously and linearly stratified fluid setting had been conducted in the past since sixties. It appears there is a lack of consensus about the dependence of integral parameters of convective entrainment (in particular the CBL growth rate) on the initial stratification strength and convective phenomenon evolution. Driven by all these premises the main aims of the present research are related to better understanding dispersion of a passive scalar inside the CBL with a lagrangian, non-local approach and a fully three-dimensional (3D 3C) experimental technique, which for the first time has been applied to the topic. When turbulent convection occurs, in fact, dispersion is mostly due to transport by large organized structures while molecular diffusion can be neglected. Given this assumption, a non local approach based on a fully advective-like behaviour of the tracer is necessary and a lagrangian description of flow may be more suitable. Moreover, the knowledge of the horizontal and vertical extension of the structures dominating the flow field appears to be mandatory. Furthermore, turbulence is fully three-dimensional on the scales of motion characterising the phenomena in nature. In order to better understanding and likely describing the evolution of turbulent structures inside the convective layer, a three dimensional experimental technique is strongly required. In the present work shear free convection experiments in a stably stratified environment were performed in a thermally controlled convection chamber. The experimental set up was arranged in different optical configurations to ensure the two components and three components of velocity to be measured in an illuminated plane and volume respectively through different image analysis techniques with sub-pixel accuracy. Temperature measurements were simultaneously acquired using thermocouples of accuracy less than 0.1 °C. The experiments highlighted the time evolution of the convective structure characteristic spatial scales (CBL height and horizontal spacing between thermals) and the non local description of transport and mixing inside the growing CBL. The main novelty of the present contribution covers the improvement of techniques and methods to achieve more reliable, statistically robust and likely results. The experimental effort based on image analysis techniques (mainly Feature Tracking and photogrammetric 3D-PTV) resulted suitable for reconstructing longer trajectories (always more than 103 trajectories longer than 20 consecutive snapshots) and analyzing larger particle density images (reliable results for more than 2000 particles in a volume of 15X15X15 cm3 for 3D-PTV). Velocity statistics are then more robust than those from classical Particle Tracking Velocimetry. Moreover, for the first time, a fully three-dimensional particle tracking technique has been applied to penetrative convection experiments. 3D-PTV allows a more realistic description of the velocity field, which occurs during the evolution of the convective mixed layer, than more traditional 2D techniques. Furthermore, photogrammetric 3D-PTV rather than “scanning” 3D-PTV results in more accuracy when the tracer particle density is high, because particles may be tracked directly in the 3D space rather than through matching of 2D projections. The broader impact of the research mainly refers to the prediction of the CBL growth as a function of initial and boundary conditions with better accuracy than conventional and well established techniques. The experimental study can thus give a positive contribution on real pollutant dispersion studies in urban and natural environments for environmental protection and sustainable design purposes. Field experiments aimed at measuring the turbulence budget of the CBL have shown that the mechanical generation of kinetic energy by wind shear is often confined close to the heat source supporting the validity of laboratory models in which no wind is present. According to this assumption, the similarity proposed by Deardorff (1970) is employed to compute scaling parameters and to make results comparable with real scales. Through normalizing the quantities measured at different stages of the experiment, the phenomenon can be considered as a succession of steady states, according to an evolution of the variables of interest that may be defined quasi-steady state. The experimental apparatus employed to run the experiments is the same as in Cenedese and Querzoli (1994), Querzoli (1996), Cenedese and Querzoli (1997) and Moroni and Cenedese (2006). The spatial resolution of velocity data is largely increased here by means of 2D and 3D image analysis techniques (Feature Tracking, FT, and 3D Particle Tracking Velocimetry, 3D-PTV) used instead of Laser-Doppler Anemometry or 2D Particle Tracking Velocimetry as in Cenedese and Querzoli, 1994; Querzoli, 1996 and Cenedese and Querzoli, 1997. Moreover the photogrammetric 3D-PTV here applied allows fully three-dimensional descriptions of both the Eulerian velocity field and Lagrangian particle trajectories for a more likely understanding of the phenomenon than through the 2D approach used in Moroni and Cenedese (2006). Furthermore, the combined use of thermocouples and flow visualization techniques allows cross-validating different methods to estimate the evolutions of the key parameters and the plume characteristic dimensions. Two different experimental arrangements were set-up, 2D and a 3D models. A large set of data were firstly acquired using a 2D model and employing FT. The preliminary investigation was mainly focused on better understanding the physics of the phenomenon, finding a time scaling law, testing different methods to compute the variables of interest and comparing results with classical methods found in literature. When 2D techniques are employed to detect the velocity field, the flow is illuminated with a thin light sheet and only the velocity components within this sheet can be evaluated. Driven by the idea that only a fully three-dimensional technique can significantly improve our laboratory model in term of a more likely description of free convection structures we run a second set of experiments, by using a stereoscopic arrangement of cameras focused on an illuminated volume. Although some methods do exist for reconstructing 3D velocities in a point (3D laser Doppler Anemometry; Hinsch and Hinrichs, 1996) or plane (3D stereo-PIV; Stuer et al., 1999), only a fully 3D technique based on the illumination of a flow volume rather than a flow sheet will give the information needed to construct the instantaneous 3D velocity fields. A number of imaging-based measurement techniques exist for determining 3D velocity fields in an observation volume. Among these are: scanning, photogrammetric, holographic or photogrammetric techniques dependending on which principle is recalled to reconstruct the third dimension from a 2D image/s: The present study was focused on 3D-PTV which is a 3D extension of the 2D particle-tracking methods. 3D-PTV is based on reconstructing 3D trajectories of reflecting tracer particles through a photogrammetric recording of image sequences. The 3D particle trajectories obtained can be used to calculate the 3D velocity field. The 3D-PTV optical system has been designed with the following capabilities: image a volume far away the boundary walls, lengthen the trajectories, and improve the accuracy of the procedure through a careful test on synthetically generated data. A physically-based photogrammetric calibration of the stereoscopic arrangement was employed and its accuracy tested. The effects of multimedia geometry on calibration parameters were taken into account. The combination of image- and object-space based information was employed to establish the correspondences between particle positions (structure from stereo reconstruction). A particle tracking algorithm was then employed to reconstructed 3D trajectories. Sensitivity tests conducted on the matching algorithm proved that the calibration accuracy is fundamental to obtain the correct matching and particle tracking; small errors in calibration parameters or neglecting water refraction effects reduce matching performance. On the other hand, accuracy less than 1 pixel was reached with our calibration procedure ensuring good results in the matching procedure. Tests on synthetic data demonstrated a multi-choice strategy with a 3 camera arrangement is the best solution for matching data. It is less sensitive to errors in the calibration data set when both the percentage of correctly matched triplets and the number of outputs of the algorithm were considered. Original and cross-validating methods to compute the CBL height and horizontal scale of thermals were applied based on temperature, velocity and fluorescence imaging. The spatial covariance of the velocity field, providing the plume horizontal spacing, allows the spatial extension of the mixed region to be determined. Dome characteristic vertical dimension is of the same order of magnitude as the mixing layer height, while their horizontal dimension becomes similar to the vertical one at the end of the experiment when the structure dimensions are comparable to the test section side and border effects are no longer negligible. The mixing layer growth was computed by exploiting both temperature and velocity data. Outputs were then compared to more classical methods as the zero-order mixed-layer model and the zero-heat flux level method. The accuracy of our methods was computed as well. Present results, normalized accordingly to the Deardorff similarity for free convection, were compared with literature data and LES meteorological models. Outcomes from different experimental configurations, literature and LES models are in fairly good agreement. The comparison with literature data at real scale demonstrates the validity of our experimental task and its applicability for the study of the real atmospheric boundary layer and its monitoring for environmental purposes. On the other hand the agreement with LES models at different boundary conditions and domain aspect ratios proves that both scale and border effects of the experimental model are negligible if data are not processed for too long time

    Tissue resonance interaction accurately detects colon lesions: a double-blind pilot study

    Get PDF
    AIM: To investigated the performance of the tissue resonance interaction method (TRIM) for the non-invasive detection of colon lesions. METHODS: We performed a prospective single-center blinded pilot study of consecutive adults undergoing colonoscopy at the University Hospital in Sassari, Italy. Before patients underwent colonoscopy, they were examined by the TRIMprobe which detects differences in electromagnetic properties between pathological and normal tissues. All patients had completed the polyethylene glycol-containing bowel prep for the colonoscopy procedure before being screened. During the procedure the subjects remained fully dressed. A hand-held probe was moved over the abdomen and variations in electromagnetic signals were recorded for 3 spectral lines (462-465 MHz, 930 MHz, and 1395 MHz). A single investigator, blind to any clinical information, performed the test using the TRIMprob system. Abnormal signals were identified and recorded as malignant or benign (adenoma or hyperplastic polyps). Findings were compared with those from colonoscopy with histologic confirmation. Statistical analysis was performed by χ2 test. RESULTS: A total of 305 consecutive patients fulfilling the inclusion criteria were enrolled over a period of 12 months. The most frequent indication for colonoscopy was abdominal pain (33%). The TRIMprob was well accepted by all patients; none spontaneously complained about the procedure, and no adverse effects were observed. TRIM proved inaccurate for polyp detection in patients with inflammatory bowel disease (IBD) and they were excluded leaving 281 subjects (mean age 59 ± 13 years; 107 males). The TRIM detected and accurately characterized all 12 adenocarcinomas and 135/137 polyps (98.5%) including 64 adenomatous (100%) found. The method identified cancers and polyps with 98.7% sensitivity, 96.2% specificity, and 97.5% diagnostic accuracy, compared to colonoscopy and histology analyses. The positive predictive value was 96.7% and the negative predictive value 98.4%. Among the 281 non-IBD subjects, there were 7 cases with discordant results (2.5%) between TRIMprob and the reference standard including 5 false positive results (1.8%) and 2 false negative (0.7%) results. The main limitation of the TRIMprob system is the need for trained operators. CONCLUSION: The study confirmed that TRIM provides rapid, accurate, convenient and noninvasive means to identify individuals most likely to benefit from colonoscopy

    In Vivo Therapeutic Potential of Mesenchymal Stromal Cells Depends on the Source and the Isolation Procedure

    Get PDF
    SummaryOver the last several years, mesenchymal stromal cells (MSCs) have been isolated from different tissues following a variety of different procedures. Here, we comparatively assess the ex vivo and in vivo properties of MSCs isolated from either adipose tissue or bone marrow by different purification protocols. After MSC transplantation into a mouse model of hindlimb ischemia, clinical and histological analysis revealed that bone marrow MSCs purified on adhesive substrates exerted the best therapeutic activity, preserving tissue viability and promoting formation of new arterioles without directly transdifferentiating into vascular cells. In keeping with these observations, these cells abundantly expressed cytokines involved in vessel maturation and cell retention. These findings indicate that the choice of MSC source and purification protocol is critical in determining the therapeutic potential of these cells and warrant the standardization of an optimal MSC isolation procedure in order to select the best conditions to move forward to more effective clinical experimentation

    Natural attenuation can lead to environmental resilience in mine environment

    Get PDF
    Four streams flowing in the Iglesiente and Arburese mine districts (SW Sardinia, Italy), exploited for zinc (Zn) and lead (Pb) extraction from sulphides and secondary non-sulphide mineralization (calamine ores), have been studied combining investigations from the macroscale (hydrologic tracer techniques) to the microscale (X-ray powder diffraction, scanning electron microscopy, X-ray absorption spectroscopy). In the investigated area, concerns arise from release of metals to water during weathering of ore minerals and mine-waste. Specifically, Zn is observed at extremely high concentrations (10s of mg/L or more) in waters in some of the investigated catchments. The results from synoptic sampling campaigns showed marked differences of Zn loads, from 6.3 kg/day (Rio San Giorgio) to 2000 kg/day (Rio Irvi). Moreover, natural attenuation of metals was found to occur i) through precipitation of Fe compounds (Fe oxy/hydroxides and “green rust”), ii) by means of the authigenic formation of metal sulphides promoted by microbial sulphate reduction, iii) by metal intake in roots and stems of plants (Phragmites australis and Juncus acutus) and by immobilization in the rhizosphere, and iv) by cyanobacterial biomineralization processes that lead to formation of Zn-rich phases (hydrozincite and amorphous Zn-silicate). The biologically mediated natural processes that lead to significant abatement and/or reduction of metal loads, are the response of environmental systems to perturbations caused from mine activities, and can be considered part of the resilience of the system itself. The aim of this study is to understand the effect of these processes on the evolution of the studied systems towards more stable and, likely, resilient conditions, e.g. by limiting metal mobility and favouring the improvement of the overall quality of water. The understanding of how ecosystems adapt and respond to contamination, and which chemical and physical factors control these natural biogeochemical barriers, can help to plan effective remediation actions

    Using illusions to understand hallucinations: differences in perceptual performances on illusory figures may underscore specific visuoperceptual impairments in Parkinson’s disease

    Get PDF
    Visual hallucinations are prevalent, potentially disabling symptoms of Parkinson’s Disease. Multiple impairments in bottom-up sensory processing and top-down perceptual modulation are implicated in the pathophysiology of these phenomena. In healthy individuals, visual illusions are elicited by illusory figures through parametric manipulations of geometrical configurations, contrast, color, or spatial relationships between stimuli. These illusory percepts provide insight on the physiologic processes subserving conscious and unconscious perception. In this exploratory, cross-sectional, controlled study, perceptual performance on illusory figures was assessed on 11 PD patients with hallucinations, 10 non-hallucinating PD patients, and 10 age-matched healthy individuals. In order to characterize potential neural substrates of perceptual performances, patients’ brain metabolic patterns on FDG PET were also analyzed. Illusions relying on attentional modulation and global perception were attenuated in PD patients without hallucinations. This pattern was no longer recognizable in hallucinating patients. Conversely, illusory effects normally counteracted by figure to background segregation and overlapping figures recognition were enhanced in PD patients with hallucinations. FDG PET findings further suggest that perceptual differences between PD patients might be linked to abnormal top-down perceptual modulation

    Evidence for predilection of macrophage infiltration patterns in the deeper midline and mesial temporal structures of the brain uniquely in patients with HIV-associated dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 penetrates the central nervous system, which is vital for HIV-associated dementia (HAD). But the role of cellular infiltration and activation together with HIV in the development of HAD is poorly understood.</p> <p>Methods</p> <p>To study activation and infiltration patterns of macrophages, CD8+ T cells in relation to HIV in diverse CNS areas of patients with and without dementia. 46 brain regions from two rapidly progressing severely demented patients and 53 regions from 4 HIV+ non-dementia patients were analyzed. Macrophage and CD8+ T cell infiltration of the CNS in relation to HIV was assessed using immuno-histochemical analysis with anti-HIV (P24), anti-CD8 and anti-CD68, anti-S-100A8 and granzyme B antibodies (cellular activation). Statistical analysis was performed with SPSS 12.0 with Student's t test and ANOVA.</p> <p>Results</p> <p>Overall, the patterns of infiltration of macrophages and CD8+ T cells were indiscernible between patients with and without dementia, but the co-localization of macrophages and CD8+ T cells along with HIV P24 antigen in the deeper midline and mesial temporal structures of the brain segregated the two groups. This predilection of infected macrophages and CD8+ T cells to the middle part of the brain was unique to both HAD patients, along with unique nature of provirus gag gene sequences derived from macrophages in the midline and mesial temporal structures.</p> <p>Conclusion</p> <p>Strong predilection of infected macrophages and CD8+ T cells was typical of the deeper midline and mesial temporal structures uniquely in HAD patients, which has some influence on neurocognitive impairment during HIV infection.</p

    Microperimetric evaluation and predictive factors of visual recovery after successful inverted internal limiting membrane-flap technique for macular hole in high myopic eyes

    Get PDF
    IntroductionInverted Internal Limiting Membrane (ILM)-flap technique demonstrated its effectiveness, in terms of anatomical closure rate and visual acuity recovery for high myopic macular holes. We evaluated macular function after a successful inverted ILM-flap for macular holes in high myopic eyes (hMMH) using microperimetry to predict visual prognosis.MethodsA retrospective study on 23 eyes of 23 patients after surgical closure of hMMH, was performed. All patients underwent inverted ILM-flap and gas tamponade. Cataract surgery was performed in phakic eyes. Study outcomes including best-corrected visual acuity (BCVA), retinal sensitivity (RS) at central 12°, central retinal sensitivity (CRS) at central 4° and mean deviation (MD), and fixation behavior as bivariate contour ellipse area (BCEA, degrees2) measured by microperimetry, were evaluated over 6 months. A mixed-effects model was used to evaluate and compare the repeated measurements of outcomes between phakic and pseudophakic eyes. A regression model was performed to assess the relationship between BCVA at 6 months and independent variables.ResultsOverall mean BCVA improved from 0.98 ± 0.21 logMAR at baseline to 0.47 ± 0.31 logMAR at the last follow-up (p &lt; 0.001). Over 6 months, overall sensitivity measurements improved (RS, p = 0.001; CRS, p &lt; 0.0001; MD, p = 0.03), and the BCEA decreased in dimension, although not significantly (p ≥ 0.05). The mixed model revealed a significantly better effect of inverted ILM-flap combined with cataract surgery on BCVA and CRS in phakic eyes than inverted ILM-flap alone in pseudophakic ones. The regression model revealed a relationship of 6-month BCVA with pre-operative BCVA (β = 0.60, p = 0.02) and RS (β = −0.03, p = 0.01).ConclusionThe inverted ILM-flap technique significantly improved visual acuity and retinal sensitivity after the hMMH closure, particularly when combined with cataract extraction. Pre-operative visual acuity and retinal sensitivity at central 12° may predict post-surgical visual acuity

    Structured reporting for fibrosing lung disease: a model shared by radiologist and pulmonologist

    Get PDF
    Objectives: To apply the Delphi exercise with iterative involvement of radiologists and pulmonologists with the aim of defining a structured reporting template for high-resolution computed tomography (HRCT) of patients with fibrosing lung disease (FLD). Methods: The writing committee selected the HRCT criteria\ue2\u80\u94the Delphi items\ue2\u80\u94for rating from both radiology panelists (RP) and pulmonology panelists (PP). The Delphi items were first rated by RPs as \ue2\u80\u9cessential\ue2\u80\u9d, \ue2\u80\u9coptional\ue2\u80\u9d, or \ue2\u80\u9cnot relevant\ue2\u80\u9d. The items rated \ue2\u80\u9cessential\ue2\u80\u9d by &lt; 80% of the RP were selected for the PP rating. The format of reporting was rated by both RP and PP. Results: A total of 42 RPs and 12 PPs participated to the survey. In both Delphi round 1 and 2, 10/27 (37.7%) items were rated \ue2\u80\u9cessential\ue2\u80\u9d by more than 80% of RP. The remaining 17/27 (63.3%) items were rated by the PP in round 3, with 2/17 items (11.7%) rated \ue2\u80\u9cessential\ue2\u80\u9d by the PP. PP proposed additional items for conclusion domain, which were rated by RPs in the fourth round. Poor consensus was observed for the format of reporting. Conclusions: This study provides a template for structured report of FLD that features essential items as agreed by expert thoracic radiologists and pulmonologists
    corecore