35 research outputs found

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Etude du phénomÚne d'adhésion chez la larve d'hußtre creuse Crassostrea gigas au stade pédivéligÚre

    No full text
    Oysters show a two-phase life cycle: pelagic larvae adhere before metamorphosis into benthic life. Larval adhesion occurs at the pediveliger stage by secretion of a bioadhesive produced by a specialized organ: the foot. The oyster Crassostrea gigas is an organism of economic and ecological importance, and a model for study in marine biology, but the phenomenon of adhesion in the pediveliger larvae is poorly documented. A morphological description of the pediveliger larvae by histology and electron microscopy was performed to describe the glands responsible for the secretion of the adhesive.A predominantly proteinaceous composition of the adhesive was revealed by histochemistry and FTIR spectroscopy. An in silico analysis of available transcriptomic data from C. gigas was made to identify genes probably involved in adhesion. Two proteomic analyses, performed on whole larvae and on the secreted adhesive, characterizing proteins related to biosynthesis and adhesive structure. A collagen-like protein appears to be involved in the adhesive structure of C. gigas. This first approach to the study of the adhesion of C. gigas makes it possible to consider the biotechnological enhancement of the identified molecules. Despite their toxicity, synthetic adhesives dominate the world market. The development of biomimetic adhesives, based on marine bioadhesive strategies could be an alternative, and allowing furthermore bonding in wet condition.Les huĂźtres prĂ©sentent un cycle de vie en deux phases : les larves pĂ©lagiques s’adhĂ©rent avant de se mĂ©tamorphoser pour une vie benthique.L’adhĂ©sion larvaire se fait au stade pĂ©divĂ©ligĂšre par sĂ©crĂ©tion d’un bioadhĂ©sif produit par un organe spĂ©cialisĂ© : le pied. Bien que l’huĂźtre Crassostrea gigas soit un organisme d’importance Ă©conomique et Ă©cologique, et un modĂšle d’étude en biologie marine, le phĂ©nomĂšne d’adhĂ©sion chez la larve pĂ©divĂ©ligĂšre est peu documentĂ©. Une Ă©tude morphologique des larves pĂ©divĂ©ligĂšres par histologie et microscopie Ă©lectronique a Ă©tĂ© rĂ©alisĂ©e, afin de dĂ©crire les glandes responsables de la sĂ©crĂ©tion de l’adhĂ©sif. Une composition majoritairement protĂ©ique de l’adhĂ©sif a Ă©tĂ© rĂ©vĂ©lĂ©e par histochimie et spectroscopie FTIR.Une analyse in silico des donnĂ©es transcriptomiques disponibles chez C. gigas a permis d’identifier des gĂšnes probablement impliquĂ©s dans l’adhĂ©sion.Deux analyses protĂ©omiques, menĂ©es sur les larves entiĂšres et l’adhĂ©sif sĂ©crĂ©tĂ© ont permis de caractĂ©riser des protĂ©ines en lien avec la biosynthĂšse et la structure de l’adhĂ©sif. Une protĂ©ine de type collagĂšne apparaĂźt impliquĂ©e dans la structure de l’adhĂ©sif de C. gigas. Cette premiĂšre approche de l’étude de l’adhĂ©sion de C. gigas, permet d’envisager la valorisation biotechnologique des molĂ©cules identifiĂ©es. Le dĂ©veloppement d’adhĂ©sifs biomimĂ©tiques, Ă©laborĂ©s sur le principe des bioadhĂ©sifs marins, autoriserait le collage en milieu humide, et serait une alternative aux adhĂ©sifs synthĂ©tiques qui malgrĂ© leur toxicitĂ©, dominent le marchĂ© mondial

    Study of the adhesion phenomenon in the Pacific oyster larvae Crassostrea gigas at the pediveliger stage.

    No full text
    Les huĂźtres prĂ©sentent un cycle de vie en deux phases : les larves pĂ©lagiques s’adhĂ©rent avant de se mĂ©tamorphoser pour une vie benthique.L’adhĂ©sion larvaire se fait au stade pĂ©divĂ©ligĂšre par sĂ©crĂ©tion d’un bioadhĂ©sif produit par un organe spĂ©cialisĂ© : le pied. Bien que l’huĂźtre Crassostrea gigas soit un organisme d’importance Ă©conomique et Ă©cologique, et un modĂšle d’étude en biologie marine, le phĂ©nomĂšne d’adhĂ©sion chez la larve pĂ©divĂ©ligĂšre est peu documentĂ©. Une Ă©tude morphologique des larves pĂ©divĂ©ligĂšres par histologie et microscopie Ă©lectronique a Ă©tĂ© rĂ©alisĂ©e, afin de dĂ©crire les glandes responsables de la sĂ©crĂ©tion de l’adhĂ©sif. Une composition majoritairement protĂ©ique de l’adhĂ©sif a Ă©tĂ© rĂ©vĂ©lĂ©e par histochimie et spectroscopie FTIR.Une analyse in silico des donnĂ©es transcriptomiques disponibles chez C. gigas a permis d’identifier des gĂšnes probablement impliquĂ©s dans l’adhĂ©sion.Deux analyses protĂ©omiques, menĂ©es sur les larves entiĂšres et l’adhĂ©sif sĂ©crĂ©tĂ© ont permis de caractĂ©riser des protĂ©ines en lien avec la biosynthĂšse et la structure de l’adhĂ©sif. Une protĂ©ine de type collagĂšne apparaĂźt impliquĂ©e dans la structure de l’adhĂ©sif de C. gigas. Cette premiĂšre approche de l’étude de l’adhĂ©sion de C. gigas, permet d’envisager la valorisation biotechnologique des molĂ©cules identifiĂ©es. Le dĂ©veloppement d’adhĂ©sifs biomimĂ©tiques, Ă©laborĂ©s sur le principe des bioadhĂ©sifs marins, autoriserait le collage en milieu humide, et serait une alternative aux adhĂ©sifs synthĂ©tiques qui malgrĂ© leur toxicitĂ©, dominent le marchĂ© mondial.Oysters show a two-phase life cycle: pelagic larvae adhere before metamorphosis into benthic life. Larval adhesion occurs at the pediveliger stage by secretion of a bioadhesive produced by a specialized organ: the foot. The oyster Crassostrea gigas is an organism of economic and ecological importance, and a model for study in marine biology, but the phenomenon of adhesion in the pediveliger larvae is poorly documented. A morphological description of the pediveliger larvae by histology and electron microscopy was performed to describe the glands responsible for the secretion of the adhesive.A predominantly proteinaceous composition of the adhesive was revealed by histochemistry and FTIR spectroscopy. An in silico analysis of available transcriptomic data from C. gigas was made to identify genes probably involved in adhesion. Two proteomic analyses, performed on whole larvae and on the secreted adhesive, characterizing proteins related to biosynthesis and adhesive structure. A collagen-like protein appears to be involved in the adhesive structure of C. gigas. This first approach to the study of the adhesion of C. gigas makes it possible to consider the biotechnological enhancement of the identified molecules. Despite their toxicity, synthetic adhesives dominate the world market. The development of biomimetic adhesives, based on marine bioadhesive strategies could be an alternative, and allowing furthermore bonding in wet condition

    Enhanced scanning electron microscopy images using muscovite mica, an example with Rhizaria

    No full text
    International audienceMuscovite mica sheets were used as a support to capture scanning electron microscopy pictures of marine biological samples. The physical properties of the cleaved muscovite mica provide a clean background, which greatly reduces the postprocessing of images, thereby enhancing them and resulting in impressive images. We chose siliceous Rhizaria for this investigation due to their morphological diversity and elaborate skeletons

    From Crassostrea gigas oyster larvae adhesion studies to potential biotechnological development of marine adhesives

    No full text
    00000International audienceno abstrac

    In Silico Analysis of Pacific Oyster (Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement

    No full text
    WOS:000459747700197International audienceFollowing their planktonic phase, the larvae of benthic marine organisms must locate a suitable habitat to settle and metamorphose. For oysters, larval adhesion occurs at the pediveliger stage with the secretion of a proteinaceous bioadhesive produced by the foot, a specialized and ephemeral organ. Oyster bioadhesive is highly resistant to proteomic extraction and is only produced in very low quantities, which explains why it has been very little examined in larvae to date. In silico analysis of nucleic acid databases could help to identify genes of interest implicated in settlement. In this work, the publicly available transcriptome of Pacific oyster Crassostrea gigas over its developmental stages was mined to select genes highly expressed at the pediveliger stage. Our analysis revealed 59 sequences potentially implicated in adhesion of C. gigas larvae. Some related proteins contain conserved domains already described in other bioadhesives. We propose a hypothetic composition of C. gigas bioadhesive in which the protein constituent is probably composed of collagen and the von Willebrand Factor domain could play a role in adhesive cohesion. Genes coding for enzymes implicated in DOPA chemistry were also detected, indicating that this modification is also potentially present in the adhesive of pediveliger larvae

    Génération d'images de la Méiofaune à l'aide de StyleGAN2 : Cas des Copepoda

    No full text
    International audienceNous explorons diffĂ©rentes approches hiĂ©rarchiques de transfert d’apprentissage d’un rĂ©seau antagoniste gĂ©nĂ©ratif StyleGAN2 afin de synthĂ©tiser des images de Copepoda. Il s’agit d’un des groupes les plus abondants de la faune aquatique, possĂ©dant peu d’images disponibles publiquement. Ces animaux sont de formidables bio-indicateurs de la pollution ou des changements environnementaux d’un milieu. Deux schĂ©mas d’apprentissage sont proposĂ©s. Le premier consiste Ă  prĂ©-entraĂźner le rĂ©seau avec les donnĂ©es d’un autre spĂ©cimen de mĂȘme rang taxonomique et de faire un transfert d’apprentissage sur les donnĂ©es de l’animal Ă©tudiĂ©. Le deuxiĂšme consiste Ă  prĂ©-entraĂźner le rĂ©seau pour capturer les caractĂ©ristiques communes aux spĂ©cimens d’un rang taxonomique supĂ©rieur, pour enfin affiner le modĂšle au rang taxonomique infĂ©rieur souhaitĂ©.Ces mĂ©thodes visent Ă  profiter des relations qui lient diffĂ©rents rangs taxonomiques. Les modĂšles obtenus sont ensuite Ă©valuĂ©s Ă  l’aide des mĂ©triques FID et KID. Les images gĂ©nĂ©rĂ©es sont prometteuses, montrant des caractĂ©ristiques morphologiques typiques des copĂ©podes. Ces donnĂ©es pourront ensuite ĂȘtre utilisĂ©es pour la formation de futurs taxonomistes et pour le dĂ©veloppement de classifieurs de ces animaux, modĂšles qui nĂ©cessitent un grand nombre d’images pour leur entraĂźnement

    Meiofauna Images Generation Using StyleGAN2: A Case Study of Copepoda

    No full text
    In this work, we propose two StyleGAN2 hierarchical transfer learning approaches in order to generate images of animals belonging to the Copepoda group. Copepods are one of the most represented groups of the aquatic environment, yet only few publicly available images are available. These animals, like other groups of meiofauna, are formidable bio-indicators of environmental changes or pollution of an habitat. The used Copepoda dataset is composed of animals belonging to four orders namely Calanoida, Cyclopoida, Harpacticoida and Siphonostomatoida. Our approaches consists in first training with the available data of all the orders or with the most represented order images before training again with the images of the specimens we wish to synthesise. We evaluate the results using the FID and KID metrics. The synthetic images are promising, showing typical morphological features of Copepods, and could be used by future taxonomists. Generated images could represent a new research object for the creation of meiofauna classifiers, models that require a large number of images for training
    corecore