126 research outputs found

    Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data

    Get PDF
    Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy–galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using ∼100deg2∼100deg2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy–galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h−1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment

    Euclid preparation: XVIII. The NISP photometric system

    Get PDF
    Galaxie

    Functional architecture of Weibel-Palade bodies

    No full text
    Weibel-Palade bodies (WPBs) are elongated secretory organelles specific to endothelial cells that contain von Willebrand factor (VWF) and a variety of other proteins that contribute to inflammation, angiogenesis, and tissue repair. The remarkable architecture of WPBs is because of the unique properties of their major constituent VWF. VWF is stored inside WPBs as tubules, but on its release, forms strikingly long strings that arrest bleeding by recruiting blood platelets to sites of vascular injury. In recent years considerable progress has been made regarding the molecular events that underlie the packaging of VWF multimers into tubules and the processes leading to the formation of elongated WPBs. Mechanisms directing the conversion of tightly packaged VWF tubules into VWF strings on the surface of endothelial cells are starting to be unraveled. Several modes of exocytosis have now been described for WPBs, emphasizing the plasticity of these organelles. WPB exocytosis plays a role in the pathophysiology and treatment of von Willebrand disease and may have impact on common hematologic and cardiovascular disorders. This review summarizes the major advances made on the biogenesis and exocytosis of WPBs and places these recent discoveries in the context of von Willebrand disease. (Blood. 2011; 117(19): 5033-5043)Microscopic imaging and technolog

    von Willebrand factor remodeling during exocytosis from vascular endothelial cells

    No full text
    BACKGROUND In vascular endothelial cells, high molecular weight multimers of von Willebrand factor (VWF) are folded into tubular structures for storage in Weibel-Palade bodies. On stimulation, VWF is secreted and forms strings to induce primary hemostasis. The structural changes composing the transition of stored tubular VWF into secreted unfurled VWF strings are still unresolved even though they are vital for normal hemostasis. The secretory pod is a novel structure that we previously described in endothelial cells. It is formed on stimulation and has been postulated to function as a VWF release site. In this study, we investigated the actual formation of secretory pods and the subsequent remodeling of VWF into strings. METHODS Human umbilical vein endothelial cells were stimulated and studied using various imaging techniques such as live-cell imaging and correlative light and electron microscopy. RESULTS We found by using live-cell imaging that secretory pods are formed through the coalescence of multiple Weibel-Palade bodies without involvement of other large structures. Secreted VWF expelled from secretory pods was found to adopt a globular conformation. We visualized that VWF strings derive from those globular masses of VWF. Flow experiments showed that, on secretion, the globular masses of VWF move to the edge of the cell, where they anchor and generate VWF strings. CONCLUSION On secretion, VWF adopts a globular conformation that remodels into strings after translocation and anchoring at the edge of the cell. This finding reveals new pathophysiological mechanisms that could be affected in patients with von Willebrand disease.Microscopic imaging and technolog

    Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells

    No full text
    Regulated exocytosis of Weibel-Palade bodies (WPBs) is a pivotal mechanism via which vascular endothelial cells initiate repair in response to injury and inflammation. Several pathways have been proposed to enable differential release of bioactive molecules from WPBs under different pathophysiologic conditions. Due to the complexity, many aspects of WPB biogenesis and exocytosis are still poorly understood. Herein, we have investigated the regulated exocytosis of the major WPB constituent, von Willebrand Factor (VWF), which upon its release forms strings of up to several millimeters long that capture circulating platelets and thereby initiate the formation of a haemostatic plug. Using correlative, fluorescence, and electron microscopic imaging techniques, we provide evidence that multigranular exocytosis is an important pathway for VWF release in secretagogue-challenged human umbilical vein endothelial cells. A novel membrane-delimited structure (secretory pod) was identified as the site of WPB coalescence and VWF exocytosis. Clathrin-coated profiles present on the secretory pods suggested remodeling via compensatory membrane retrieval. Small, 30- to 40-nm cytoplasmic vesicles (nanovesicles) mediated the fusion of WPBs with secretory pods. Multigranular exocytosis may facilitate VWF string formation by pooling the content of multiple WPBs. In addition, it may provide a novel mechanism for the differential release of WPB cargo.Microscopic imaging and technolog
    • …
    corecore