247 research outputs found

    Vegetation and the importance of insecticide-treated target siting for control of Glossina fuscipes fuscipes

    Get PDF
    Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets

    Towards an optimal design of target for tsetse control: comparisons of novel targets for the control of palpalis group tsetse in West Africa

    Get PDF
    Background: Tsetse flies of the Palpalis group are the main vectors of sleeping sickness in Africa. Insecticide impregnated targets are one of the most effective tools for control. However, the cost of these devices still represents a constraint to their wider use. The objective was therefore to improve the cost effectiveness of currently used devices. Methodology/Principal Findings: Experiments were performed on three tsetse species, namely Glossina palpalis gambiensis and G. tachinoides in Burkina Faso and G. p. palpalis in Côte d'Ivoire. The 1×1 m2 black blue black target commonly used in W. Africa was used as the standard, and effects of changes in target size, shape, and the use of netting instead of black cloth were measured. Regarding overall target shape, we observed that horizontal targets (i.e. wider than they were high) killed 1.6-5x more G. p. gambiensis and G. tachinoides than vertical ones (i.e. higher than they were wide) (P<0.001). For the three tsetse species including G. p. palpalis, catches were highly correlated with the size of the target. However, beyond the size of 0.75 m, there was no increase in catches. Replacing the black cloth of the target by netting was the most cost efficient for all three species. Conclusion/Significance: Reducing the size of the current 1*1 m black-blue-black target to horizontal designs of around 50 cm and replacing black cloth by netting will improve cost effectiveness six-fold for both G. p. gambiensis and G. tachinoides. Studying the visual responses of tsetse to different designs of target has allowed us to design more cost-effective devices for the effective control of sleeping sickness and animal trypanosomiasis in Africa

    Towards an early warning system for Rhodesian sleeping sickness in savannah areas: man-like traps for tsetse flies

    Get PDF
    Background: In the savannahs of East and Southern Africa, tsetse flies (Glossina spp.) transmit Trypanosoma brucei rhodesiense which causes Rhodesian sleeping sickness, the zoonotic form of human African trypanosomiasis. The flies feed mainly on wild and domestic animals and are usually repelled by humans. However, this innate aversion to humans can be undermined by environmental stresses on tsetse populations, so increasing disease risk. To monitor changes in risk, we need traps designed specifically to quantify the responsiveness of savannah tsetse to humans, but the traps currently available are designed to simulate other hosts. Methodology/Principal Findings: In Zimbabwe, two approaches were made towards developing a man-like trap for savannah tsetse: either modifying an ox-like trap or creating new designs. Tsetse catches from a standard ox-like trap used with and without artificial ox odor were reduced by two men standing nearby, by an average of 34% for Glossina morsitans morsitans and 56% for G. pallidipes, thus giving catches more like those made by hand-nets from men. Sampling by electrocuting devices suggested that the men stopped flies arriving near the trap and discouraged trap-entering responses. Most of human repellence was olfactory, as evidenced by the reduction in catches when the trap was used with the odor of hidden men. Geranyl acetone, known to occur in human odor, and dispensed at 0.2 mg/h, was about as repellent as human odor but not as powerfully repellent as wood smoke. New traps looking and smelling like men gave catches like those from men. Conclusion/Significance: Catches from the completely new man-like traps seem too small to give reliable indices of human repellence. Better indications would be provided by comparing the catches of an ox-like trap either with or without artificial human odor. The chemistry and practical applications of the repellence of human odor and smoke deserve further study

    Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end

    Get PDF
    EB1 is a member of a conserved protein family that localizes to growing microtubule plus ends. EB1 proteins also recruit cell polarity and signaling molecules to microtubule tips. However, the mechanism by which EB1 recognizes cargo is unknown. Here, we have defined a repeat sequence in adenomatous polyposis coli (APC) that binds to EB1's COOH-terminal domain and identified a similar sequence in members of the microtubule actin cross-linking factor (MACF) family of spectraplakins. We show that MACFs directly bind EB1 and exhibit EB1-dependent plus end tracking in vivo. To understand how EB1 recognizes APC and MACFs, we solved the crystal structure of the EB1 COOH-terminal domain. The structure reveals a novel homodimeric fold comprised of a coiled coil and four-helix bundle motif. Mutational analysis reveals that the cargo binding site for MACFs maps to a cluster of conserved residues at the junction between the coiled coil and four-helix bundle. These results provide a structural understanding of how EB1 binds two regulators of microtubule-based cell polarity

    Improving the cost-effectiveness of visual devices for the control of Riverine tsetse flies, the major vectors of Human African Trypanosomiasis

    Get PDF
    Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or insecticide-treated targets. The efficiency of biconical traps (the standard control device), 161 m black targets and small 25625 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina tachinoides and G. palpalis gambiensis (Burkina Faso), G. fuscipes quanzensis (Democratic Republic of Congo), G. f. martinii (Tanzania) and G. f. fuscipes (Kenya). The killing effectiveness (measured as the catch per m2 of cloth) for small targets plus flanking nets is 5.5–15X greater than for 1 m2 targets and 8.6–37.5X greater than for biconical traps. This has important implications for the costs of control of the Riverine group of tsetse vectors of sleeping sickness

    How do tsetse recognise their hosts? The role of shape in the responses of tsetse (Glossina fuscipes and G. palpalis) to artificial hosts

    Get PDF
    Palpalis-group tsetse, particularly the subspecies of Glossina palpalis and G. fuscipes, are the most important transmitters of human African trypanomiasis (HAT), transmitting .95% of cases. Traps and insecticide-treated targets are used to control tsetse but more cost-effective baits might be developed through a better understanding of the fly’s host-seeking behaviour.Electrocuting grids were used to assess the numbers of G. palpalis palpalis and G. fuscipes quanzensis attracted to and landing on square or oblong targets of black cloth varying in size from 0.01 m2 to 1.0 m2. For both species, increasing the size of a square target from 0.01 m2 (dimensions = 0.1 x 0.1 m) to 1.0 m2 (1.0 x 1.0 m) increased the catch ,4x however the numbers of tsetse killed per unit area of target declined with target size suggesting that the most cost efficient targets are not the largest. For G. f. quanzensis, horizontal oblongs, (1 m wide x 0.5 m high) caught, 1.8x more tsetse than vertical ones (0.5 m wide x 1.0 m high) but the opposite applied for G. p. palpalis. Shape preference was consistent over the range of target sizes. For G. p. palpalis square targets caught as many tsetse as the oblong; while the evidence is less strong the same appears to apply to G. f. quanzensis. The results suggest that targets used to control G. p. palpalis and G. f. quanzensis should be square, and that the most cost-effective designs, as judged by the numbers of tsetse caught per area of target, are likely to be in the region of 0.25 x 0.25 m2. The preference of G. p. palpalis for vertical oblongs is unique amongst tsetse species, and it is suggested that this response might be related to its anthropophagic behaviour and hence importance as a vector of HAT

    Pyrethroid treatment of cattle for tsetse control: Reducing its impact on dung fauna

    Get PDF
    Background: African trypansomiases of humans and animals can be controlled by attacking the vectors,various species of tsetse fly. Treatment of cattle with pyrethroids to kill tsetse as they feed is the most cost-effective method. However, such treatments can contaminate cattle dung, thereby killing the fauna which disperse the dung and so play an important role in soil fertility. Hence there is a need to identify cost-effective methods of treating cattle with minimal impact on dung fauna. Methodology/Principal Findings: We used dung beetles to field bioassay the levels of dung contamination following the use of spray and pour-on formulations of deltamethrin, applied to various parts of the body of cattle in Zimbabwe. Results suggested that dung was contaminated by contact with insecticide on the body surface as the cattle defecated, and by ingestion of insecticide as the cattle licked themselves. Death of dung beetles was reduced to negligible levels by using only the spray and applying it to the legs and belly or legs alone, i.e., places where most tsetse feed. Conclusion/Significance: The restricted applications suitable for minimising the impact on dung fauna have the collateral benefits of improving the economy and convenience of cattle treatments for tsetse control. The demonstration of collateral benefits is one of the surest ways of promoting environmentally friendly procedures

    Modeling the Control of Trypanosomiasis Using Trypanocides or Insecticide-Treated Livestock

    Get PDF
    In Uganda, cattle are an important reservoir for Trypanosoma brucei rhodesiense, the causative agent of Rhodesian sleeping sickness (human African trypanosomiasis), transmitted by tsetse flies Glossina fuscipes fuscipes, which feed on cattle, humans, and wild vertebrates, particularly monitor lizards. Trypanosomiasis can be controlled by treating livestock with trypanocides or insecticide – killing parasites or vectors, respectively. Mathematical modeling of trypanosomiasis was used to compare the impact of drug- and insecticide-based interventions on R0 with varying densities of cattle, humans and wild hosts. Intervention impact changes with the number of cattle treated and the proportion of bloodmeals tsetse take from cattle. R0 was always reduced more by treating cattle with insecticide rather than trypanocides. In the absence of wild hosts, the model suggests that control of sleeping sickness (R0<1) could be achieved by treating ∼65% of cattle with trypanocides or ∼20% with insecticide. Required coverage increases as wild mammals provide increasing proportion of tsetse bloodmeals: if 60% of non-human bloodmeals are from wild hosts then all cattle have to be treated with insecticide. Conversely, it is reduced if lizards, which do not harbor trypanosomes, are important hosts and/or if insecticides are used at a scale where tsetse numbers decline

    Optimal strategies for controlling riverine tsetse flies using targets: a modelling study

    Get PDF
    Background: Tsetse flies occur in much of sub-Saharan Africa where they transmit the trypanosomes that cause the diseases of sleeping sickness in humans and nagana in livestock. One of the most economical and effective methods of tsetse control is the use of insecticide-treated screens, called targets, that simulate hosts. Targets have been ~1m2, but recently it was shown that those tsetse that occupy riverine situations, and which are the main vectors of sleeping sickness, respond well to targets only ~0.06m2. The cheapness of these tiny targets suggests the need to reconsider what intensity and duration of target deployments comprise the most cost-effective strategy in various riverine habitats. Methodology/Principal Findings: A deterministic model, written in Excel spreadsheets and managed by Visual Basic for Applications, simulated the births, deaths and movement of tsetse confined to a strip of riverine vegetation composed of segments of habitat in which the tsetse population was either selfsustaining, or not sustainable unless supplemented by immigrants. Results suggested that in many situations the use of tiny targets at high density for just a few months per year would be the most cost-effective strategy for rapidly reducing tsetse densities by the ~90% expected to have a great impact on the incidence of sleeping sickness. Local elimination of tsetse becomes feasible when targets are deployed in isolated situations, or where the only invasion occurs from populations that are not self-sustaining. Conclusion/Significance: Seasonal use of tiny targets deserves field trials. The ability to recognise habitat that contains tsetse populations which are not self-sustaining could improve the planning of all methods of tsetse control, against any species, in riverine, savannah or forest situations. Criteria to assist such recognition are suggested

    Molecular gas in high redshift QSOs

    Get PDF
    We review cm and mm observations of thermal molecular line emission from high redshift QSOs. These observations reveal the massive gas reservoirs (10^{10} to 10^{11} M_sun) required to fuel star formation at high rates. We discuss evidence for active star formation in QSO host galaxies, and we show that these high redshift, FIR-luminous QSOs follow the non-linear trend of increasing L_{FIR}/L'(CO) with increasing L_{FIR}. We conclude with a brief discussion of the recent CO detection of the most distant QSO at z=6.42, and its implications for cosmic reionization.Comment: To appear in: Multiwavelength AGN Surveys, eds. Maiolino and Mujica (World Scientific), 8 page
    • …
    corecore