134 research outputs found

    Optimising targets for tsetse control:Taking a fly’s-eye-view to improve the colour of synthetic fabrics

    Get PDF
    The savannah tsetse flies, Glossina morsitans morsitans and G. pallidipes, are important vectors of Rhodesian human African trypanosomiasis and animal African trypanosomiasis in East and southern Africa. We tested in Zimbabwe whether robust, synthetic fabrics, and innovative fly’s-eye-view approaches to optimise fabric colour, can improve insecticide-treated targets employed for tsetse control. Flies were caught by electrocution at a standard target comprising a 1m x 1m black cotton cloth panel with 1m x 0.5m black polyester net panels on each side. Catches were subdivided by species and sex. Tsetse catches were unaffected by substitution of the black cotton with a blue polyester produced for riverine tsetse targets. Exchanging the net panels for phthalogen blue cotton to simulate the target routinely used in Zimbabwe significantly reduced catches of female G. m. morsitans (mean catch 0.7 times that at standard), with no effect on other tsetse catches. However, significantly greater proportions of the catch were intercepted at the central panel of the Zimbabwe (means 0.47–0.79) versus standard designs (0.11–0.29). We also engineered a new violet polyester cloth using models of tsetse attraction based upon fly photoreceptor responses. With and without odour lure, catches of females of both species at the violet target were significantly greater than those at standard (means 1.5–1.6 times those at standard), and typical blue polyester targets (means 0.9–1.3 times those at standard). Similar effects were observed for males under some combinations of species and odour treatment. The proportions of catch intercepted at the central panel of the violet target (means 0.08–0.18) were intermediate between those at standard and typical blue polyester. Further, the reflectance spectrum of violet polyester was more stable under field conditions than that of black cotton. Our results demonstrate the effectiveness of photoreceptor-based models as a novel means of improving targets to control tsetse and trypanosomiases

    Is the even distribution of insecticide-treated cattle essential for tsetse control? Modelling the impact of baits in heterogeneous environments

    Get PDF
    Background: Eliminating Rhodesian sleeping sickness, the zoonotic form of Human African Trypanosomiasis, can be achieved only through interventions against the vectors, species of tsetse (Glossina). The use of insecticide-treated cattle is the most cost-effective method of controlling tsetse but its impact might be compromised by the patchy distribution of livestock. A deterministic simulation model was used to analyse the effects of spatial heterogeneities in habitat and baits (insecticide-treated cattle and targets) on the distribution and abundance of tsetse. Methodology/Principal Findings: The simulated area comprised an operational block extending 32 km from an area of good habitat from which tsetse might invade. Within the operational block, habitat comprised good areas mixed with poor ones where survival probabilities and population densities were lower. In good habitat, the natural daily mortalities of adults averaged 6.14% for males and 3.07% for females; the population grew 8.46in a year following a 90% reduction in densities of adults and pupae, but expired when the population density of males was reduced to <0.1/km2; daily movement of adults averaged 249 m for males and 367 m for females. Baits were placed throughout the operational area, or patchily to simulate uneven distributions of cattle and targets. Gaps of 2–3 km between baits were inconsequential provided the average imposed mortality per km2 across the entire operational area was maintained. Leaving gaps 5–7 km wide inside an area where baits killed 10% per day delayed effective control by 4–11 years. Corrective measures that put a few baits within the gaps were more effective than deploying extra baits on the edges. Conclusions/Significance: The uneven distribution of cattle within settled areas is unlikely to compromise the impact of insecticide-treated cattle on tsetse. However, where areas of >3 km wide are cattle-free then insecticide-treated targets should be deployed to compensate for the lack of cattle

    Factors Affecting the Propensity of Tsetse Flies to Enter Houses and Attack Humans Inside: Increased Risk of Sleeping Sickness in Warmer Climates

    Get PDF
    Background Sleeping sickness, or human African trypanosomiasis, is caused by two species of Trypanosoma brucei that are transmitted to humans by tsetse flies (Glossina spp.) when these insects take a bloodmeal. It is commonly assumed that humans must enter the normal woodland habitat of the flies to become infected, but recent studies found that tsetse frequently attack humans inside buildings. Factors affecting human/tsetse contact in buildings need identification. Methodology/Principal Findings In Zimbabwe, tsetse were allowed access to a house via an open door. Those in the house at sunset, and those alighting on humans in the house during the day, were caught using hand-nets. Total catches were unaffected by: (i) the presence of humans in the house and at the door, (ii) wood smoke from a fire inside the house or just outside, (iii) open windows, and (iv) chemicals simulating the odor of cattle or of humans. Catches increased about 10-fold with rising ambient temperatures, and during the hottest months the proportion of the total catch that was taken from the humans increased from 5% to 13%. Of the tsetse caught from humans, 62% consisted of female G. morsitans morstans and both sexes of G. pallidipes, i.e., the group of tsetse that normally alight little on humans. Some of the tsetse caught were old enough to be effective vectors. Conclusion/Significance Present results confirm previous suggestions that buildings provide a distinctive and important venue for transmission of sleeping sickness, especially since the normal repellence of humans and smoke seems poorly effective in such places. The importance of the venue would be increased in warmer climates

    Identification of the area sampled by traps: A modelling study with tsetse

    Get PDF
    Background Sampling with traps provides the most common means of investigating the abundance, composition and condition of tsetse populations. It is thus important to know the size of the area from which the samples originate, but that topic is poorly understood. Methods and principal findings The topic was clarified with the aid of a simple deterministic model of the mobility, births and deaths of tsetse. The model assessed how the sampled area changed according to variations in the numbers, arrangement and catching efficiency of traps deployed for different periods in a large block of homogeneous habitat subject to different levels of fly mortality. The greatest impacts on the size of the sampled area are produced by the flies’ mean daily step length and the duration of trapping. There is little effect of trap type. The daily death rate of adult flies is unimportant unless tsetse control measures increase the mortality several times above the low natural rates. Conclusions Formulae for predicting the probability that any given captured fly originated from various areas around the trap are produced. Using a mean daily step length (d) of 395m, typical of a savannah species of tsetse, any fly caught by a single trap in a 5-day trapping period could be regarded, with roughly 95% confidence, as originating from within a distance of 1.3km of the trap that is from an area of 5.3km2

    Vegetation and the importance of insecticide-treated target siting for control of Glossina fuscipes fuscipes

    Get PDF
    Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets

    Big baby, little mother:tsetse flies are exceptions to the juvenile small size principle

    Get PDF
    While across the animal kingdom offspring are born smaller than their parents, notable exceptions exist. Several dipteran species belonging to the Hippoboscoidea superfamily can produce offspring larger than themselves. In this essay, the blood‐feeding tsetse is focused on. It is suggested that the extreme reproductive strategy of this fly is enabled by feeding solely on highly nutritious blood, and producing larval offspring that are soft and malleable. This immense reproductive expenditure may have evolved to avoid competition with other biting flies. Tsetse also transmit blood‐borne parasites that cause the fatal diseases called African trypanosomiases. It is discussed how tsetse life history and reproductive strategy profoundly influence the type of vector control interventions used to reduce fly populations. In closing, it is argued that the unusual life history of tsetse warrants their preservation in the areas where human and animal health is not threatened

    Towards an optimal design of target for tsetse control: comparisons of novel targets for the control of palpalis group tsetse in West Africa

    Get PDF
    Background: Tsetse flies of the Palpalis group are the main vectors of sleeping sickness in Africa. Insecticide impregnated targets are one of the most effective tools for control. However, the cost of these devices still represents a constraint to their wider use. The objective was therefore to improve the cost effectiveness of currently used devices. Methodology/Principal Findings: Experiments were performed on three tsetse species, namely Glossina palpalis gambiensis and G. tachinoides in Burkina Faso and G. p. palpalis in Côte d'Ivoire. The 1×1 m2 black blue black target commonly used in W. Africa was used as the standard, and effects of changes in target size, shape, and the use of netting instead of black cloth were measured. Regarding overall target shape, we observed that horizontal targets (i.e. wider than they were high) killed 1.6-5x more G. p. gambiensis and G. tachinoides than vertical ones (i.e. higher than they were wide) (P<0.001). For the three tsetse species including G. p. palpalis, catches were highly correlated with the size of the target. However, beyond the size of 0.75 m, there was no increase in catches. Replacing the black cloth of the target by netting was the most cost efficient for all three species. Conclusion/Significance: Reducing the size of the current 1*1 m black-blue-black target to horizontal designs of around 50 cm and replacing black cloth by netting will improve cost effectiveness six-fold for both G. p. gambiensis and G. tachinoides. Studying the visual responses of tsetse to different designs of target has allowed us to design more cost-effective devices for the effective control of sleeping sickness and animal trypanosomiasis in Africa

    Big Baby, Little Mother: Tsetse Flies Are Exceptions to the Juvenile Small Size Principle

    Get PDF
    While across the animal kingdom offspring are born smaller than their parents, notable exceptions exist. Several dipteran species belonging to the Hippoboscoidea superfamily can produce offspring larger than themselves. In this essay, the blood-feeding tsetse is focused on. It is suggested that the extreme reproductive strategy of this fly is enabled by feeding solely on highly nutritious blood, and producing larval offspring that are soft and malleable. This immense reproductive expenditure may have evolved to avoid competition with other biting flies. Tsetse also transmit blood-borne parasites that cause the fatal diseases called African trypanosomiases. It is discussed how tsetse life history and reproductive strategy profoundly influence the type of vector control interventions used to reduce fly populations. In closing, it is argued that the unusual life history of tsetse warrants their preservation in the areas where human and animal health is not threatened

    Towards an early warning system for Rhodesian sleeping sickness in savannah areas: man-like traps for tsetse flies

    Get PDF
    Background: In the savannahs of East and Southern Africa, tsetse flies (Glossina spp.) transmit Trypanosoma brucei rhodesiense which causes Rhodesian sleeping sickness, the zoonotic form of human African trypanosomiasis. The flies feed mainly on wild and domestic animals and are usually repelled by humans. However, this innate aversion to humans can be undermined by environmental stresses on tsetse populations, so increasing disease risk. To monitor changes in risk, we need traps designed specifically to quantify the responsiveness of savannah tsetse to humans, but the traps currently available are designed to simulate other hosts. Methodology/Principal Findings: In Zimbabwe, two approaches were made towards developing a man-like trap for savannah tsetse: either modifying an ox-like trap or creating new designs. Tsetse catches from a standard ox-like trap used with and without artificial ox odor were reduced by two men standing nearby, by an average of 34% for Glossina morsitans morsitans and 56% for G. pallidipes, thus giving catches more like those made by hand-nets from men. Sampling by electrocuting devices suggested that the men stopped flies arriving near the trap and discouraged trap-entering responses. Most of human repellence was olfactory, as evidenced by the reduction in catches when the trap was used with the odor of hidden men. Geranyl acetone, known to occur in human odor, and dispensed at 0.2 mg/h, was about as repellent as human odor but not as powerfully repellent as wood smoke. New traps looking and smelling like men gave catches like those from men. Conclusion/Significance: Catches from the completely new man-like traps seem too small to give reliable indices of human repellence. Better indications would be provided by comparing the catches of an ox-like trap either with or without artificial human odor. The chemistry and practical applications of the repellence of human odor and smoke deserve further study

    Modelled impact of Tiny Targets on the distribution and abundance of riverine tsetse

    Get PDF
    Background The insecticide-treated baits known as Tiny Targets are one of the cheapest means of controlling riverine species of tsetse flies, the vectors of the trypanosomes that cause sleeping sickness in humans. Models of the efficacy of these targets deployed near rivers are potentially useful in planning control campaigns and highlighting the principals involved. Methods and principal findings To evaluate the potential of models, we produced a simple non-seasonal model of the births, deaths, mobility and aging of tsetse, and we programmed it to simulate the impact of seven years of target use against the tsetse, Glossina fuscipes fuscipes, in the riverine habitats of NW Uganda. Particular attention was given to demonstrating that the model could explain three matters of interest: (i) good control can be achieved despite the degradation of targets, (ii) local elimination of tsetse is impossible if invasion sources are not tackled, and (iii)with invasion and target degradation it is difficult to detect any effect of control on the age structure of the tsetse population. Conclusions Despite its simplifications, the model can assist planning and teaching, but allowance should be made for any complications due to seasonality and management challenges associated with greater scale
    corecore