80 research outputs found

    Transcripción y estudio preliminar de las causas judiciales seguidas a Josefa Orrego y Tránsito Muchel, parteras

    Get PDF
    In the cases presented here from the end of the XVIIIth century concerning two midwives, one fi nds the action work of the juridical power as a representatives of medical knowledge used against two who have what might be considered traditional knowledge. These cases have received different historical interpretations. A review of these interpretations, as well as current debates, are exhibited next, followed by a transcription of the papers that compose these judicial pieces. The transcription and publication of these documents is to present to investigators, documents that have not received the proper attention in current historical debates.En las causas que se presentan a continuación, seguidas hacia fines del siglo XVIII a dos parteras, se manifiesta la acción del poder judicial como representante del saber médico ilustrado contra dos mujeres poseedoras de saberes calificados como tradicionales. Estas causas han recibido diferentes interpretaciones a partir de tendencias historiográficas y profesionales particulares. Un repaso por dichas interpretaciones, así como las inquietudes que motivan a partir de los debates actuales, son las que se exponen a continuación, seguidas por la transcripción íntegra de las fojas que componen estas piezas judiciales. La transcripción y publicación de estos documentos se orienta a poner ante los ojos de los investigadores importantes documentos que no han recibido la atención debida en los debates historiográficos actuales

    Blood Pressure, Internal Carotid Artery Flow Parameters, and Age-Related White Matter Hyperintensities

    Get PDF
    White matter hyperintensities (WMH) are associated with hypertension. We examined interactions between blood pressure (BP), internal carotid artery (ICA) flow velocity parameters and WMH. We obtained BP measurements from 694 community-dwelling subjects at mean ages 69.6 (±0.8) and again at 72.6 (±0.7) years, plus brain MRI and ICA ultrasound at age 73±1 years. Diastolic and mean BP decreased and pulse pressure increased but systolic BP did not change between 70 and 73 years. Multiple linear regression, corrected for vascular disease and risk factors, showed that WMH at age 73 were associated with history of hypertension (β=0.13, p<0.001) and with BP at age 70 (systolic β=0.08, mean β=0.09, diastolic β=0.08, all p<0.05); similar but attenuated associations were seen for BP at age 73. Lower diastolic BP and higher pulse pressure were associated with higher ICA pulsatility index at age 73 (diastolic BP: standardized β, age 70=−0.24, p<0.001; pulse pressure age 70 β=0.19, p<0.001). WMH were associated with higher ICA pulsatility index (β=0.13, p=0.002) after adjusting for BP and correction for multiple testing. Therefore falling diastolic BP and increased pulse pressure are associated with increased ICA pulsatility index, which in turn is associated with WMH. This suggests that hypertension and WMH may either associate indirectly because hypertension increases arterial stiffness which leads to WMH over time, or co-associate through advancing age and stiffer vessels, or both. Reducing vascular stiffness may reduce WMH progression and should be tested in randomised trials, in addition to testing antihypertensive therapy

    Association of allostatic load with brain structure and cognitive ability in later life

    Get PDF
    AbstractAllostatic load (AL) has been proposed as a general framework for understanding the cumulative effects of life stress on individuals. Despite growing interest in AL, limited research has been conducted on aging samples. We consider the association of AL (operationalized by a range of inflammatory, cardiovascular, and metabolic measures) with a range of brain volume measurements and cognitive ability in a large cohort sample of older adults (n = 658, mean age = 72.5 years, standard deviation = 0.7) using structural equation modeling. AL was significantly inversely associated with total brain volume (range of standardized β = −0.16 to −0.20) and white-matter volume (−0.35 to −0.36) and positively with hippocampal volume (0.10–0.15) but not gray-matter volume (0.04). AL was also significantly inversely associated with general cognitive ability (range β = −0.13 to −0.20), processing speed (−0.20 to −0.22), and knowledge (−0.18 to −0.20) but not memory or nonverbal reasoning. The associations of AL with cognitive abilities were not mediated by these brain volume measures. AL did not predict cognitive change from age 11 to approximately age 73. The findings suggest a link between AL and later life brain health and cognitive functioning

    Progression of white matter disease and cortical thinning are not related in older community-dwelling subjects

    Get PDF
    Background and Purpose— We assessed cross-sectional and longitudinal relationships between whole brain white matter hyperintensity (WMH) volume and regional cortical thickness. Methods— We measured WMH volume and regional cortical thickness on magnetic resonance imaging at ≈73 and ≈76 years in 351 community-dwelling subjects from the Lothian Birth Cohort 1936. We used multiple linear regression to calculate cross-sectional and longitudinal associations between regional cortical thickness and WMH volume controlling for age, sex, Mini Mental State Examination, education, intelligence quotient at age 11, and vascular risk factors. Results— We found cross-sectional associations between WMH volume and cortical thickness within and surrounding the Sylvian fissure at 73 and 76 years (rho=−0.276, Q=0.004). However, we found no significant longitudinal associations between (1) baseline WMH volume and change in cortical thickness; (2) baseline cortical thickness and change in WMH volume; or (3) change in WMH volume and change in cortical thickness. Conclusions— Our results show that WMH volume and cortical thinning both worsen with age and are associated cross-sectionally within and surrounding the Sylvian fissure. However, changes in WMH volume and cortical thinning from 73 to 76 years are not associated longitudinally in these relatively healthy older subjects. The underlying cause(s) of WMH growth and cortical thinning have yet to be fully determined

    Brain volumetric changes and cognitive ageing during the eighth decade of life

    Get PDF
    Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life

    Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?

    Get PDF
    A wide variety of techniques have been developed to homogenize transport equations in multiscale and multiphase systems. This has yielded a rich and diverse field, but has also resulted in the emergence of isolated scientific communities and disconnected bodies of literature. Here, our goal is to bridge the gap between formal multiscale asymptotics and the volume averaging theory. We illustrate the methodologies via a simple example application describing a parabolic transport problem and, in so doing, compare their respective advantages/disadvantages from a practical point of view. This paper is also intended as a pedagogical guide and may be viewed as a tutorial for graduate students as we provide historical context, detail subtle points with great care, and reference many fundamental works

    Trait Conscientiousness and the Personality Meta-Trait Stability are Associated with Regional White Matter Microstructure

    Get PDF
    Establishing the neural bases of individual differences in personality has been an enduring topic of interest. However, while a growing literature has sought to characterize grey matter correlates of personality traits, little attention to date has been focused on regional white matter correlates of personality, especially for the personality traits agreeableness, conscientiousness and openness. To rectify this gap in knowledge we used a large sample (n > 550) of older adults who provided data on both personality (International Personality Item Pool) and white matter tract-specific fractional anisotropy (FA) from diffusion tensor MRI. Results indicated that conscientiousness was associated with greater FA in the left uncinate fasciculus (β = 0.17, P < 0.001). We also examined links between FA and the personality meta-trait ‘stability’, which is defined as the common variance underlying agreeableness, conscientiousness, and neuroticism/emotional stability. We observed an association between left uncinate fasciculus FA and stability (β = 0.27, P < 0.001), which fully accounted for the link between left uncinate fasciculus FA and conscientiousness. In sum, these results provide novel evidence for links between regional white matter microstructure and key traits of human personality, specifically conscientiousness and the meta-trait, stability. Future research is recommended to replicate and address the causal directions of these associations

    Brain iron deposits and lifespan cognitive ability

    Get PDF
    Several studies have reported associations between brain iron deposits and cognitive status, and cardiovascular and neurodegenerative diseases in older individuals, but the mechanisms underlying these associations remain unclear. We explored the associations between regional brain iron deposits and different factors of cognitive ability (fluid intelligence, speed and memory) in a large sample (n = 662) of individuals with a mean age of 73 years. Brain iron deposits in the corpus striatum were extracted automatically. Iron deposits in other parts of the brain (i.e., white matter, thalamus, brainstem and cortex), brain tissue volume and white matter hyperintensities (WMH) were assessed separately and semi-automatically. Overall, 72.8 % of the sample had iron deposits. The total volume of iron deposits had a small but significant negative association with all three cognitive ability factors in later life (mean r = −0.165), but no relation to intelligence in childhood (r = 0.043, p = 0.282). Regression models showed that these iron deposit associations were still present after control for a variety of vascular health factors, and were separable from the association of WMH with cognitive ability. Iron deposits were also associated with cognition across the lifespan, indicating that they are relevant for cognitive ability only at older ages. Iron deposits might be an indicator of small vessel disease that affects the neuronal networks underlying higher cognitive functioning. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11357-015-9837-2) contains supplementary material, which is available to authorized users

    White matter hyperintensities and normal-appearing white matter integrity in the aging brain

    Get PDF
    AbstractWhite matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10−9 m2s−1 (area under curve, 0.982; 95% CI, 0.975–0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe
    corecore