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a b s t r a c t

Allostatic load (AL) has been proposed as a general framework for understanding the cumulative effects
of life stress on individuals. Despite growing interest in AL, limited research has been conducted on aging
samples. We consider the association of AL (operationalized by a range of inflammatory, cardiovascular,
and metabolic measures) with a range of brain volume measurements and cognitive ability in a large
cohort sample of older adults (n ¼ 658, mean age ¼ 72.5 years, standard deviation ¼ 0.7) using structural
equation modeling. AL was significantly inversely associated with total brain volume (range of stan-
dardized b ¼ �0.16 to �0.20) and white-matter volume (�0.35 to �0.36) and positively with hippo-
campal volume (0.10e0.15) but not gray-matter volume (0.04). AL was also significantly inversely
associated with general cognitive ability (range b ¼ �0.13 to �0.20), processing speed (�0.20 to �0.22),
and knowledge (�0.18 to �0.20) but not memory or nonverbal reasoning. The associations of AL with
cognitive abilities were not mediated by these brain volume measures. AL did not predict cognitive
change from age 11 to approximately age 73. The findings suggest a link between AL and later life brain
health and cognitive functioning.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The concept of “allostasis” has played a prominent role in recent
stress research in both human and nonhuman animals. In brief, in-
dividuals are exposed to multiple stressors, both social and envi-
ronmental, which induce a stress response. Allostasis refers to the
process of fluctuating activity of the body’s physiological systems in
response to such stressors (Sterling and Eyer, 1988). The primary
systems of allostasis and the stress response include the neuroen-
docrine, sympathetic nervous, immune, metabolic, cardiovascular,
and hypothalamic-pituitary-adrenal axis (Seplaki et al., 2006).
Common markers of allostatic load (AL) in the applied research
include blood pressure, pulse pressure, heart rate variability, blood
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glucose, body mass index (BMI), high- and low-density lipoproteins
(LDLs), fibrinogen, C-reactive protein (CRP), interleukin-6 (IL-6),
epinephrine, and norepinephrine, to name but a few (see
Karlamangla et al., 2013; Juster et al., 2010). Regular or acute expo-
sure to stressorsmay result in chronic imbalance across 1ormultiple
of these systems, referred to as the “allostatic state.” Over time, the
biological aftermath of allostatic states accumulates, resulting in AL.
AL, therefore, can be thought of as the biological “wear and tear” on
the body as a result of its inability to cope with the stressful stimuli
and events (McEwen and Stellar,1993). Twoprincipal concepts in AL
theory are important with respect to the present study; namely,
cumulative load and the central role played by the brain in allostasis.

As has been noted earlier, AL theoretically represents the accu-
mulated damage of the allostatic process on the body over time.
Therefore, time, in the case of the human life course, development
and aging are important aspects of research into AL. Indeed, many
models of life stress and AL focus on phasic periods of increased
sensitivity to the detrimental effects of stressors in development
(e.g., Del Giudice et al., 2011, Adaptive Calibration Model), whereas
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Descriptive statistics of all study variables (for participants with MMSE scores >25)

Variables n Mean SD Skew Kurtosis

Age (y) 633 72.49 0.72 0.01 �0.86
Brain imaging
ICV (cm3) 633 1450.87 140.35 0.19 �0.33
Total brain volume (cm3) 630 1124.91 106.62 0.24 �0.03
White-matter volume (cm3) 628 496.79 83.07 0.45 0.48
Gray-matter volume (cm3) 629 500.15 71.10 0.18 0.76
Left hippocampal volume (cm3) 619 3.10 0.46 0.55 0.76
Right hippocampal volume (cm3) 619 3.33 0.45 0.35 0.54

Cognitive ability
Logical Memory (immediate recall) WMS-III 633 46.26 10.08 �0.42 0.32
Logical Memory (delayed recall) WMS-III 633 29.25 7.86 �0.51 0.25
Verbal Paired Associates (first recall) WMS-III 625 2.84 2.31 0.61 �0.71
Verbal Paired Associates (second recall) WMS-III 622 6.43 2.08 �1.33 0.83
Spatial Span (forward) WMS-III 632 7.66 1.61 �0.07 �0.45
Spatial Span (backward) WMS-III 631 7.13 1.58 �0.01 �0.32
Verbal Fluency Total Score 632 43.60 12.42 0.29 0.12
National Adult Reading Test 632 34.91 7.75 �0.54 0.00
WTAR 632 41.54 6.45 �0.92 0.68
Simple Reaction Time Mean Score 633 0.27 0.05 1.72 4.59
Choice Reaction Time Mean Score 633 0.64 0.08 0.73 1.17
Inspection Time Total Correct Responses 621 111.66 11.31 �1.02 2.92
Digit Symbol WAIS-IIIUK 632 56.85 11.97 0.18 �0.25
Digit Span (backward) WAIS-IIIUK 633 7.96 2.26 0.31 �0.17
Block Design WAIS-IIIUK 631 34.57 9.96 0.45 0.08
Letter-Number Sequencing WAIS-IIIUK 633 11.14 2.91 0.43 0.35
Matrix Reasoning WAIS-IIIUK 632 13.57 4.86 �0.12 �0.94
Symbol Search WAIS-IIIUK 632 25.01 5.88 �0.26 0.83

AL biomarkers
Fibrinogen 621 3.31 0.58 0.47 0.61
CRP 617 2.90 5.62 9.91 128.85
After log transformation 617 0.16 0.50 0.05 0.24
IL-6 617 2.05 1.80 3.05 12.49

After log transformation 617 0.20 0.29 0.36 1.26
BMI 633 27.80 4.38 0.89 2.24

Triglyceride 630 1.62 0.78 1.11 1.13
HDL 630 1.47 0.43 0.93 1.17
LDL 629 2.94 1.02 0.36 0.29
HbAlc 627 5.73 0.64 2.21 6.51
Mean DBP 631 77.44 9.68 0.20 0.00
Mean SBP 631 147.40 18.56 0.14 0.29

Medications Yes No
Antihypertensive 633 332 301
Anti-inflammatory 633 64 569
Lipid lowering 633 214 419
Insulin 633 8 625
Other diabetes 633 40 593
Any medications 633 559 74

Demographics
Years of education 633 10.84 1.14 0.71 2.31
Childhood SES 577 2.91 0.90 0.19 3.61
Adulthood SES 622 2.35 0.95 0.09 1.99
Sex M F

633 331 302

Key: AL, allostatic load; BMI, body mass index; CRP, C-reactive protein; DBP, diastolic blood pressure; F, female; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein;
ICV, intracranial volume; IL-6, interleukin-6; LDL, low-density lipoprotein; M, male; MMSE, Mini-Mental State Examination; SBP, systolic blood pressure; SD, standard de-
viation; SES, socioeconomic status; WAIS, Wechsler Adult Intelligence Scale; WMS, Wechsler Memory Scale; WTAR, Wechsler Test of Adult Reading.
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the importance of studying the impact of AL in aging has also been
noted (Ganzel et al., 2010; Karlamangla et al., 2002). It is also of
interest to note the overlap between suggested lists of biomarkers
of aging (e.g., Dowd and Goldman, 2006) and markers of AL (e.g.,
Juster et al., 2010).

AL is conceptualizedasa cumulativeprocess.Assuch, it isplausible
to suggest thateven if individuals have lowALduringearlyadulthood,
the passage of time may lead to increased AL in later life. Crimmins
et al. (2003) found, using the National Health and Nutrition Exami-
nation Survey study data, that, whereas AL increased from the 20’s to
the 60’s, levels of AL stabilized during the 70’s and 80’s. However,
caution is required in interpretation of these trends as they are based
on cross-sectional data and, therefore, are likely to partially reflect a
survival effect, whereby those lowest in AL reach older ages.
A number of studies have considered the impact of AL on
mortality (e.g., Goldman et al., 2006; Gruenewald et al., 2006;
Karlamangla et al., 2006; Seeman et al., 2004) and cognitive
and health declines in aging (for a summary, see Juster et al.,
2010, Table 1). With respect to cognitive ability, a recent cross-
sectional study by Karlamangla et al. (2013) using data from a
subset of the Midlife in the United States Study (n ¼ 1076, mean
age ¼ 57 [range, 49e66] years) found that AL significantly
negatively predicted episodic memory score (p < 0.001) and
executive function (p < 0.001) accounting for 4.9% and 7.3% of
the variance, respectively. These results remained significant
after adjusting for covariates. In that study, AL was measured
based on 24 biomarkers taking percentage risk cut points to
produce a single sum score. In a series of analyses using the
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McArthur Studies of Successful Aging, Seeman et al. (1997),
(2001) showed AL, measured by 10 biological markers, signifi-
cantly predicted cognitive decline across 3 (r ¼ �0.08, p < 0.05,
specifically here for memory) and 7 (unstandardized b ¼ �0.58,
p ¼ 0.03) years. In both studies, cognitive ability was assessed by
a sum score of tasks designed to measure language, abstraction,
spatial ability, and memory, with change assessed by including
baseline ability as a covariate.

In a similar series of studies on the Taiwanese Social Environ-
ment and Biomarkers of Aging sample, Seplaki et al. (2006) inves-
tigated AL associations with cognitive ability and using multiple
different quantitative methods. For example, Seplaki et al. (2006)
compared the predictive power of a simple risk sum score of AL
to a grade of membership model score for AL that captures an in-
dividual’s difference from a “low-risk” AL profile based on AL bio-
markers and a cognitive ability score measured by modified
versions of the Rey Auditory Verbal Learning Test and the Digit
Symbol Backward Test. They found that both the sum score and the
grade of membership score significantly and negatively predicted
cognitive ability (p < 0.01 and p < 0.05, respectively). Although not
intended to be exhaustive, these studies highlight the accumulating
evidence that greater AL is associated with lower level and decline
in cognitive ability in aging.

Second, central to theorizing on allostasis and AL has been the
role of the brain as the central mediator of the stress response (for
recent discussions, see Ganzel and Morris, 2011; Ganzel et al., 2010;
McEwen and Gianaros, 2010). In particular, the hippocampus,
amygdala, hypothalamus, and prefrontal cortex have all been pro-
posed as primary locations for both the adaptive and maladaptive
effects of stress responsivity (McEwen and Gianaros, 2010). Much
research has been published exploring the associations among
negative life experiences, stress and related neurochemical expo-
sures, and brain integrity in both younger and older samples. For
example, Ansell et al. (2012) showed that a measure of cumulative
adversity, the cumulative adversity interview, which assesses
stressful life events and perceived stressors, was associated with
reduced gray-matter volumes in a number of brain regions.
Satizabal et al. (2012) found significant associations between IL-6
and CRP (that are regularly used as biomarkers of AL) with brain
white-matter hyperintensities and total gray-matter volume and IL-
6 with hippocampal volumes in a sample of 1841 participants aged
65e80 (mean 72.5) years. Furthermore, as has been noted by
Ganzel et al. (2010), there is an overlap between those regions of
the brain known to be affected by stress and those that undergo
greatest atrophy in aging.

However, despite the central role of the brain in allostasis, the
growing body of research on the impact of AL on cognitive ability in
aging and the well-known associations between brain integrity and
cognitive ability across the life course (for reviews, see Deary et al.,
2010a; Salthouse, 2011), there remains little to no research
exploring the interplay among AL, cognitive functioning, and brain
structure in aging. As such, the primary aim of this study was to
report on such associations in a large generally healthy cohort of
community-dwelling older adults. Specifically, we test whether AL
is associated with general cognitive ability, processing speed, and a
range of brain volume measures in older age. Further, we test
whether brain volume mediates any association of AL with cogni-
tive ability in later life.

2. Methods

2.1. Participants

Participants were drawn from the Lothian Birth Cohort 1936
(LBC1936). The LBC1936 is a longitudinal study of aging comprising
surviving members of the Scottish Mental Survey 1947, who were
resident in the Lothians (the City of Edinburgh and its surrounding
area) at the time of the recruitment. At wave 1 recruitment, 1091
(male ¼ 548 and female ¼ 543) generally healthy participants with
amean age of 69.5 (standard deviation [SD]¼ 0.8) years entered the
study. At wave 2, 866 (male ¼ 448 and female ¼ 418) participants
returned with a mean age of 72.5 (SD ¼ 0.7) years. Further details
can be found in the study protocol papers (see Deary et al., 2007,
2011). Of the 866, 700 underwent brain magnetic resonance im-
aging (MRI), of whom 679 had usable imaging measures for the
present study (Wardlaw et al., 2011). A further 21 participants were
removed who did not have blood examination data. Last, 25 par-
ticipants were removed who scored lower than 26 on the Mini-
Mental State Examination (Folstein et al., 1975). Scores less than
26 have been argued to be indicative of mild cognitive impairment
and which may be indicative of early signs of dementia. This
resulted in a final sample size of 633. With the exception of age 11
cognitive ability and the socioeconomic variables described sub-
sequently, all measures used in the present study were taken from
wave 2 of testing.

2.2. Measures

2.2.1. Allostatic load
The present study is based on 10 biomarkers identified to

represent different contributing factors to AL, namely, fibrinogen,
triglyceride, high-density lipoprotein (HDL) and LDL, from which
total cholesterol and cholesterol-HDL ratio were obtained, glycated
hemoglobin, CRP, IL-6, BMI, and mean systolic blood pressure (SBP)
and diastolic blood pressure (DBP). Blood samples were taken
during participants’ physical examination at wave 2 of testing. In-
formation on the collection of these variables has been reported
previously (Booth et al., 2013a) and is reproduced here in
Supplementary Material E1.

To the best of the authors’ knowledge, all participants were well
at the time of testing, but we cannot rule out imminent or recent
influenza, sinusitis, or other potential short-term causes of raised
inflammatory markers.

2.2.2. Cognitive ability
The suite of the cognitive tests was designed to measure mul-

tiple aspects of cognitive ability known to be important in aging.
They included the Block Design, Matrix Reasoning, Digit Symbol
Coding, Symbol Search, and Letter-Number Sequencing subtests of
the Wechsler Adult Intelligence Scale, Logical Memory (immediate
and delayed recall), Verbal Paired Associates (immediate and
delayed recall), Digit Span (backward), Spatial Span (forward and
backward) subtests of the Wechsler Memory Scale; the National
Adult Reading Test; the Wechsler Test of Adult Reading; verbal
fluency; simple and 4-choice reaction time tasks; and finally an
inspection time task of visual processing efficiency. To test whether
contemporaneous associations between AL and cognitive ability
hold after controlling for prior ability, we also included participants’
cognitive ability scores on the Moray House Test No. 12 from the
Scottish Mental Survey 1947, completed when participants were
aged 11 years. Specific details about each test can be found in the
LBC1936 study protocol (Deary et al., 2007) and in the
Supplementary Material E2.

2.2.3. Image acquisition
Structural MRI data were obtained from a GE Signa Horizon

HDxt 1.5-T clinical scanner (General Electric, Milwaukee, WI, USA)
using a self-shielding gradient set withmaximum gradient strength
of 33 m/Tm and an 8-channel phased-array head coil. The exami-
nation included T2-weighted (T2W) (repetition time [TR]/echo



Fig. 1. Structural model with standardized parameter estimates for general cognitive
ability. Ellipses indicate latent variables where measurement model parameters are
excluded for clarity of presentation. Rectangles indicate observed variables. Italicized
values with dotted paths are nonsignificant. Nonitalicized values are significant at p <

0.05. Abbreviations: AL, allostatic load; g, general cognitive ability; GM, gray-matter
volume; Hipp. L, left-hemisphere hippocampal volume; Hipp. R, right-hemisphere
hippocampal volume; TBV, total brain volume; WM, white-matter volume.
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time [TE] ¼ 11,320/102 ms), T2*W (TR/TE ¼ 940/15 ms), and fluid-
attenuated inversion recoveryeweighted (TR/TE/inversion time ¼
9000/140/2200 ms) axial scans and a high-resolution T1W volume
sequence (TR/TE/inversion time ¼ 9.8/4/500 ms) acquired in the
coronal plane. The full procedure (which also included diffusion-
tensoreMRI measurements not used for the present study) took
approximately 70 minutes for each participant. Wardlaw et al.
(2011) provide all details of the imaging protocol.

2.2.4. Image analyses
All image analyses were performed by trained analysts blinded

to the participant information (see supplementary Material E3).
Intracranial volume (ICV) was defined as including the contents
within the inner skull table with its inferior limit in the axial slice
just superior to the tip of the odontoid peg at the foramen magnum
and superior to the inferior limits of the cerebellar tonsils (Wardlaw
et al., 2011). The ICV, which includes brain tissue, cerebrospinal
fluid (CSF), veins, and dura, was obtained semiautomatically using
the T2*W sequence, with the Object Extraction Tool in Analyze 9.0
(AnalyzeDirect Inc, Mayo Clinic) providing an initial segmentation
that was manually edited to remove erroneous structures.

CSF and white and gray matter were extracted using MCMxxxVI
(Valdés Hernández et al., 2010, 2012). The combination of T2*Wand
fluid-attenuated inversion recovery volumes were used to extract
CSF, and the CSF masks were then subtracted from the ICV to pro-
vide a measure of total brain volume. White-matter masks were
produced by fusing T2Wand T1Wvolumes to give goodwhite- and/
or gray-matter contrast; white-matter hyperintensities were not
included in the white-matter segmentation. Gray-matter masks
were calculated by subtracting the white-matter masks and white-
matter hyperintensity binary masks from the brain tissue masks
created previously.

Hippocampal volumes were acquired from the T1W scans using
the freely available software FSL_FIRST (Patenaude et al., 2011); and
all outputs were visually inspected and manually edited, where
necessary, by a trained image analyst. All volumetric measures were
adjusted for ICV before use in the structural models.

2.2.5. Socioeconomic variables
At testing wave 1, participants provided the following 3 vari-

ables at an interview. First, they noted their number of years of
formal, full-time education. Second, they provided the socioeco-
nomic classification of the occupation held by their father at the
time of their birth in 1936. This was rated on the scale of the
General Register Office’s Census 1951 Classification of Occupations,
which rates occupations on a 5-class scale from the professional
(class I) to unskilled (class V). Third, they provided the socioeco-
nomic classification of the most prestigious job they held before
retirement, rated on the same scale as the father’s occupation,
with one difference: class III was split into manual and
nonmanual occupations (Office of Population Censuses and
Surveys, 1951, 1980).

2.3. Analysis strategy

We applied structural equationmodeling (SEM) first to establish
plausible measurement models for the constructs of interest (AL
and cognitive ability) and to test the proposed associations between
the constructs (see Section 2.3.2). SEM has a number of advantages
over other statistical approaches, and it specifically (i) allows for the
direct modeling of error-free latent constructs of interest and their
associations with other variables in the model, (ii) can handle
multiple data types and non-normality in indicator variables, (iii)
can handle missing data, (iv) is a multivariate approach, and (v)
provides a large number of diagnostic indices for evaluation of the
adequacy of the model. Supplementary Material E4 provides a brief
introduction to SEM.

2.3.1. Measurement models
For both AL and cognitive abilities, we fit confirmatory bifactor

measurement models based on the previous studies on the current
sample (Booth et al., 2013a, 2013b). Booth et al. (2013a) discuss the
benefits of the bifactor model for neuroimaging studies of cognitive
ability (for general discussion, see also Colom and Thompson, 2011;
Reise, 2012). Briefly, the bifactor model characterizes the observed
correlations among variables as being accounted for by a single
general factor and specific factors related to smaller clusters of



Fig. 2. Structural model with standardized parameter estimates for processing speed.
Ellipses indicate latent variables where measurement model parameters are excluded
for clarity of presentation. Rectangles indicate observed variables. Italicized values
with dotted paths are nonsignificant. Nonitalicized values are significant at p < 0.05.
Abbreviations: AL, allostatic load; GM, gray-matter volume; Hipp. L, left-hemisphere
hippocampal volume; Hipp. R, right-hemisphere hippocampal volume; speed, pro-
cessing speed; TBV, total brain volume; WM, white-matter volume.

Fig. 3. Structural model with standardized parameter estimates for knowledge. El-
lipses indicate latent variables where measurement model parameters are excluded for
clarity of presentation. Rectangles indicate observed variables. Italicized values with
dotted paths are nonsignificant. Nonitalicized values are significant at p < 0.05. Ab-
breviations: AL, allostatic load; GM, gray-matter volume; Hipp. L, left-hemisphere
hippocampal volume; Hipp. R, right-hemisphere hippocampal volume; know, knowl-
edge; TBV, total brain volume; WM, white-matter volume.
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variables. As such, the bifactor model partitions variance in the
observed variables into that which is common to all variables and
that which is common to smaller subsets of variables (Reise, 2012).
Importantly, this provides robust estimates for the general latent
factor and estimates of specific factors that are free of variance
associated with the general factor. Thus, bifactor models are
particularly useful when researchers are interested in estimates of a
general factor, here general cognitive ability (g) and AL, and inde-
pendent latent estimates of specific factors, here specific abilities.

Forcognitive abilities,wereestimate themodelpresented inBooth
et al. (2013a) in the current sample. Briefly, 5 latent factors were
estimated: g (loaded by all 18 subtests); processing speed (loaded by
Digit Symbol, simple reaction time, choice reaction time, and Symbol
Search and inspection time); verbal memory (loaded by Logical
Memory and Verbal Paired Associates [immediate and delayed
recall]); nonverbal reasoning (loaded by Matrix Reasoning, Block
Design,Digit Span [backward], Letter-NumberSequencingandSpatial
Span [forward and backward]); and knowledge (loaded by National
Adult Reading Test, Wechsler Test of Adult Reading, and verbal
fluency). All factorswere uncorrelated,meaning the estimates of each
construct were independent. Latent factors were identified by fixing
the variance of the latent factor to 1.0 (Bollen, 1989).

AL has been previously assessed in the current sample using
higher order SEMs (Booth et al., 2013a). We use the same set of



Table 2
Unadjusted Pearson correlations between primary constructs of interest based on pairwise complete observations (only including MMSE scores >25)

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Age 11 IQ d

ALa �0.11** d

General cognitive ability (g)a 0.65*** �0.12** d

Processing speeda 0.04 �0.11** 0.21*** d

Verbal declarative memorya 0.03 0.04 0.14*** �0.17*** d

Knowledgea 0.41*** �0.09* 0.22*** �0.30*** �0.02 d

Nonverbal reasoninga 0.03 0.04 0.17*** 0.08 �0.09* �0.33*** d

Total brain volume 0.08 �0.14*** 0.23*** 0.21*** 0.05 �0.07 0.06 d

White-matter volume 0.07 �0.24*** 0.14*** 0.11** �0.04 0.06 �0.02 0.37*** d

Gray-matter volume �0.03 0.02 0.07 0.11** 0.12** �0.10** 0.07 0.32*** �0.37*** d

Hippocampal volume (L) 0.04 0.10* 0.01 �0.08* 0.10* 0.07 �0.02 0.24*** 0.17*** �0.04 d

Hippocampal volume (R) 0.03 0.09* 0.04 �0.03 0.05 0.04 �0.01 0.25*** 0.21*** �0.01 0.74*** d

Years of education 0.42*** �0.10** 0.45*** �0.05 0.04 0.42*** �0.04 �0.01 0.04 �0.06 �0.01 �0.02 d

Childhood SES 0.17*** 0.04 0.17*** 0.00 �0.05 0.20*** �0.06 0.00 0.11* �0.06 �0.08 �0.01 0.31*** d

Adulthood SES 0.34*** �0.09* 0.35*** 0.02 0.00 0.25*** �0.02 0.05 0.11** �0.03 0.06 0.07 0.41*** 0.19***

***p < 0.001, **p < 0.01, and *p < 0.05.
Key: AL, allostatic load; SD, standard deviation; SES, socioeconomic status; L, left; MMSE, Mini-Mental State Examination; R, right.

a Estimates of these variables were derived using regression-based factor scores from the measurement models estimated in Mplus.
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indicator variables but apply confirmatory bifactor modeling. Four
latent factors were estimated: AL (loaded by all 10 indicators), blood
pressure (loaded by mean DBP and SBP), metabolism (loaded by
triglyceride, HDL, LDL, glycated hemoglobin, and BMI), and
inflammation (loaded by fibrinogen, CRP, and IL-6). As with the
cognitive model, latent variables were identified by fixing their
variance to 1.0, and the latent variables were uncorrelated
(independent).

Booth et al. (2013a) previously found that the measurement of
AL varied across groups dependent on their medication status.
Therefore, medications were classified (by JMS) into anti-
inflammatory, antihypertensive, lipid lowering, insulin, and other
diabetes medications, with medication status defined as taking any
�1 of these medications and tested both the AL and cognitive
ability measurement models for equivalence across medication
status groups.

We use multigroup SEMs to first test for measurement
invariance of the latent variables across groups. Tests of mea-
surement invariance provide a formal test of whether the latent
constructs of interest can be considered equivalent across groups
(Millsap, 2011). If measurement invariance is established, struc-
tural parameters (regression paths among latent variables) can
be meaningfully compared across groups. In multigroup SEM,
this is achieved by testing the decrease in model fit when
parameters are constrained to equality. Collectively, the series of
multigroup models provides a rigorous statistical assessment of
whether a whole-sample analysis is meaningful (for details, see
Supplementary Material E4).

2.3.2. Structural models
A series of models were then tested in which the associa-

tions among AL, cognitive abilities, and brain imaging variables
were estimated. Across all models, we considered whether the
direct association of AL with cognitive abilities was attenuated
by inclusion of the brain imaging variables as mediators. We
also considered the direct associations of AL on total brain,
gray- and white-matter volumes, and hippocampal volumes
(see Figs. 1e3).

2.3.3. Model testing
All models were estimated in Mplus 6.0 (Muthen and Muthen,

2010) using robust maximum-likelihood estimation as a number
of variables had small degrees of skew and kurtosis. Small amounts
of missing data were present (see Table 1, minimum covariance
coverage ¼ 92%). As such, full-information maximum-likelihood
estimation was used, as this is considered to be one of the most
robust methods for dealing with the missing data (Enders, 2010).

Model fit was assessed based on the comparative fit index (CFI),
Tucker-Lewis index (TLI), root-mean-square error of approximation
(RMSEA), and standardized root-mean residual (SRMR). Based on
the extant literature, investigating the performance of model fit
indices (e.g., Schermelleh-Engel et al., 2003), we consider model fit
values>0.95 for the CFI and TLI,<0.05 for the RMSEA, and<0.06 for
the SRMR to be indicative of goodmodel fit. We note, however, that
all cutoffs are to some degree arbitrary (Marsh et al., 2005) but
consider these values to provide reasonable assurance that models
are adequate representations of the data and that parameters can
be substantively interpreted. Input variables for all analyses were
standardized residuals after regressing on age and sex for the
cognitive variables and age, sex, handedness, and ICV for the
volumetric imaging variables. We controlled for ICV to take account
of differences in head size across participants. Controlling for age
may be important in understanding whether the effects of AL in
later life are independent of chronological age.
3. Results

Descriptive statistics for all variables are shown in Table 1. Both
CRP and IL-6 had large skew and kurtosis. As such, and in keeping
with the previous studies, we log transformed these variables. As
can be seen from Table 1, log transformation was successful in
reducing the skew and kurtosis of CRP and IL-6.

The results of the multigroup measurement models suggested
that both the AL model and the cognitive ability model were
invariant across medication status. These findings differ from those
in Booth et al. (2013a), (2013b). These differences are driven by the
difference in model specification (for further details, see
Supplementary Material E5).
3.1. Measurement models

The measurement model for cognitive ability showed good fit to
the data (c2 ¼ 313.02 [114], p < 0.001; CFI ¼ 0.958; TLI ¼ 0.944;
RMSEA ¼ 0.053, 95% confidence interval ¼ 0.046e0.060; and
SRMR ¼ 0.045). The structural diagram is shown in Supplementary
Material E6. The absolute magnitude of the factor loadings for g
were all significant and ranged between 0.23 and 0.64, suggesting
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the general ability factor accounted for between 5.3% and 41.0% of
variance in the subtests.

The measurement model for AL also showed good fit to the data
(c2 ¼ 68.34 [26], p < 0.001; CFI ¼ 0.956; TLI ¼ 0.923; RMSEA ¼
0.051, 95% confidence interval ¼ 0.036e0.066; and SRMR ¼ 0.036).
The structural diagram is shown in Supplementary Material E6. The
factor loadings for the AL latent factor were variable. The loadings
for fibrinogen and SBP and DBP were not significant. The absolute
magnitude of loadings for the remaining biomarkers ranged from
0.30 to 0.57 suggesting between 9.0% and 32.5% of variance is
explained by AL. As such, AL in the present study is primarily
defined by inflammatory and metabolism biomarkers.

3.2. Bivariate correlations

Before conducting the structural analyses, we computed the
simple correlations between the main constructs of interest
(Table 2). AL had small but significant negative associations with
total brain volume, white-matter volume, and bilaterally positively
with hippocampal volume and is also significantly associated with
g, processing speed and knowledge. Age 11 IQ showed a strong
association with g but was also significantly associated with
knowledge (r ¼ 0.40), and to a lesser extent AL (r ¼ �0.11).

3.3. Structural models

All structural models (with and without the inclusion of brain
imaging variables) showed good fit to the data (range CFI ¼
0.939e0.952; range TLI ¼ 0.934e0.942; range RMSEA ¼
0.036e0.041; and range SRMR ¼ 0.044e0.056). We first estimated
the models without brain variables. In these models, the direct
associations of AL with g (standardized b ¼ �0.20, p < 0.01), pro-
cessing speed (b ¼ �0.25, p< 0.01), and knowledge (b ¼ �0.20, p <

0.03) were all significant. The direct associations of AL with verbal
declarative memory and nonverbal reasoning were all
nonsignificant.

Next, we estimated the structural models including the brain
imaging variables. Estimates of the structural parameters for the
full structural models involving g, processing speed, and knowledge
are shown in Figs. 1e3, respectively. AL showed a significant asso-
ciation (Figs. 1e3) with total brain volume (range b ¼ �0.20
to �0.24, all p values < 0.02). There was a significant association of
AL with white-matter volume (range b¼�0.35 to�0.36, p values<
0.01) but not gray matter (all p values > 0.30). AL was associated
significantly with left hippocampal volume (b ¼ 0.14 in all models,
p values < 0.02) but not right hippocampal volume (all p values >
0.05).

Total brain (Fig. 1), white- and gray-matter (Fig. 2), and hippo-
campal (Fig. 3) volumes did not significantly attenuate the associ-
ation between AL and g, processing speed, or knowledge.

Last, we considered the degree of attenuation of the direct effect
of AL on the 3 cognitive ability measures. We compare the magni-
tude of the direct effect from the simple models including only AL
and cognitive variables (discussed earlier) to those that include
brain imaging measures as potential mediators. For g and pro-
cessing speed, the largest attenuations (D ¼ 0.05 and 0.04,
respectively) were in models including gray- and white-matter
volumes, whereas in the models for knowledge, the direct associ-
ation of AL remained largely unchanged in all models (maximum
D ¼ 0.02 in the total brain volume model).

3.4. Controlling for childhood cognitive ability

Next, we considered whether the associations of AL and brain
imaging measures with cognitive abilities remained significant
after controlling for childhood IQ. Prior ability is known to be the
strongest predictor of current ability and, as such, is an important
covariate. Furthermore, inclusion of prior ability allows us to
consider if AL is associated with change in cognitive ability. Spe-
cifically, the residual of a given variable, here cognitive ability, after
regressing out variance associated with this variable from an earlier
point in time, represents the deviation from the mean of the pre-
vious time point or the change over time. Inclusion of age 11 IQ
score as a predictor of AL and later life cognitive ability attenuated
the associations between AL and g (attenuation range D ¼ �0.06
to �0.11 standardized units, all now not significant) and knowledge
(range D ¼ �0.09 to �0.11, all now not significant) and resulted in
nonsignificant direct paths. However, age 11 IQ did not attenuate
the association between AL and processing speed (largest attenu-
ation D ¼ �0.02); in all models, the AL-speed association remained
significant.

3.5. Controlling for socioeconomic variables

Previous results indicate that higher socioeconomic status (SES)
may be protective against AL (e.g., Evans and Kim, 2007; Seeman
et al., 2010). Bivariate correlations (Table 1, lower 3 rows) indi-
cated that the 3 socioeconomic measures used, years of education,
childhood SES, and adulthood SES, had some significant relations to
AL and to the cognitive variables. For these reasons, we reran our
series of models, this time controlling the latent AL variable and the
later-life cognitive ability factor for, first, education, and, second,
both the participant’s SES from childhood and from adulthood.
In the models controlling for education, the relation of AL to g and
to knowledge was attenuated to nonsignificance in all but one
model, which was the model including g and the hippocampus
(range D ¼ 0.07e0.10 standardized units across all 6 models). As in
the models controlling for age 11 IQ, education had no effect on the
significance of the relation between AL and speed, with a mean D¼
0.01 across the 3 models.

In the models controlling for both the SES variables, the
magnitude of the relation of AL to g was still significant in the
models including total brain volume and the hippocampus but not
in the model including white and gray matter (range D¼ 0.01e0.08
across the 3 models). The magnitude of the relation of AL to
knowledge and to speed was reduced to nonsignificance for all
models (range D ¼ 0.01e0.07 across the 6 models). However, the
average magnitude of the attenuation was similar for all models
(mean D ¼ 0.04 for g, 0.05 for knowledge, and 0.06 for speed).

4. Discussion

The current findings suggest that AL is associated with a range of
brain volume measurements in later life, with the strongest effect
seen with white-matter volume. AL is also associated with a
number of dimensions of cognitive ability important in cognitive
aging, specifically general cognitive ability (g), processing speed,
and knowledge. AL at age 73was associated with IQ scores at age 11.
Although these brain volumes are also associated with later-life
cognitive ability, they do not mediate the association between AL
and cognitive ability, suggesting largely independent causes for the
associations between AL and cognitive and brain variables. Finally,
after controlling for childhood cognitive ability, the associations
between AL and g and knowledge became nonsignificant, sug-
gesting that AL was not associated with lifetime cognitive change.
The association between AL and processing speed remained
significant.

The estimates of the associations between AL and various
cognitive abilities relevant to aging (g, processing speed and
knowledge) suggest that as AL increases, individuals’ scores on a



T. Booth et al. / Neurobiology of Aging 36 (2015) 1390e1399 1397
wide variety of cognitive tasks decrease. Importantly, the associa-
tions of AL with processing speed and knowledge are independent
of g because of the application of the bifactor model. The use of the
bifactor model is a major strength of the present study. The ability
to separate variance because of g from variance because of specific
cognitive abilities has been argued to be crucial to our under-
standing of the neuroanatomic underpinnings of cognitive func-
tioning (Booth et al., 2013a, 2013b; Colom and Thompson, 2011).

When we controlled for prior cognitive ability (age 11 IQ score)
or educational duration, the associations of AL with both g and
knowledge mostly became nonsignificant. That is, AL was not
associated with these measures of cognitive change across the life
course. Given that a small (although nonsignificant) effect remains,
the lack of significance after controlling for prior ability or educa-
tionmay reflect a lack of statistical power to detect an association in
the presence of limited cognitive change across the lifespan for the
current sample (see Deary et al., 2013). On the other hand, given
that the prior cognitive ability and education measures reflect
variables from earlier in life, these results may imply that low
childhood cognitive ability or poor educational attainment leads to
higher AL (perhaps via poorer decision-making ability or lower
performance in educational and occupational situations leading to
a more stressful life course), which is an explanation that is in
agreement with other findings in the field of cognitive epidemi-
ology (Deary et al., 2010b), in addition to being associated with
later-life ability. Such a “common-cause” account (Deary, 2012)
would imply that AL had no causal effect on later-life cognitive
ability. Our study was not able to tease apart these different causal
interpretations. Future research, perhaps in samples with repeated
longitudinal measures of AL beginning early in life, could come
closer to understanding the causal direction of the relation, indeed,
possibly the dynamic reciprocal association, between intelligence
and AL through the life course.

The association between AL and processing speed remained
significant after control for age 11 IQ, although it is important to
note that the age 11 IQ measure (Moray House Test) does not assess
processing speed after g has been removed from it (see
Supplementary Material E2) and, as such, would not be expected to
attenuate associations of speed with other variables.

Conversely to the results after age 11 IQ and education controls,
the results after SES controls showed attenuations only of the rela-
tion ofAL to speed andknowledge; theAL to g associations remained
significant for 2of the3models.However, evenafter attenuation, the
AL-speed relation was still not 0 (range b values ¼ �0.13 to 0.17).
Again, these results may be because of a lack of statistical power to
detect smaller effects. Nevertheless, the finding that the AL relation
to speed and knowledge behaved differently than the relation to g
after SES controls warrants further investigation.

Greater AL was associated with lower total brain and white-
matter volumes, but not gray-matter volume, with the strongest
effect seen on white-matter volume. Previous studies have found
localized reductions in gray-matter volume as a result of accumu-
lated adversity and stress (e.g., Ansell et al., 2012). We used only
global measures of gray-matter volume that may be insensitive to
localized effects. Similarly, whereas much of the research into AL,
stress, and brain have implicated the hippocampus as a primary
region of interest, and in the present study, the associations of AL
with hippocampal volume in the left and right hemispheres were
small (b ¼ 0.09e0.14), dependent on the model being estimated
and fluctuated between being significant or nonsignificant at an
alpha level of 0.05. Again, the small effect sizes found in the present
study may be a result of the use of a global measure of volume,
masking more nuanced and specific associations that have been
previously noted in the published literature (e.g., Apolstova et al.,
2012).
Total brain and gray- and white-matter volumes were all
significantly and positively associated with processing speed. Pro-
cessing speed as a factor was defined by better scores on the
speeded psychometric tests and quicker reaction times. As such,
larger brain volumes were predictive of better speed performance.
Importantly, this estimate of speed was independent of variance
because of general cognitive ability. Interestingly, hippocampal
volume in the left hemisphere had a significant negative associa-
tion, suggesting that smaller volumes were associated with better
speed performance. A similar pattern was observable with knowl-
edge; however, the pattern of positive and negative associations
was reversed. Larger left hippocampal volume was significantly
associated with higher scores on knowledge, whereas smaller
volumes for total brain and gray-matter volumes were associated
with higher scores on knowledge. The independence of speed from
general ability could, in principle, be part of the reason why a
number of associations reported here differ from those reported
elsewhere in the published literature.

However, a note of caution is warranted with respect to the
findings of an AL associationwith processing speed and knowledge.
The use of the bifactor model, although advantageous for decom-
posing variance because of general ability and specific abilities,
requires a large number of cognitive tests to provide reliable esti-
mates of the specific ability factors. The reliability of specific factor
estimates can be assessed based on factor determinacies. Low de-
terminacies suggest poorly measured constructs. In the present
study, the determinacies for the specific ability factors were
reasonable (range ¼ 0.70e0.87), but not all were strong (usually
>0.80 is considered to be good). Thus, although our results suggest
some intriguing associations of processing speed and knowledge
with AL and brain volumes, these results will require replication.
However, the estimates remain valuable as few published studies
correctly control for general ability in studying specific factors of
cognitive functioning (see Booth et al., 2013a, 2013b).

Last, and importantly, inclusion of the volumetric measures of
the brain did not fundamentally attenuate the associations between
AL and cognitive ability. Therefore, despite AL being significantly
associated with both current brain volumes and cognitive ability,
the effects of AL on cognitive ability appear independent of brain
volume.

The present study has a number of strengths. We used a large
sample of generally healthy older adults with a wide array of
measurements of cognitive ability, the brain, and AL. Collectively,
this allowed us to model and test within a structural modeling
framework a number of specific hypotheses concerning the asso-
ciations between these constructs. Furthermore, as a birth cohort
sample, we had a natural control for much of the effect of chro-
nological age. As has been noted, research into AL in aging is limited
and a primary area for development (Ganzel et al., 2010), as such
the robust estimates provided in the present study offer significant
contribution to the literature.

There are limitations of the present study. First, the mechanisms
by which AL affects the brain is clearly finer grained than can
reasonably be explored using gross measures of tissue volume. A
large body of research in humans and animals has focussed on
understanding these mechanisms, with recent results suggesting
volumetric changes in gray-matter volume, for example, may be
driven by loss of dendrites (Kassem et al., 2013). However, use of
gross measure of volume can inform with respect to the potential
negative health consequences of AL in later life. We used volumes of
healthy tissue as variables of interest. However, within aging
samples, it is important to note that volumes of healthy tissue are
dependent on the volume of, for example, white-matter hyper-
intensities. That is, if tissue is hyperintense or has undergone at-
rophy, it cannot be healthy, and, therefore, our measures of healthy
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tissues may be proxies for the effects of AL on tissue integrity more
generally.

In the present study, we used 10 biomarkers to assess AL.
Whereas we consider the span of markers available to be suited to
providing a good estimate of AL, we were not able to include
markers of the sympathetic and parasympathetic nervous systems,
known to be important in the stress response. Other biomarkers,
including those involved in the hypothalamic-pituitary-adrenal
axis, have also been included in the AL construct in some previ-
ous research (Seeman et al., 2001), and it would thus be of interest
to test their associations with brain and cognitive measures in
similar models to those tested here. Of particular interest would be
the models including hippocampal volume because hippocampal
structure has been found to be affected by presence of adrenal
glucocorticoids (e.g., McEwen, 2001). In addition, our biomarker
measures were imperfect; for instance, our participants were not
fasting at the time of the lipid measures being taken, potentially
influencing those measurements, particularly LDL and triglyceride,
in unpredictable ways.

In addition, because there are sex differences in the subjective
and objective experience of stress (e.g., Yang and Kozloski, 2011),
future studies with large samples should examine whether sex
moderates the size of the relations among AL, the brain, and
cognitive abilities.

Our sample, although large and age homogenous, was generally
healthy at approximately age 70 when recruited into the study. As
such, it may be possible that the current sample does not include
individuals who would be at the higher end of any measure of AL
across the life course and thus may show the most severe effects of
AL on both cognitive ability and brain volume measures. It is,
therefore, possible that the estimates reported here are un-
derestimates of the true effect size.

Whereas the data used in the present study are rich, and we
were able to include childhood cognitive ability as a covariate in our
models, we were limited with respect to the number of time points
available and thus were unable to fully model the changes in AL
(which is theorized to represent lifetime-accumulated stress but
was only measured at 1 point), brain volume, and cognitive ability
across multiple time points in old age. The inclusion of childhood
cognitive ability provided a proxy for a full analysis of change;
however, there are a number of methodological issues with
assessing change both with only 2 time points and through using
residual methods. However, even if an interpretation of our results
with respect to change is considered problematic, the inclusion of
prior ability as an important covariate and predictor of later life
ability is an obvious strength of the present study. The LBC1936 is
an on-going research study, and future investigations will extend
the results reported here into such longitudinal designs. Finally,
future research using large samples should add to the mediation
models in the present study by also analyzing moderation, asking
whether AL interacts with brain volume to affect cognitive out-
comes. That is, it would be useful to test, in a large study with
suitable power, whether associations with AL differ across the
distribution of brain volume.

A number of the parameters reported in this article have been
previously published by our group. Specifically, Booth et al. (2013b)
reported measurement models of AL using the same marker set as
used here. Booth et al. (2013a), (2013b) reported the bifactor
measurement models for g that were used in the present study.
Royle et al. (2013) reported the associations between total brain and
white- and gray-matter volumes and g in males and females
separately based on an overlapping sample from the LBC1936.
Acknowledging this overlap with prior studies from our group, the
current analysis focuses on the associations of AL as a multisystem
summary of the accumulated effects of life stress, with both brain
volumes and cognitive ability. The models presented test-specific
hypotheses derived from the research literature in a sample
drawn from an aging population, a heavily under-researched pop-
ulation in the AL literature (Ganzel et al., 2010).

The present study is the first to consider AL, cognitive ability,
and neuroimaging measures of a range of brain volume measure-
ments in a large, age-homogeneous sample of older adults. The
results suggest that the cumulative wear and tear on the body from
a lifetime of stress responsivity, AL, is associated with both brain
structure and cognitive ability in later life but not with cognitive
change from childhood to the early 1970s.
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