4 research outputs found

    Le systùme d’observation et de recherche en environnement cîtier de Thau – RECThau

    No full text
    International audienceCe SystĂšme d’Observation (SO) a Ă©tĂ© crĂ©Ă© en 2009 au dĂ©marrage de l’OSUOREME Ă  Montpellier. Il avait le double objectif de 1.structurer et pĂ©renniserdes observations dans la lagune et sur la cĂŽte jusqu’alors ponctuelles voiresporadiques et 2. initier une coordination des diffĂ©rentes observations sur lelittoral languedocien dans l’espace gĂ©ographique de la lagune de Thau afind’engendrer de nouvelles collaborations aussi bien en termes mĂ©thodologiquesque de nouveaux projets de recherche.Depuis 2015, le SO affiche une nouvelle appellation et une nouvellestructuration en trois TĂąches d’Observation (TO) :- la TO du Bassin-Versant de la lagune de Thau (TO BV-Thau) : regroupe lesobservations mĂ©tĂ©o-hydrologiques sur le bassin versant de la lagune de Thau.Ces observations sont mises en place depuis plus de 15 ans sur la VĂšne,principal contributeur du bassin.- la TO de la lagune de Thau (TO Suivi-Thau) : regroupe les observations deparamĂštres mĂ©tĂ©orologiques et de paramĂštres physico-chimiques etbiologiques effectuĂ©es dans la colonne d’eau de la lagune de Thau. Cette TOest en partie en relation avec les expĂ©rimentations effectuĂ©es dans lesmĂ©socosmes in situ de MEDIMEER installĂ©s sur la lagune de Thau,- la TO cĂŽtiĂšre au large de la lagune de Thau et sur le plateau continental enface de la ville de SĂšte (SOMLIT-SĂšte) : regroupe les observations desvariables physico-chimiques et biologiques sous 30 m de fond au large deSĂšte, jusqu’alors dĂ©nommĂ©e Suivi-CĂŽte. Elle a intĂ©grĂ© le rĂ©seau SOMLIT(Service national d’Observation du Milieu LITtoral) en 2015. Les mesures sefont Ă©galement Ă  Haute FrĂ©quence sur la station BESSĂšte et elle est ainsimembre fondateur du rĂ©seau COAST-H

    Data quality control considerations in multivariate environmental monitoring: experience of the French coastal network SOMLIT

    Get PDF
    International audienceIntroduction While crucial to ensuring the production of accurate and high-quality data—and to avoid erroneous conclusions—data quality control (QC) in environmental monitoring datasets is still poorly documented. Methods With a focus on annual inter-laboratory comparison (ILC) exercises performed in the context of the French coastal monitoring SOMLIT network, we share here a pragmatic approach to QC, which allows the calculation of systematic and random errors, measurement uncertainty, and individual performance. After an overview of the different QC actions applied to fulfill requirements for quality and competence, we report equipment, accommodation, design of the ILC exercises, and statistical methodology specially adapted to small environmental networks (<20 laboratories) and multivariate datasets. Finally, the expanded uncertainty of measurement for 20 environmental variables routinely measured by SOMLIT from discrete sampling—including Essential Ocean Variables—is provided. Results, Discussion, Conclusion The examination of the temporal variations (2001–2021) in the repeatability, reproducibility, and trueness of the SOMLIT network over time confirms the essential role of ILC exercises as a tool for the continuous improvement of data quality in environmental monitoring datasets

    Table_1_Data quality control considerations in multivariate environmental monitoring: experience of the French coastal network SOMLIT.xls

    No full text
    IntroductionWhile crucial to ensuring the production of accurate and high-quality data—and to avoid erroneous conclusions—data quality control (QC) in environmental monitoring datasets is still poorly documented.MethodsWith a focus on annual inter-laboratory comparison (ILC) exercises performed in the context of the French coastal monitoring SOMLIT network, we share here a pragmatic approach to QC, which allows the calculation of systematic and random errors, measurement uncertainty, and individual performance. After an overview of the different QC actions applied to fulfill requirements for quality and competence, we report equipment, accommodation, design of the ILC exercises, and statistical methodology specially adapted to small environmental networks (Results, Discussion, ConclusionThe examination of the temporal variations (2001–2021) in the repeatability, reproducibility, and trueness of the SOMLIT network over time confirms the essential role of ILC exercises as a tool for the continuous improvement of data quality in environmental monitoring datasets.</p

    DataSheet_1_Data quality control considerations in multivariate environmental monitoring: experience of the French coastal network SOMLIT.docx

    No full text
    IntroductionWhile crucial to ensuring the production of accurate and high-quality data—and to avoid erroneous conclusions—data quality control (QC) in environmental monitoring datasets is still poorly documented.MethodsWith a focus on annual inter-laboratory comparison (ILC) exercises performed in the context of the French coastal monitoring SOMLIT network, we share here a pragmatic approach to QC, which allows the calculation of systematic and random errors, measurement uncertainty, and individual performance. After an overview of the different QC actions applied to fulfill requirements for quality and competence, we report equipment, accommodation, design of the ILC exercises, and statistical methodology specially adapted to small environmental networks (Results, Discussion, ConclusionThe examination of the temporal variations (2001–2021) in the repeatability, reproducibility, and trueness of the SOMLIT network over time confirms the essential role of ILC exercises as a tool for the continuous improvement of data quality in environmental monitoring datasets.</p
    corecore