50 research outputs found

    Structure-Based Design and Synthesis of Benzothiazole Phosphonate Analogues with Inhibitors of Human ABAD-Aβ for Treatment of Alzheimer’s disease

    Get PDF
    This is the peer reviewed version of the following article: Valasani, K. R., Hu, G., Chaney, M. O. and Yan, S. S. (2013), Structure-Based Design and Synthesis of Benzothiazole Phosphonate Analogues with Inhibitors of Human ABAD-Aβ for Treatment of Alzheimer’s Disease. Chemical Biology & Drug Design, 81: 238–249. doi:10.1111/cbdd.12068, which has been published in final form at http://doi.org/10.1111/cbdd.12068. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Amyloid binding alcohol dehydrogenase (ABAD), a mitochondrial protein, is a cofactor facilitating amyloid-β peptide (Aβ) induced cell stress. Antagonizing Aβ-ABAD interaction protects against aberrant mitochondrial and neuronal function and improves learning memory in the Alzheimer’s disease (AD) mouse model. Therefore, it offers a potential target for Alzheimer’s drug design, by identifying potential inhibitors of Aβ-ABAD interaction. 2D QSAR methods were applied to novel compounds with known IC50 values, which formed a training set. A correlation analysis was carried out comparing the statistics of the measured IC50 with predicted values. These selectivity-determining descriptors were interpreted graphically in terms of principle component analyses, which are highly informative for the lead optimization process with respect to activity enhancement. A 3D pharmacophore model also was created. The 2D QSAR and 3D pharmacophore models will assist in hi-throughput screening. In addition, ADME descriptors were also determined to study their pharmacokinetic properties. Finally, ABAD molecular docking study of these novel molecules was undertaken to determine whether these compounds exhibit significant binding affinity with the binding site. We have synthesized only the compounds that have shown the best drug like properties as candidates for further studies

    Mitochondrial permeability transition pore is a potential drug target for neurodegeneration

    Get PDF
    Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer’s disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocator (ANT). Cyclophilin D (CypD) and reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD

    Identification of human presequence protease (hPreP) agonists for the treatment of Alzheimer’s disease

    Get PDF
    Amyloid-β (Aβ), a neurotoxic peptide, is linked to the onset of Alzheimer’s disease (AD). Increased Aβ content within neuronal cell mitochondria is a pathological feature in both human and mouse models with AD. This accumulation of Aβ within the mitochondrial landscape perpetuates increased free radical production and activation of the apoptotic pathway. Human Presequence Protease (hPreP) is responsible for the degradation of mitochondrial amyloid-β peptide in human neuronal cells, and is thus an attractive target to increase the proteolysis of Aβ. Therefore, it offers a potential target for Alzheimer’s drug design, by identifying potential activators of hPreP. We applied structure-based drug design, combined with experimental methodologies to investigate the ability of various compounds to enhance hPreP proteolytic activity. Compounds 3c & 4c enhanced hPreP-mediated proteolysis of Aβ (1–42), pF1β (2–54) and fluorogenic-substrate V. These results suggest that activation of hPreP by small benzimidazole derivatives provide a promising avenue for AD treatment

    From a Cell’s Viewpoint: Targeting Mitochondria in Alzheimer’s disease

    Get PDF
    Mitochondria are well-known cellular organelles widely studied in relation to a variety of disease states, including Alzheimer’s disease. With roles in several metabolic processes, numerous signal transduction pathways, and overall cell maintenance and survival, mitochondria are essential to understanding the inner workings of cells. As mitochondria are able to be utilized by diverse illnesses to increase the likelihood of disease progression, targeting specific processes in these organelles could provide beneficial therapeutic options

    Mitochondrial permeability transition pore is a potential drug target for neurodegeneration

    Get PDF
    Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer’s disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocator (ANT). Cyclophilin D (CypD) and reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD

    Determination of Small Molecule ABAD Inhibitors Crossing Blood Brain Barrier and Pharmacokinetics

    Get PDF
    A major obstacle to the development of effective treatment of Alzheimer’s disease (AD) is successfully delivery of drugs to the brain. We have previously identified a series of benzothiazole phosphonate compounds that block the interaction of amyloid beta peptide (Aβ) with amyloid-beta binding alcohol dehydrogenase (ABAD). A selective and sensitive method for the presence of three new benzothiazole ABAD inhibitors in mouse plasma, brain and artificial cerebrospinal fluid has been developed and validated based on high performance liquid chromatography tandem mass spectrometry. Mass spectra were generated using Micromass Quattro Ultima “triple” quadrupole mass spectrometer equipped with Electrospray ionization interface. Good linearity was obtained over a concentration range of 0.05–2.5 µg/ml. The lowest limit of quantification and detection was 0.05µg/ml. All inter-day accuracies and precisions were within ±15% of the nominal value and ±20%, respectively, at the lower limit of quantitation. The tested compounds were stable at various conditions with recoveries >90.0 % (RSD<10%). The method used for pharmacokinetic studies of compounds in mouse cerebrospinal fluid, plasma, and brain is accurate, precise, and specific with no matrix effect. Pharmacokinetic data showed these compounds penetrate the blood–brain barrier (BBB) yielding 4–50 ng/ml peak brain concentrations and 2 µg/ml peak plasma concentrations from a 10mg/kg dose. These results indicate that our newly synthesized small molecule ABAD inhibitor have good drug properties with the ability to cross the blood brain barrier, which holds a great potential for AD therapy

    Synthesis and bioactivity of phosphorylated derivatives of stavudine

    Get PDF
    Novel phosphorylated derivatives of stavudine were synthesized by the reaction of bis(2-chloroethyl)phosphoramidic dichloride/4-nitrophenyl phosphorodichloridate with various cyclic amines and amino acid esters in the presence of triethylamine in dry tetrahydrofuran through the corresponding monochloride intermediates 2a-l. Further reaction of the intermediates 2a-l with stavudine in tetrahydrofuran and pyridine in the presence of triethylamine formed the title compounds 4a-l. Their structures were characterized by IR,   1H-, 13C-, 31P-NMR and mass spectral data analyses. They exhibited good antibacterial and antioxidant activities. Their bioactivity was greatly influenced by the different groups present at the phosphorus

    Identification of Human ABAD Inhibitors for Rescuing Aβ-Mediated Mitochondrial Dysfunction

    Get PDF
    Amyloid beta (Aβ) binding alcohol dehydrogenase (ABAD) is a cellular cofactor for promoting (Aβ)-mediated mitochondrial and neuronal dysfunction, and cognitive decline in transgenic Alzheimer's disease (AD) mouse models. Targeting mitochondrial ABAD may represent a novel therapeutic strategy against AD. Here, we report the biological activity of small molecule ABAD inhibitors. Using in vitro surface plasmon resonance (SPR) studies, we synthesized compounds with strong binding affinities for ABAD. Further, these ABAD inhibitors (ABAD-4a and 4b) reduced ABAD enzyme activity and administration of phosphonate derivatives of ABAD inhibitors antagonized calcium-mediated mitochondrial swelling. Importantly, these compounds also abolished Aβ-induced mitochondrial dysfunction as shown by increased cytochrome c oxidase and adenosine-5′-triphosphate levels, suggesting protective mitochondrial function effects of these synthesized compounds. Thus, these compounds are potential candidates for further pharmacologic development to target ABAD to improve mitochondrial function

    A computationally designed binding mode flip leads to a novel class of potent tri-vector cyclophilin inhibitors

    Get PDF
    Cyclophilins (Cyps) are a major family of drug targets that are challenging to prosecute with small molecules because the shallow nature and high degree of conservation of the active site across human isoforms offers limited opportunities for potent and selective inhibition. Herein a computational approach based on molecular dynamics simulations and free energy calculations was combined with biophysical assays and X-ray crystallography to explore a flip in the binding mode of a reported urea-based Cyp inhibitor. This approach enabled access to a distal pocket that is poorly conserved among key Cyp isoforms, and led to the discovery of a new family of sub-micromolar cell-active inhibitors that offer unprecedented opportunities for the development of next-generation drug therapies based on Cyp inhibition. The computational approach is applicable to a broad range of organic functional groups and could prove widely enabling in molecular design

    Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis

    Get PDF
    The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic downregulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for <i>in vivo</i> use
    corecore