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Abstract
Amyloid binding alcohol dehydrogenase (ABAD), a mitochondrial protein, is a cofactor
facilitating amyloid-β peptide (Aβ) induced cell stress. Antagonizing Aβ-ABAD interaction
protects against aberrant mitochondrial and neuronal function and improves learning memory in
the Alzheimer’s disease (AD) mouse model. Therefore, it offers a potential target for Alzheimer’s
drug design, by identifying potential inhibitors of Aβ-ABAD interaction. 2D QSAR methods were
applied to novel compounds with known IC50 values, which formed a training set. A correlation
analysis was carried out comparing the statistics of the measured IC50 with predicted values.
These selectivity-determining descriptors were interpreted graphically in terms of principle
component analyses, which are highly informative for the lead optimization process with respect
to activity enhancement. A 3D pharmacophore model also was created. The 2D QSAR and 3D
pharmacophore models will assist in hi-throughput screening. In addition, ADME descriptors were
also determined to study their pharmacokinetic properties. Finally, ABAD molecular docking
study of these novel molecules was undertaken to determine whether these compounds exhibit
significant binding affinity with the binding site. We have synthesized only the compounds that
have shown the best drug like properties as candidates for further studies.
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Introduction
Alzheimer’s disease (AD) is one of the most common dementias showing slowly
progressive cognitive decline. Alzheimer’s brain is characterized by accumulation of
amyloid beta peptide (Aβ) and the formation of neurofibrillary tangles. Aβ plays a central
role in the development of AD pathology and contributes to neuronal, synaptic, and
cognitive malfunction. Mitochondrial and synaptic dysfunction is an early pathological
feature of AD (1–6). Recent studies have highlighted the significance of mitochondrial Aβ
accumulation and synaptic mitochondrial dysfunction. Aβ progressively accumulates in
synaptic mitochondria and impairs mitochondrial structure and function including
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membrane potential, membrane permeability transition pore, respiration, energy
metabolism, oxidative stress, mitochondrial dynamics, and calcium homeostasis (4, 7–19).
Thus, strategies that suppress/attenuate Aβ-induced mitochondrial toxicity in addition to Aβ
levels in the brain and improve cognitive function are critical for preventing and/or halting
at an early stage of AD.

Amyloid binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme, plays a key role
in mitochondrial dysfunction and in the pathogenesis of AD. This enzyme has attracted
considerable interest because of its ability to interact with Aβ. Importantly, the interaction of
ABAD with Aβ mediates mitochondrial and synaptic dysfunction (9, 20). Antagonizing Aβ-
ABAD interaction with the ABAD decoy peptide that encompasses the amino residues
responsible for Aβ binding to ABAD protects against aberrant mitochondrial and neuronal
function and improves learning memory in AD transgenic mice (9, 17, 20). Furthermore,
interception of Aβ-ABAD interaction also significantly reduces mitochondrial and cerebral
Aβ accumulation (17). These data support that Aβ-ABAD interaction is a potential target of
the drug development for treatment of AD.

In this way, the search for inhibitors of Aβ-ABAD interaction has started and using an
ELISA-based screening assay, frentizole, an FDA-approved immunosuppressive drug, was
identified as a novel inhibitor of Aβ–ABAD interaction. Analyzing the frentizole SAR
studies, we have developed novel benzothiazole ureas with a 30-fold improvement in
potency(21). Recently, AG18051 (1-azepan-1-yl-2-phenyl-2-(4-thioxo-1,4-
dihydropyrazolo[3,4-d]pyrimidin-5-yl)-ethanone) was also identified as a potent inhibitor of
ABAD.(22) However, currently available inhibitors of Aβ-ABAD interaction have the
disadvantages of low solubility, poorly crossing the blood brain barrier (BBB), high toxicity,
and low cell permeability. Current efforts to design Aβ-ABAD inhibitors have been
unsuccessful due largely to poor ADME (Absorption, Distribution, Metabolism and
Excretion) properties. To overcome the limitation of currently available ABAD inhibitors,
we have designed a new class of small molecular inhibitors of Aβ-ABAD interaction via
phosphonate derivatives. The goal of this study is to identify the potential blockers of Aβ-
ABAD interaction as therapeutic targets of AD.

The quantitative structure–activity relationship (QSAR) analysis helps to derive highly
applicable models that allow designing novel and reactive molecules. Any statistical tool
and/or graphical model can predict physicochemical properties to increase the selectivity
and affinity of new compounds.(23) These properties may be measured by a variety of
calculated descriptors, i.e., potential hydrogen bond donors or acceptors, molar refractivity,
hydrophobicity, SlogP. We used descriptors to evaluate the drug-like properties of our
compounds. In this present study, we also applied 2D QSAR and 3D ligand based
pharmacophore methods to predict the inhibitory activity of a test set of compounds by
constructing a model from a training set. For the QSAR model, linearity of the correlation
and root mean square error (RSME) and correlation factor (R2) indicate the robustness of the
model. The accuracy of the pharmacophore model was evaluated by selecting hits from a
test set. Docking studies to ABAD were carried out to determine the binding affinity
differences of our compounds. Reliable models were obtained that provided interesting
information with respect to binding affinity and compound selectivity discrimination.

In our previous work, we have described the synthesis and evaluation of a novel class of
benzothiazole urea derivatives as potent Aβ-ABAD inhibitors.(24) Based on benzothiazole
urea and frentizole structure activities studies, we have designed benzothiazole amino and
frentizole phosphonate derivatives. Molecular docking, QSAR studies and
pharmacokinetics/absorption, distribution, metabolism, and excretion (ADME) prediction
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for any given scaffold of interest are the most popular methods of computer aided drug
design.

With respect to ADME prediction, we have predicted the cell permeability of Caco2 (human
colon adenocarcinoma) cell permeability, MDCK (Madin-Darby canine kidney), human
intestinal absorption, BBB penetration and plasma protein binding. Finally, the compounds
with satisfactory properties were chosen for molecular docking against ABAD protein to
find out whether they are able to bind to the protein and inhibit. The results from the
molecular docking can be used to interpret the efficacy of the novel molecules to inhibit
ABAD and in turn they may be useful as drugs for the treatment and management of AD.
Based on the results of these studies, we have synthesized the compounds that have shown
the best drug-like properties.

Materials and Methods
General procedure for the synthesis of small molecular weight benzothiazole phosphonate
derivatives (Scheme 1)

To a stirred solution of aromatic/heterocyclic aldehydes (2) in 10 mL of toluene, Mg(ClO4)2
(5 mol %) was added. The mixture was stirred magnetically for 10–15 minutes, later
substituted 2-amino benzothiazoles (1) and dimethyl/diethyl phosphite (3) in anhydrous
toluene (5 mL) were added drop-wise with stirring at room temperature for 30 minutes. The
reaction mixture was refluxed with stirring for 5–12 hours. After completion of the reaction,
as determined by TLC (ethyl acetate:hexane), the solvent was removed in a rotary-
evaporator. The reaction mixture was extracted with EtOAc (3 × 10 mL). The combined
EtOAc extracts were dried (Na2SO4) and concentrated under reduced pressure to afford
products 4a-j, which were passed through a column of silica gel and eluted with EtOAc-
hexane (1:1).

General procedure for the synthesis of urea/thiourea phosphonate derivatives (Scheme 2)
A mixture of urea/thiourea (1 mmol) and methyl 5-formyl-2-hydroxybenzoate (2 mmol) in
ethanol (15 mL) was refluxed for the appropriate reaction (TLC) time. The solvent was
evaporated in vacuo and the resulting crude material was purified by chromatography on a
short column of silica gel (EtOAc: petroleum ether, 1:3) and then recrystallized from
ethanol/dichloromethane (4:1) to afford the urea derivatives.

A mixture of urea derivatives (1 mmol), toluene (20 mL), and dimethyl phosphite (DMP)/
diethyl phosphate (DEP) (2 mmol) was heated at 110°C for 15 hours. The solvent was
evaporated in vacuo and the resulting crude material was purified by chromatography on a
short column of silica gel (EtOAc: dichloromethane, 1:3) and then recrystallized from
ethanol (4:1) to afford the target molecules.

Construction of models and Molecular Dynamics of the novel leads (25)
The 3D structure of all ligands were constructed in MOE (Molecular Operating
Environment) working environment and subjected to energy minimization.(26) The Merck
Molecular Force Field (MMFF94x) and parameter set was employed and the related
potential energy terms were enabled for all bonded interactions, Van der Waals interactions,
electrostatic interactions and restraints. The non-bonded cut off value was enabled between
8–10 Ang. The Generalized Born implicit salvation model was enabled. The gradient was
set to 0.05 and force filed partial charges were enabled to calculate during minimization
process. The dynamics simulations were carried out with the initial temperature set to 30K
and increased to a 300K run time temperature. Heat time and cool time were set to 0 pico
seconds. The final stabilized conformations were used for the construction of a local data
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base of present novel leads and chosen to determine 2D and 3D descriptors, including
Lipinski rules that define drug-like properties.

Construction of a 2D QSAR model (25)
The QSAR suite of applications in MOE was used to calculate and analyze the data and
build numerical models of the data for prediction and interpretation purposes. Any QSAR
model for a given set of molecules correlates the activities with properties inherent to each
molecule in the set itself. A database of 45 compounds was used to generate independent
training and test data sets. Initially, the QSAR descriptors SlogP, Density, Molar refractivity,
Molecular weight, atomic polarizability, logP(o/w), logS, Polar surface area, Van der Waals
volume and radius of gyration were calculated for a limited 50 compound training set of
moleculesto determine and select compounds from our larger set with drug-like properties.
A comparison of these descriptors suggested important properties for drug-like compound
selection.

Fitting the experimental data—$PRED_ was chosen as dependent variable and the
remaining descriptors (SlogP_VSA) and xsurf_CW) as independent variables of the
database. A QSAR model was constructed choosing $PRED as activity filed and the
remaining descriptors as model fields. Regression analysis was performed for the training
data set and RMSE and r2 values of the fit were reported. This fit model was saved as the
QSAR model and used for the prediction of activities of compounds of test data set.

Cross-Validating the Model—The above QSAR fit was used for both model validation
and cross validation. This validation procedure will evaluate the predicted activities and the
residuals for the training set molecules. The predicted, residual and Z-score values were
calculated for both model and cross validations.

Graphical Analysis—The predictive ability of the model was assessed using a correlation
plot by plotting the predicted ($PRED) values (X-axis) versus the predicted IC50 activities
(Y-axis). This correlation plot was used to find out the outliers that have a Z-score beyond
the range of 1.5.

Estimation and validation of predicted activities of test set—The QSAR model fit
obtained above was used to evaluate the predicted ($PRED) values of 21 test set
compounds. Regression analysis was performed for the test data set and RMSE and r2

values of the fit were reported.

Pruning the Descriptors—Pruning the descriptors is necessary to select the optimum set
of molecules under consideration. ‘QuaSAR-Contingency,’ a statistical application in MOE
was used to describe the best molecules in the data set. The results were analyzed using
Principle Component Analysis (PCA) and the purpose of which is to reduce the
dimensionality of set of molecular descriptors by linearly transforming the data or defying a
property that would be important to drug design. A Three-dimensional scatter graphical plot
was generated using the first three Principal Components (PCA1, PCA2 and PCA3).

ADMET prediction (27, 28)
Absorption, Distribution, Metabolism, Excretion, & Toxicity (ADMET) properties of the 20
novel compounds were calculated using the preADMET online server (http://
preadmet.bmdrc.org/). The ADMET properties, human intestinal absorption, in vitro Caco-2
cell permeability, in vitro Maden Darby Canine Kidney (MDCK) cell permeability, in vitro
plasma protein binding and in vivo BBB penetration were predicted using this program.
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Molecular Docking (29, 30)
Preparation of ABAD protein—The three-dimensional structure of ABAD was retrieved
from Protein Data Bank (PDB:http://www.rcsb.org/pdb, PDB ID: 1SO8). To relieve any
close contacts, the protein structure was loaded into MOE molecular modeling software and
all the water molecules and hetero atoms were removed and polar hydrogen’s were added.
Protonation of 3D structure was done for all the atoms in implicit solvated environment
(Born salvation model) at a specified temperature of 300K, pH of 7 and with a salt
concentration value of 0.1. A non-bonded cut off value of 8 – 10 Å was applied to the
Leonard-Jones terms. After the protonation, the complete structure was Energy minimized in
MMFF94x force field at a gradient cut off value of 0.05. Molecular dynamics simulations
were carried out at a constant temperature of 300 deg K for a heat time of 10 pico seconds.
The total simulations were carried out for a total period of 10 nano seconds. The time step
was considered as 0.001 and the temperature relaxation time was set to 0.2 pico seconds.
The position, velocity and acceleration were saved per every 0.5 pico seconds.

Prediction of Binding site for Ligands—The binding site for ABAD was predicted
through PDBSum (http://www.ebi.ac.uk/pdbsum/). The protein structural information was
analyzed at PDBSum and its link to Catalytic Site Atlas (CAS) was followed (http://
www.ebi.ac.uk/thornton-srv/databases/cgi-bin/CSA/CSA_Site-_Wrapper.pl?pdb=1so8). The
catalytic site residues were Asn121, Ser155, Tyr168 and Lys172, which were based on the
structure of Trihydroxynaphthalene Reductase (1YBV).

Molecular Docking(31)
The ligand data base generated from the list of all novel ligand molecules was docked into
the specified binding domain of the ABAD receptor. A total of 30 conformations were
generated for each Ligand-Receptor complex and among them, the conformation with least
docking score was considered for further analysis. The interaction of all ligand molecules in
the binding domain cavity was analyzed from ligand interaction study of MOE.(32) The
ligand-receptor complexes were analyzed by both London ΔG free energy approximations
and interaction energies, ΔE.

Results and Discussion
ABAD inhibitor design

A total of 20 compounds were designed, and their capacity to inhibit Aβ–ABAD interaction
was predicted by using, quantitative structure activity relationship studies, preADME
properties, docking studies. The preliminary SAR study indicated that the benzothiazole
amine moiety is required for the inhibition of Aβ–ABAD interaction.

Based on the frentizole SAR study and the previous report, we have developed novel
benzothiazole ureas with a 30-fold improvement in potency;(21) benzothiazole urea and
frentizole analogs provide remarkable enhancements of permeation across biological
membranes and of oral bioavailability. Based on frentizole and benzothiazole urea
derivatives SAR studies, we have designed and synthesized novel small drug molecules as
urea and frentizole phosphonate derivatives (Schemes 1 & Scheme 2), which might have the
capacity to cross the BBB and inhibit Aβ-ABAD interaction. While for frentizole a wide
range of analogues have been prepared and investigated, up to now there are no reports
dealing with derivatives of urea and frentizole phosphonates or their related analogues.
Compounds 1-12 and 16-20 are substituted benzothiazole amines bearing a methoxy- or
fluoro and dimethyl/diethyl phosphonates, substituted aromatic/heterocyclic aldehydes,
respectively. Compounds 13-15 are the urea/thiourea phosphonates moieties. The rational
design of 1-20 had also been strongly supported by known phosphonate prodrugs and
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docking studies showing that Tyr652 and Phe656 play a pivotal role in the ABAD drug
binding, by promoting cation-π, π-π, and hydrophobic interactions with the basic nitrogen
and aromatic rings of drugs. This might confer the capacity to cross the BBB and to inhibit
Aβ-ABAD interaction.

The major novelty of the present approach is the use of a benthiazole phosphonate moiety,
which readily penetrates biological membranes such as the blood-brain barrier (BBB) and
enters the target organ.(33–35) According, phosphate esters are frequently used as a prodrug
strategy, especially for water insoluble compounds, since the phosphate group confers the
following characteristic features to the xenobiotic: 1) decreases the adverse effects of the
drugs, 2) help in readily crossing the blood-brain barrier (BBB) and enters the target organ,
3) increases water solubility and thereby enables delivery of the drug parenterally, 4)
cleavage of the phosphonate carrier/drug entity in vivo provides a hydrophilic, negatively
charged intermediate, which is “locked” in the brain or other organ and which provides
significant and sustained delivery of the active drug species to the target organ, 5) as
phosphonate moiety induces polar nature to the derivatives, bio transformation ( by Phase I
enzymes) is not necessary for drug disposition, thereby reducing drug-drug interaction.(33,
34, 36, 37)

Chemistry
To decrease adverse effects, facilitate passage across the BBB, and increase water solubility,
phosphonate derivatives were synthesized for use as potential inhibitors of Aβ-ABAD
interactions. A series of analogs were synthesized with variations at the aromatic rings and
their linking group. As shown in Scheme 1, various aromatic/heterocyclic aldehydes (2)
were individually mixed with Mg (ClO4)2 (5 mol %) in anhydrous toluene (5 mL). The
mixture was stirred magnetically for 10–15 minutes, after which time substituted
benzothiazole amines (1) and dimethyl/diethyl phosphite (3) in anhydrous toluene (5 mL)
were added dropwise with stirring at room temperature for 30 minutes. The reaction mixture
was refluxed with stirring for 5–12 hours. Herein, we report that Mg (ClO4)2 is an extremely
efficient catalyst for the formation of benthiazole aminophosphonates by a one pot, three-
component reaction of aromatic/heterocyclic aldehydes, substituted benzothiazole amines,
and a dimethyl/diethyl phosphite in dry toluene (Scheme 1). The synthetic route utilized to
make our target “ABAD inhibitors” compounds 4a-4n is shown in Scheme 1.

To determine the best experimental conditions, the reaction of 6-fluorobenthiazole amine,
methyl 5-formyl-2-hydroxybenzoate, and DMP was considered a model (spectral data has
been provided in the supporting information section). The progress of the reaction was
monitored by TLC (ethyl acetate:hexane = 1:4) analysis. After completion of the reaction,
the solvent was removed under reduced pressure. The reaction mixture was extracted with
EtOAc (3×10 mL). The combined EtOAc extracts were dried (Na2SO4) and concentrated
under reduced pressure to afford a white solid, which on passing through a column of silica
gel and on elution with EtOAc-hexane (80:20) afforded compound (4a). The best results
were obtained in the presence of Mg(ClO4)2 at reflux for 6 h, affording the desired methyl
5-((dimethoxyphosphoryl) ((6-fluorobenzo[d]thiazol-2-yl) amino)methyl)-2-
hydroxybenzoate in 81% yield (4a). The remaining reactions were carried out following this
general procedure. On each occasion, the spectral data (IR, NMR, and MS) of prepared
known compounds were identical with those reported in the literature. We have synthesized
few representative examples using DMP, DEP, methoxy, fluoro substituted amines, and
different aromatic/heterocyclic aldehydes, respectively.

The alternative synthetic route for the preparation of, urea/thiourea phosphonates derivatives
uses a mixture of urea/thiourea and methyl 5-formyl-2-hydroxybenzoate in ethanol under
reflux to form an imine intermediate, which is further reacted with dialkyl/aryl phosphates to
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generate the phosphonate derivatives (Scheme 2).(38) The remaining title compounds will
be synthesized for further study Aβ-ABAD interaction to evaluate the inhibitory activity.

A total of 20 compounds have been designed and tested as of date, and their capacity to
inhibit Aβ–ABAD interaction was predicted by using, QSAR and 3D pharmacophore
methods, preADME properties, docking studies and drug-like analysis. A preliminary SAR
through our docking studies of these compounds indicated that the benzothiazole amine
moiety is required for inhibition of Aβ–ABAD interaction. Urea/thiourea compounds 11, 12,
13, 14, 15 and 16 are not quite as effective because their molecular weight is too big.
Substitutions on the benzothiazole ring and phenyl rings dramatically affected potency.
Small electron-withdrawing groups were preferred at the benzothiazole ring with F
particularly favored. Further, compounds with a hydroxyl group at the para position of the
phenyl ring are predicted to more potent.

Molecular dynamics and 2D QSAR study of ligand molecules
The stabilized conformations obtained at the end of the molecular dynamics simulations
were used to construct the molecular compound database. For the entire database, molecular
QSAR descriptors were calculated and graphs were plotted to analyze whether they are in
the optimum range or not. The compounds 11, 12, 13, 14, 15 and 16 are violating the drug
like properties especially with respect to molecular weight (Figures.1 to Fig. 13). The
remaining compounds all show the satisfactory values, which make them behave as good
drugs.

2D QSAR model descriptors

SlogP_VSA(i,p) 2D Subdivided surface areas. Each descriptor in a series is defined to be the sum of the vi over all
atoms i such that pi is in a specified range (a, b)

vsurf_CW(i=1,8)  3D volume capacity descriptors

SlogP  Log of the octanol/water partition coefficient

Density  Molecular mass density

MW/Vol (VDW)  Weight divided by vdw_vol (amu/Å3)

SMR  Molecular refractivity, (including implicit hydrogens)

MW  Molecular weight (including implicit hydrogens) in atomic mass units

TPSA  Total polar surface area

logs  Log of the aqueous solubility (mol/L)

The correlation plot generated form the regression analysis showed a linear relationship
among the training set of 19 compounds (Fig. 14). The model exhibited excellent linearity
[$PRES = 0.9(IC50) + 9.0], with a RMSE = 0.9, R2 = 0.97 and a cross-validated R2 = 0.61.
The reliability of the QSAR model was further established by applying this model on an
independent set of 21 test compounds and its predictive ability was evaluated. The
correlation plot of the test compounds was reasonable and expected based on a limit set of
compounds in the training set. The resultant correlation plot of regression analysis showed a
linear relationship for the final test data set [$PRES = 0.6(IC50) + 54.0], with a RMSE = 0.8,
R2 = 0.6. (Fig 15). As new compound data is added to the training set, we would expect the
accuracy for prediction of our QSAR model to improve (Figures 14 & 15).

Principal Component Analysis
A principal component analysis using the QSAR descriptors showed that the first three PCA
eigenvectors included 63% of the variance. All the data values found to lie in the range of
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−3 to +3, each spot in the plot represents a molecule and color coded by IC50 activity. Most
interestingly the top most active compounds in our data set, as shown in magenta are
isolated at PCA1 = 2 and PCA = 2 (Figure 16). This could provide an addition criterion for
compound selection.

3D Pharmacophore model of ligand molecules (Figure 17)
ADME predictions (39, 40)—ADME properties are important conditions and major parts
of pharmacokinetics. Whatever the compound that is going to be a drug should have the
perfect ADME properties, and then only it will be approved as a drug in clinical tests. The
ADME predictions of present 20 compounds are showing satisfactory results. Among the
20, the compounds 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 19 and 20 are showing well
intestinal absorption and the compounds 12, 13, 15 and 16 are showing moderate absorption.
All of them are showing middle permeability for in vitro Caco-2 cells and low permeability
for in vitro MDCK cells. in vivo blood-brain barrier penetration capacity was predicted to be
having middle absorption to CNS (Central Nervous System) for the compounds 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 17, 18, 19 and 20 where as low absorption to CNS was observed for the
compounds 11, 12, 13, 14, 15 and 16. BBB penetration is a crucial pharmacokinetic property
because CNS-active compounds must pass across it and CNS-inactive compounds must not
pass across it to avoid CNS side effects. Generally the degree of plasma protein binding of
any drug influences not only the drug action but also its disposition and efficacy. Usually,
the drug that is unbound to plasma proteins will be available for diffusion or transport across
cell membranes and finally interacting with the target. Here in with respect to ADME, the
percent of drug bound with plasma proteins was predicted and the compounds 2, 5, 6, 7, 8,
9, 10, 14, 17, 18, 19 and 20 are predicted to bound strongly and the compounds 1, 3, 4, 11,
12, 13, 15 and 16 are predicted to bound weakly to plasma proteins. The predicted ADME
properties and their values are presented in the Table 1.

Molecular Docking
Molecular docking of the 20 novel compounds against ABAD active site revealed that all of
them with better IC50’s showed good interaction with good docking scores dominated by
hydrogen bonding and phosphonate salt-bridge formation with the binding domain of
ABAD. Hydrophobic interactions also were observed to play a contributing role. The least
and highest docking scores were found with the compounds 14 and 16, respectively, but
both of them are not showing satisfactory QSAR descriptions and violating drug like
properties. All of the compounds finally had better interactions (supporting information
document). The residues Ser 155 and Val 156 of ABAD active sites are found to be playing
a predominant role in interaction with all the compounds. Lys 172 is showing arene
interactions, which is because of hydrophobicity of the ring structures with the compounds
4, 6, 11 and 19, which in turn explains strong interaction with the ABAD (Figure 18, 19 &
Table 3 in supplemental file). The docking scores and the bonding information with ABAD
residues are tabulated and shown in Table 2.

Conclusions and Future Directions
From the docking, 2D QSAR and pharmacophore studies, it is concluded that most of these
compounds are reasonable inhibitors of ABAD. The exceptions are compounds 11, 12, 13,
14, 15 and 16 as they are not showing proper drug-like QSAR and satisfactory ADMET
properties. The ligand – complexes generated from molecular docking process suggest that
the molecules are good ABAD inhibitors as they are showing good binding affinity with the
ABAD receptor. This molecular docking study will not be used to screen the molecules that
are having inhibitory activity against ABAD, since it is an inefficient. However, our
demonstration of 2D QSAR and 3D pharmacophore models to predict activity should be
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very useful to screen a huge number of new compounds. We hope to combine these models
to give us greater accuracy in the prediction of active candidates. We would like to point out
that only the most active compounds that we have synthesized are going to be used in
upcoming studies to discover even more potent analogues for the treatment of the Alzheimer
disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ABAD Amyloid binding alcohol dehydrogenase

Aβ amyloid beta

AD Alzheimer’s disease

QSAR quantitative structure–activity relationship

CoMFA comparative molecular field analysis

ADMET absorption, distribution, metabolism and excretion and toxicity

FDA Food and Drug Administration

BBB blood brain barrier

Caco2 human colon adenocarcinoma

MDCK Madin-Darby canine kidney

SAR structure–activity relationship

DMP dimethyl phosphite

DEP diethyl phosphite

SlogP Log of the octanol/water partition coefficient

CNS central nervous system

MOE molecular operating environment

RMSE Root mean square error

PCA Principle Component Analysis

PDB Protein Data Bank

MMFF94x The Merck Molecular Force Field
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Figure 1.
Plot showing the Log of octanol/water partition coefficient of test compounds including
implicit hydrogens (SlogP). This property is an atomic contribution model that calculates
logP from the given structure; i.e., the correct protonation state.
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Figure 2.
Plot showing the Molecular mass density of test compounds (Weight divided by vdw_vol
(amu/Å3)).
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Figure 3.
Plot showing the Molecular refractivity of test compounds (including implicit hydrogens).
This property is an atomic contribution model that assumes the correct protonation state.
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Figure 4.
Plot showing the Molecular weight (including implicit hydrogens) of test compounds in
atomic mass units.
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Figure 5.
Plot showing the Sum of the atomic polarizabilities of test compounds including implicit
hydrogens.
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Figure 6.
Plot showing the log of the octanol/water partition coefficient (logP(o/w)) of test
compounds including implicit hydrogens. This property is calculated from a linear atom type
model with r2 = 0.931 and RMSE=0.393.
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Figure 7.
Plot showing the log of the aqueous solubility (logs) (mol/L) of test compounds. This
property is calculated from an atom contribution linear atom type model.
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Figure 8.
Plot showing the polar surface area (Å2) of test compounds calculated using group
contributions to approximate the polar surface area.
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Figure 9.
Plot showing the van der Waals volume (Å3) of test compounds.
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Figure 10.
Plot showing the Lipinski rule drug like (blue) and violation (black) of test compounds. The
blue colored line with a value of 1 shows the drug likeliness and value of beyond 0 indicates
the Lipinski rule violation. The compounds 11, 12, 13, 14, 15 and 16 are showing violations
of 2 each.
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Figure 11.
Plot showing the radius of gyration of test compounds.
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Figure 12.
Plot showing the count of hydrogen bonds donors in each test compound. All of them
showing a count of less than 5, which is one of the desired properties of Lipinski rule.
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Figure 13.
Plot showing the count of hydrogen bonds acceptors in each test compound. All of them
showing a count of less than 10, except the compounds 12, 13 and 16, which means that
they are violating the desired properties of Lipinski rule.
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Figure 14.
Linear correlation graph comparing a independent test set of measured IC50’s with
predicted values based on the calculated 2D QSAR model. The linearity of the test model is
shown with the values of the error (RMSE) and correlation factor (R2).
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Figure 15.
Linear correlation graph comparing a independent test set of measured IC50’s with
predicted values based on the calculated 2D QSAR model. The linearity of the test model is
shown with the values of the error (RMSE) and correlation factor (R2).
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Figure 16.
PCA plot of the complete set of ABAD compounds. The first three eigenvectors are shown
(PCA1, PCA2 and PCA3), which constituted 63 % of the variance. The spheres indicate the
position of each of the 45 compounds. Based on SlogP a clear separation is observed. Those
compounds with calculated SlogP (<2 ), are shown as magenta spheres) are clustered about
PCA1 = 1, PCA2 = 2, PCA3 = 2). Those spheres in red are calculated >4, and green
designate between these extremes.
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Figure 17.
Showing the resulting pharmacophore model (shown as volume sheres) based on the
activities (IC50) of 20 compounds in the training set. The various pharmacophore sites are
labeled as to the features or properties (H-bond donor, H-bond acceptor, hydrophilic/
aromatic and carboxyl acceptor/anion donor). The 6 top most active ABAD inhibitors from
the test set are overlayed with the pharmacophore model.
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Figure 18.
Binding site for active IC50 compound 1 &2. Compound 1 (left) binding affinity is
contributed to 4 H-bonds to Ser 155 Ala 156 and Arg 116, as shown by the dotted yellow
interactions. Compound 2 (right) binding affinity is contributed to Π-stacking interactions
between Lys 172, Arg 116 and a H-bond to Gln 115.
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Figure 19.
2D Ligand interaction maps of compound 1 (left) compound 2 (right) binding to ABAD.
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Scheme 1.
Representative classes of compounds containing the N-C-P scaffold and selected molecular
targets of ABAD
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Scheme 2.
Alternative synthetic route of urea/thiourea phosphonates derivatives
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Table 2

Molecualr docking interaction of 20 novel compounds against ABAD active site.

a Compound b Docking Score c No. Hydrogen Bonds d Interacting Residues of ABAD

1 −13.203 5 Gln 115, Asn 121, Ser 155, Ala 158, Lys 172

2 −11.741 2 Gln 115, Asp 119

3 −10.757 3 Phe 114, Gln 115, Ser 155

4 −11.160 Arene interaction Lys 172

5 −10.927 2 Ser 155, Val 156

6 −12.043
4 Asn 121, Ser 155, Ser 155, Val 156

Arene interaction Lys 172

7 −11.906 5 Asn 121, Ser 155, Ser 155, Val 156, Lys 172

8 −11.423 4 Ser 155, Val 156, Lys 172, Lys 172

9 −10.727 4 Asn 121, Ser 155, Ser 155, Val 156

10 −11.557 2 Ser 155, Val 156

11 −11.616
2 Gly 95, Ser 155

Arene interaction Lys 172

12 −10.358 1 Glu 160

13 −14.813 2 Lys 172, Glu 160

14 −11.626 -- --

15 −11.785 5 Gln 115, Asp 119, Asn 121, Ser 155, Lys 172

16 −10.190 2 Gln 115, Ser 155

17 −10.623 1 Gln 115

18 −10.695 1 Lys 172

19 −10.990
2 Ser 155, Val 156

Arene interaction Lys 172

20 −12.774 3 Asp 119, Ser 155, Lys 172

a
The novel ABAD inhibitors.

b
Docking scores generated during MOE docking between the novel leads and ABAD binding domain.

c
Number of hydrogen bonds formed between the ABAD binding domain and the novel leads.

d
The interacting active site residues of ABAD protein with the novel inhibitors in the ligand-receptor complex.
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