147 research outputs found

    Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses

    Get PDF
    Staphylococcus aureus can cause a range of diseases, such as osteomyelitis, as well as colonize implanted medical devices. In most instances the organism forms biofilms that not only are resistant to the body's defense mechanisms but also display decreased susceptibilities to antibiotics. In the present study, we have examined the effect of increasing silver contents in phosphate-based glasses to prevent the formation of S. aureus biofilms. Silver was found to be an effective bactericidal agent against S. aureus biofilms, and the rate of silver ion release (0.42 to 1.22 µg·mm–2·h–1) from phosphate-based glass was found to account for the variation in its bactericidal effect. Analysis of biofilms by confocal microscopy indicated that they consisted of an upper layer of viable bacteria together with a layer (20 µm) of nonviable cells on the glass surface. Our results showed that regardless of the silver contents in these glasses (10, 15, or 20 mol%) the silver exists in its +1 oxidation state, which is known to be a highly effective bactericidal agent compared to that of silver in other oxidation states (+2 or +3). Analysis of the glasses by 31P nuclear magnetic resonance imaging and high-energy X-ray diffraction showed that it is the structural rearrangement of the phosphate network that is responsible for the variation in silver ion release and the associated bactericidal effectiveness. Thus, an understanding of the glass structure is important in interpreting the in vitro data and also has important clinical implications for the potential use of the phosphate-based glasses in orthopedic applications to deliver silver ions to combat S. aureus biofilm infections

    Bismuthene nanosheets produced by ionic liquid assisted grinding exfoliation and their use for oxygen reduction reaction

    Get PDF
    We report the simple synthesis of bismuthene nanosheets (BiNS) by ionic liquid assisted grinding exfoliation, followed by size selection sequential centrifugation steps for the first time. The exfoliation process results in the formation of self-assembled spherule-like superstructures with abundant edge sites, which are able to catalyze the oxygen reduction reaction (ORR) via a two-electron pathway, with a higher efficiency than the bulk Bismuth. We rationalize the enhanced ORR activity of the BiNS to: (i) the presence of 1 dimensional topological edge states, which provide strong conduction channels for electron hopping between the bismuth layers and (ii) the more active role of edge sites in facilitating O(2) adsorption and dissociation of O–O bonds compared to the basal plane. The present study provides a pathway for employing 2D topological insulators as a new class of electrocatalysts for clean energy applications

    The cariogenic effect of starch on oral microcosm grown within the dual constant depth film fermenter

    Get PDF
    Evidence on the link between starch intake and caries incidence is conflicting, therefore the cariogenicity of starch compared with sucrose was explored using a dual Constant Depth Film Fermenter (dCDFF) biotic model system. Bovine enamel discs were used as a substrate and the dCDFF was inoculated using human saliva. CDFF units were supplemented with artificial saliva growth media at a constant rate to mimic resting salivary flow rate over 14 days. The CDFF units were exposed to different conditions, 2 % sucrose or 2 % starch 8 times daily and either no additional fluoride or 1450 ppm F- twice daily. Bovine enamel discs were removed at intervals (days 3, 7, 10 and 14) for bacterial enumeration and enamel analysis using Quantitative Light Induced Fluorescence (QLF) and Transverse Microradiography (TMR). Results showed that in the absence of fluoride there was generally no difference in mineral loss between enamel exposed to either sucrose or starch when analysed using TMR and QLF (P > 0.05). In the presence of fluoride by day 14 there was significantly more mineral loss under starch than sucrose when analysed with TMR (P < 0.05). It was confirmed that starch and sucrose are similarly cariogenic within the dCDFF in the absence of fluoride. With the aid of salivary amylase, the bacteria utilise starch to produce an acidic environment similar to that of bacteria exposed to sucrose only. In the presence of fluoride, starch was more cariogenic which may be due to the bacteria producing a more hydrophobic intercellular matrix lowering the penetration of fluoride through the biofilm. This is significant as it indicates that the focus on sugars being the primary cause of caries may need re-evaluating and an increase in focus on carbohydrates is needed as they may be similarly cariogenic as sugars if not more so

    Quantifying the Demineralisation of Enamel Using a Hyperspectral Camera Measuring Fluorescence Loss

    Get PDF
    Background The gold standard for quantifying mineral loss of enamel is transverse microradiography (TMR) and is complimented by the non-destructive quantitative light induced fluorescence (QLF) which measures changes in autofluorescence. Fluorescence loss has been shown to correlate with mineral loss. Building upon the established method, the use of hyperspectral fluorescence imaging (HI) allows the capture of a broader range of wavelengths to quantify fluorescence changes more accurately. Methods Bovine Enamel was demineralised within the dual constant depth film fermenter over 14 days and analysed using TMR, QLF and HI. The mineral change values were compared using Pearson's Correlation Coefficient. Results The analysis showed a statistically significant correlation that was equal between TMR and HI (r = 0.844) and TMR and QLF (r = 0.844), but weaker between QLF and HI (r = 0.811). Conclusions The correlations indicate that HI is a promising valid non-destructive method for quantifying mineral loss from bovine enamel that is as accurate as QLF and complements TMR

    Distance to treatment as a factor for loss to follow up of hepatitis C patients in North East England

    Get PDF
    Background: A large proportion of the 200 000 HCV-infected individuals in the UK are undiagnosed or lost to follow-up. Engaging knowninfected individuals in treatment is essential for elimination. Methods: Using PHE surveillance data and HCV treatment registers from North East of England (NE) treatment centres for 1997–2016, we estimated the number of HCV cases not linked to treatment and the proportion with active infection. We compared distances of treated and untreated cases to treatment services, and assessed the effect of expanding HCV treatment into existing drug and alcohol treatment centres in the NEE on treatment accessibility. Results The odds of being treated was associated with distance to treatment services. Confirmatory results for ~50% were not reported to PHE NE. Overall, 3385 patients reported to PHE NE had no record of treatment; we estimated 1621 of these may have been lost to follow-up after confirmation of active infection. Conclusions: Poor access to healthcare services may contribute to under-diagnosis or loss to follow-up. Expanding HCV treatment delivery into NEE drug and alcohol treatment centres would improve the accessibility of treatment services to people infected with/at risk of HCV. This may increase the proportion receiving treatment and support progress towards elimination

    A CRISPR/Cas9-based multicopy integration system for protein production in Aspergillus niger

    Get PDF
    The filamentous fungus Aspergillus niger is well known for its high protein secretion capacity and a preferred host for homologous and heterologous protein production. To improve the protein production capacity of A. niger even further, a set of dedicated protein production strains was made containing up to ten glucoamylase landing sites (GLSs) at predetermined sites in the genome. These GLSs replace genes encoding enzymes abundantly present or encoding unwanted functions. Each GLS contains the promotor and terminator region of the glucoamylase gene (glaA), one of the highest expressed genes in A. niger. Integrating multiple gene copies, often realized by random integration, is known to boost protein production yields. In our approach the GLSs allow for rapid targeted gene replacement using CRISPR/Cas9-mediated genome editing. By introducing the same or different unique DNA sequences (dubbed KORE sequences) in each GLS and designing Cas9-compatible single guide RNAs, one is able to select at which GLS integration of a target gene occurs. In this way a set of identical strains with different copy numbers of the gene of interest can be easily and rapidly made to compare protein production levels. As an illustration of its potential, we successfully used the expression platform to generate multicopy A. niger strains producing the Penicillium expansum PatE::6xHis protein catalyzing the final step in patulin biosynthesis. The A. niger strain expressing ten copies of the patE::6xHis expression cassette produced about 70 μg/mL PatE protein in the culture medium with a purity just under 90%.</p

    Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass

    Get PDF
    A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control

    Characterisation of phosphate coacervates for potential biomedical applications

    Get PDF
    In this study, amorphous (Na2O)x(CaO)0.50−x(P2O5)0.50·yH2O (where x = ∼0.15 and y = ∼3) samples were prepared by a coacervate method. Thermal analysis showed that two types of water molecules were present in the coacervate structures: one type loosely bound and the other part of the phosphate structure. Structural studies using Fourier transform infrared spectroscopy (FTIR) and X-ray total diffraction revealed the samples to have very similar structures to melt-quenched glasses of comparable composition. Furthermore, no significant structural differences were observed between samples prepared using calcium nitrate as the calcium source or those prepared from calcium chloride. A sample containing ∼1 mol% Ag2O was prepared to test the hypothesis that calcium phosphate coacervate materials could be used as delivery agents for antibacterial ions. This sample exhibited significant antibacterial activity against the bacterium Psuedomonas aeruginosa. FTIR data revealed the silver-doped sample to be structurally akin to the analogous silver-free sample
    • …
    corecore