120 research outputs found

    Influence of Body Position on Cortical Pain-Related Somatosensory Processing: An ERP Study

    Get PDF
    Background: Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation. Methodology/Principal Findings: Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR) or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30 % above pain threshold, 30 % below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40–50 ms) in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls ’ N1 (80–90 ms) had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190–220 ms) was larger in left-central locations of Controls compared with BR group. Conclusions/Significance: Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pai

    Differential activation of the lateral premotor cortex during action observation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain.</p> <p>Results</p> <p>Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex.</p> <p>Conclusions</p> <p>The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.</p

    Prediction of Psilocybin Response in Healthy Volunteers

    Get PDF
    Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin

    Interoception across Modalities: On the Relationship between Cardiac Awareness and the Sensitivity for Gastric Functions

    Get PDF
    The individual sensitivity for ones internal bodily signals (“interoceptive awareness”) has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals (“cardiac awareness”) which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG) and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality

    Interoception in anxiety and depression

    Get PDF
    We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states

    Listening to music reduces eye movements

    Get PDF
    Listening to music can change the way that people visually experience the environment, probably as a result of an inwardly directed shift of attention. We investigated whether this attentional shift can be demonstrated by reduced eye movement activity, and if so, whether that reduction depends on absorption. Participants listened to their preferred music, to unknown neutral music, or to no music while viewing a visual stimulus (a picture or a film clip). Preference and absorption were significantly higher for the preferred music than for the unknown music. Participants exhibited longer fixations, fewer saccades, and more blinks when they listened to music than when they sat in silence. However, no differences emerged between the preferred music condition and the neutral music condition. Thus, music significantly reduces eye movement activity, but an attentional shift from the outer to the inner world (i.e., to the emotions and memories evoked by the music) emerged as only one potential explanation. Other explanations, such as a shift of attention from visual to auditory input, are discussed

    Latent Inhibition in Human Pavlovian Differential Conditioning - Effect of Additional Stimulation After Preexposure and Relation to Schizotypal Traits

    No full text
    Latent inhibition has been defined as the retardation of Pavlovian conditioning due to conditioned stimulus (CS) preexposure. The present study investigated (1) the effect of additional stimulation signalling the shift from preexposure to acquisition, and (2) the relationship between "schizotypal traits" and latent inhibition in human electrodermal conditioning. Three groups (48 subjects) were presented with 20 preexposure, 8 acquisition, and 8 extinction trials in a differential conditioning paradigm. One group received different stimuli during preexposure and acquisition, whereas the remaining groups (SAME, SAME + S) received the same stimuli throughout the experiment. In group SAME + S, an additional signal was presented at the end of the preexposure phase. Latent inhibition was evident in electrodermal first interval response conditioning during acquisition and second interval response conditioning during acquisition and extinction. Contrary to results from animal research, latent inhibition was not disrupted by the additional signal in group SAME + S. A covariation of schizotypal traits and latent inhibition was detected in both groups preexposed to the CSs. During acquisition, latent inhibition of electrodermal first interval response conditioning was evident in subjects scoring low in "schizotypy", but not in high scorers. The latter results replicate previous findings obtained from a different latent inhibition paradigm

    Reaction-Time Task as Unconditional Stimulus - On Conditioning Skin-Conductance Responses and Heart-Rate, Using a Nonaversive Unconditional Stimulus

    No full text
    The present study was conducted to demonstrate classic conditioning in electrodermal (ED) and heart rate (HR) responses by using a nonaversive reaction time (RT) task as unconditional stimulus (US). Three groups of 12 subjects each were studied to test the efficacy of this US procedure by varying the essential components of the RT task-US between groups. Eight seconds differential delay conditioning was applied in each group. Simple geometric features (square, cross) displayed on a TV screen were used as CS+ and CS-. RT task consisted of a nonaversive tone (72 dBA, 1000 or 1200 Hz) and a motor response (pressing a button with the left index finger). Subjects were asked to respond as soon as the tone stimulus was presented. The three groups received different stimulus sequences during the 16-trial acquisition phase only. In one group (Group C1), CS+ was followed by a tone to which subjects were to respond, whereas CS- was not followed by a tone. Similarly, in a second group (Group H), CS+ was followed by a tone, whereas CS- was not; however, subjects of Group H (habituation group) were not required to respond to the tone. In a third group, (Group C2) CS+ was followed by a tone to which subjects were to respond, while CS- was followed by a different tone requiring no response. According to analysis of Group C1 data, differential conditioning was obtained in each response measure. Group H displayed habituation in each response measure obtained. In Group C2, differential conditioning was obtained in the second latency window of ED responses only. In all trials, first-interval anticipatory ED responses and HR responses did occur during acquisition, but were not differentiated with respect to the CS conditions. Although the results of Group C2 need further exploration, differential conditioning of HR and in all latency windows of ED responses was demonstrated by the use of a nonaversive RT task as US

    Reaction-Time-Task as Unconditional Stimulus - Comparing Aversive and Nonaversive Unconditional Stimuli

    No full text
    Nonaversive unconditional stimuli (USs) are seldom used in human classic conditioning of autonomic responses. One major objection to their use is that they produce deficits in electrodermal (ED) second- and third-interval response conditioning. However, a nonaversive reaction time (RT) task that includes feedback of success has been shown to be an effective US while avoiding this disadvantage (Lipp and Vaitl 1988). The present study compared this new RT task (RT-new) with a traditional RT task (RT-old) and with a standard aversive US (shock) in differential classic conditioning of ED, heart rate (HR), and digital pulse volume (DPV) responses. Eight-second-delay differential conditioning was applied in three groups of 12 subjects each. Simple geometric features (square, cross) displayed on a television screen served as conditional stimuli (CS and CS). In acquisition, there were no statistically significant differences among the groups; differential conditioning did occur in HR, first- and second-interval ED responses, and first-interval DPV responses. Separate analyses within each group, however, revealed that there was no second-interval ED conditioning in the RT-old group. During extinction, neither DPV nor second-interval ED conditioning could be obtained, whereas HR and first-interval ED conditioning occurred in each group. In third-interval omission ED responses, RT-old and shock groups exhibited extinction, while response differentiation was maintained in the RT-new group throughout extinction. The RT task including feedback proved to be as reliable a US as a standard aversive US, whereas application of a traditional RT task again yielded some weaknesses in second-interval ED conditioning
    corecore