261 research outputs found

    Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils

    Get PDF
    BACKGROUND: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. However, it is unclear whether human microbiota display similar As metabolism, especially when present in a contaminated matrix. OBJECTIVES: We evaluated the metabolic potency of in vitro cultured human colon microbiota toward inorganic As (iAs) and As-contaminated soils. METHODS: A colon microbial community was cultured in a dynamic model of the human gut. These colon microbiota were incubated with iAs and with As-contaminated urban soils. We determined As speciation analysis using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. RESULTS: We found a high degree of methylation for colon digests both of iAs (10 mu g methylarsenical/g biomass/hr) and of As-contaminated soils (up to 28 mu g/g biomass/hr). Besides the formation of monomethylarsonic acid (MMA(V)), we detected the highly toxic monomethylarsonous acid (MMA(III)). Moreover, this is the first description of microbial thiolation leading to monomethylmonothioarsonic acid (MMMTA(V)). MMMTA(V), the toxicokinetic properties of which are not well known, was in many cases a major metabolite. CONCLUSIONS: Presystemic As metabolism is a significant process in the human body. Toxicokinetic studies aiming to completely elucidate the As metabolic pathway would therefore benefit from incorporating the metabolic potency of human gut microbiota. This will result in more accurate risk characterization associated with As exposures

    Cadmium-Induced Effects on Bone in a Population-Based Study of Women

    Get PDF
    High cadmium exposure is known to cause bone damage, but the association between low-level cadmium exposure and osteoporosis remains to be clarified. Using a population-based women’s health survey in southern Sweden [Women’s Health in the Lund Area (WHILA)] with no known historical cadmium contamination, we investigated cadmium-related effects on bone in 820 women (53–64 years of age). We measured cadmium in blood and urine and lead in blood, an array of markers of bone metabolism, and forearm bone mineral density (BMD). Associations were evaluated in multiple linear regression analysis including information on the possible confounders or effect modifiers: weight, menopausal status, use of hormone replacement therapy, age at menarche, alcohol consumption, smoking history, and physical activity. Median urinary cadmium was 0.52 μg/L adjusted to density (0.67 μg/g creatinine). After multivariate adjustment, BMD, parathyroid hormone, and urinary deoxypyridinoline (U-DPD) were adversely associated with concentrations of urinary cadmium (p < 0.05) in all subjects. These associations persisted in the group of never-smokers, which had the lowest cadmium exposure (mainly dietary). For U-DPD, there was a significant interaction between cadmium and menopause (p = 0.022). Our results suggest negative effects of low-level cadmium exposure on bone, possibly exerted via increased bone resorption, which seemed to be intensified after menopause. Based on the prevalence of osteoporosis and the low level of exposure, the observed effects, although slight, should be considered as early signals of potentially more adverse health effects

    Arsenic-Associated Oxidative Stress, Inflammation, and Immune Disruption in Human Placenta and Cord Blood

    Get PDF
    BACKGROUND: Arsenic (As) exposure during pregnancy induces oxidative stress and increases the risk of fetal loss and low birth weight. OBJECTIVES: In this study we aimed to elucidate the effects of As exposure on immune markers in the placenta and cord blood, and the involvement of oxidative stress. METHODS: Pregnant women were enrolled around gestational week (GW) 8 in our longitudinal, population-based, mother-child cohort in Matlab, an area in rural Bangladesh with large variations in As concentrations in well water. Women (n = 130) delivering at local clinics were included in the present study. We collected maternal urine twice during pregnancy (GW8 and GW30) for measurements of As, and placenta and cord blood at delivery for assessment of immune and inflammatory markers. Placental markers were measured by immunohistochemistry, and cord blood cytokines by multiplex cytokine assay. RESULTS: In multivariable adjusted models, maternal urinary As (U-As) exposure both at GW8 and at GW30 was significantly positively associated with placental markers of 8-oxoguanine (8-oxoG) and interleukin-1β (IL-1β); U-As at GW8, with tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); and U-As at GW30, with leptin; U-As at GW8 was inversely associated with CD3+ T cells in the placenta. Cord blood cytokines (IL-1β, IL-8, IFNγ, TNFα) showed a U-shaped association with U-As at GW30. Placental 8-oxoG was significantly positively associated with placental proinflammatory cytokines. Multivariable adjusted analyses suggested that enhanced placental cytokine expression (TNFα and IFNγ) was primarily influenced by oxidative stress, whereas leptin expression appeared to be mostly mediated by As, and IL-1β appeared to be influenced by both oxidative stress and As. CONCLUSION: As exposure during pregnancy appeared to enhance placental inflammatory responses (in part by increasing oxidative stress), reduce placental T cells, and alter cord blood cytokines. These findings suggest that effects of As on immune function may contribute to impaired fetal and infant health

    Dietary Intake and Arsenic Methylation in a U.S. Population

    Get PDF
    Millions of people worldwide are exposed to arsenic-contaminated drinking water, and ingestion of inorganic arsenic (InAs) has been associated with increased risks of cancer. The primary metabolic pathway of ingested InAs is methylation to monomethyl arsenic (MMA) and dimethyl arsenic (DMA). However, people vary greatly in the degree to which they methylate InAs, and recent evidence suggests that those who excrete high proportions of ingested arsenic as MMA are more susceptible than others to arsenic-caused cancer. To date, little is known about the factors that determine interindividual differences in arsenic methylation. In this study, we assessed the effect of diet on arsenic metabolism by measuring dietary intakes and urinary arsenic methylation patterns in 87 subjects from two arsenic-exposed regions in the western United States. Subjects in the lower quartile of protein intake excreted a higher proportion of ingested InAs as MMA (14.6 vs. 11.6%; p = 0.01) and a lower proportion as DMA (72.3 vs. 77.0%; p = 0.01) than did subjects in the upper quartile of protein intake. Subjects in the lower quartile of iron, zinc, and niacin intake also had higher urinary percent MMA and lower percent DMA levels than did subjects with higher intakes of these nutrients. These associations were also seen in multivariate regression analyses adjusted for age, sex, smoking, and total urinary arsenic. Given the previously reported links between high percent MMA and increased cancer risks, these findings are consistent with the theory that people with diets deficient in protein and other nutrients are more susceptible than others to arsenic-caused cancer

    Speciation of Arsenic in Exfoliated Urinary Bladder Epithelial Cells from Individuals Exposed to Arsenic in Drinking Water

    Get PDF
    BackgroundThe concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues.ObjectiveIn this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a target organ for As-induced cancer in humans.MethodsExfoliated bladder epithelial cells (BECs) were collected from urine of 21 residents of Zimapan, Mexico, who were exposed to iAs in drinking water. We determined concentrations of iAs, methyl-As (MAs), and dimethyl-As (DMAs) in urine using conventional hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS). We used an optimized HG-CT-AAS technique with detection limits of 12–17 pg As for analysis of As species in BECs.ResultsAll urine samples and 20 of 21 BEC samples contained detectable concentrations of iAs, MAs, and DMAs. Sums of concentrations of these As species in BECs ranged from 0.18 to 11.4 ng As/mg protein and in urine from 4.8 to 1,947 ng As/mL. We found no correlations between the concentrations or ratios of As species in BECs and in urine.ConclusionThese results suggest that urinary levels of iAs metabolites do not necessarily reflect levels of these metabolites in the bladder epithelium. Thus, analysis of As species in BECs may provide a more effective tool for risk assessment of bladder cancer and other urothelial diseases associated with exposures to iAs

    Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cadmium is a widespread environmental pollutant with adverse effects on kidneys and bone, but with insufficiently elucidated public health consequences such as risk of end-stage renal diseases, fractures and cancer. Urinary cadmium is considered a valid biomarker of lifetime kidney accumulation from overall cadmium exposure and thus used in the assessment of cadmium-induced health effects. We aimed to assess the relationship between dietary cadmium intake assessed by analyses of duplicate food portions and cadmium concentrations in urine and blood, taking the toxicokinetics of cadmium into consideration.</p> <p>Methods</p> <p>In a sample of 57 non-smoking Swedish women aged 20-50 years, we assessed Pearson's correlation coefficients between: 1) Dietary intake of cadmium assessed by analyses of cadmium in duplicate food portions collected during four consecutive days and cadmium concentrations in urine, 2) Partial correlations between the duplicate food portions and urinary and blood cadmium concentrations, respectively, and 3) Model-predicted urinary cadmium concentration predicted from the dietary intake using a one-compartment toxicokinetic model (with individual data on age, weight and gastrointestinal cadmium absorption) and urinary cadmium concentration.</p> <p>Results</p> <p>The mean concentration of cadmium in urine was 0.18 (+/- s.d.0.12) μg/g creatinine and the model-predicted urinary cadmium concentration was 0.19 (+/- s.d.0.15) μg/g creatinine. The partial Pearson correlations between analyzed dietary cadmium intake and urinary cadmium or blood concentrations were r = 0.43 and 0.42, respectively. The correlation between diet and urinary cadmium increased to r = 0.54 when using a one-compartment model with individual gastrointestinal cadmium absorption coefficients based on the women's iron status.</p> <p>Conclusions</p> <p>Our results indicate that measured dietary cadmium intake can reasonably well predict biomarkers of both long-term kidney accumulation (urine) and short-term exposure (blood). The predictions are improved when taking data on the iron status into account.</p

    Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment

    Get PDF
    BACKGROUND: Biomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment. METHODS: Concentrations of total Hg (THg), inorganic Hg (IHg) and organic Hg (OHg, assumed to be methylmercury; MeHg) were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored. RESULTS: About 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels. CONCLUSION: The use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure. Using THg concentration in plasma as a measure of IHg exposure can lead to significant exposure misclassification. THg in urine is a suitable proxy for IHg exposure

    Association between Chronic Arsenic Exposure and Nutritional Status among the Women of Child Bearing Age: A Case-Control Study in Bangladesh

    Get PDF
    The role of nutritional factors in arsenic metabolism and toxicity is yet to be fully elucidated. A low protein diet results in decreased excretion of DMA and increased tissue retention of arsenic in experimental studies. Malnourished women carry a higher risk of adverse pregnancy outcomes. Chronic exposure to high arsenic (>50 μg/L) through drinking water also increases the risk of adverse pregnancy outcomes. The synergistic effects (if any) of malnutrition and chronic arsenic exposure may worsen the adverse pregnancy outcomes. This population based case control study reports the association between chronic arsenic exposure and nutritional status among the rural women in Bangladesh. 348 cases (BMI < 18.5) and 360 controls (BMI 18.5–24.99) were recruited from a baseline survey conducted among 2,341 women. An excess risk for malnutrition was observed among the participants chronically exposed to higher concentrations of arsenic in drinking water after adjusting for potential confounders such as participant’s age, religion, education, monthly household income and history of oral contraceptive pills. Women exposed to arsenic >50 μg/L were at 1.9 times (Odds Ratio = 1.9, 95% CI = 1.1–3.6) increased risk of malnutrition compared to unexposed. The findings of this study suggest that chronic arsenic exposure is likely to contribute to poor nutritional status among women of 20–45 years
    corecore