79 research outputs found
Recommended from our members
Are PCPs Inherent in Efficient Arguments?
Starting with Kilian (STOC ‘92), several works have shown how to use probabilistically checkable proofs (PCPs) and cryptographic primitives such as collision-resistant hashing to construct very efficient argument systems (a.k.a. computationally sound proofs), for example with polylogarithmic communication complexity. Ishai et al. (CCC ‘07) raised the question of whether PCPs are inherent in efficient arguments, and to what extent. We give evidence that they are, by showing how to convert any argument system whose soundness is reducible to the security of some cryptographic primitive into a PCP system whose efficiency is related to that of the argument system and the reduction (under certain complexity assumptions).Engineering and Applied Science
Interactive proofs of proximity: Delegating computation in sublinear time
We study interactive proofs with sublinear-time verifiers. These proof systems can be used to ensure approximate correctness for the results of computations delegated to an untrusted server. Following the literature on property testing, we seek proof systems where with high probability the verifier accepts every input in the language, and rejects every input that is far from the language. The verifier's query complexity (and computation complexity), as well as the communication, should all be sublinear. We call such a proof system an Interactive Proof of Proximity (IPP). On the positive side, our main result is that all languages in NC have Interactive Proofs of Proximity with roughly √n query and communication and complexities, and polylog(n) communication rounds. This is achieved by identifying a natural language, membership in an affine subspace (for a structured class of subspaces), that is complete for constructing interactive proofs of proximity, and providing efficient protocols for it. In building an IPP for this complete language, we show a tradeoff between the query and communication complexity and the number of rounds. For example, we give a 2-round protocol with roughly queries and communication. On the negative side, we show that there exist natural languages in , for which the sum of queries and communication in any constant-round interactive proof of proximity must be polynomially related to n. In particular, for any 2-round protocol, the sum of queries and communication must be at least ~Ω(√n). Finally, we construct much better IPPs for specific functions, such as bipartiteness on random or well-mixing graphs, and the majority function. The query complexities of these protocols are provably better (by exponential or polynomial factors) than what is possible in the standard property testing model, i.e. without a prover.Engineering and Applied Science
Recommended from our members
On Approximating the Entropy of Polynomial Mappings
We investigate the complexity of Polynomial Entropy Approximation (PEA): Given a low-degree polynomial mapping p : F^n-> F^m, where F is a finite field, approximate the output entropy H(p(U_n)), where U_n is the uniform distribution on F^n and H may be any of several entropy measures.
We show:
Approximating the Shannon entropy of degree 3 polynomials p : F_2^n->F_2^m over F_2 to within an additive constant (or even n^{.9}) is complete for SZKPL, the class of problems having statistical zero-knowledge proofs where the honest verifier and its simulator are computable in logarithmic space. (SZKPL contains most of the natural problems known to be in the full class SZKP.)
For prime fields F\neq F_2 and homogeneous quadratic polynomials p : F^n->F^m, there is a probabilistic polynomial-time algorithm that distinguishes the case that p(U_n) has entropy smaller than k from the case that p(U_n) has min-entropy (or even Renyi entropy) greater than (2+o(1))k.
For degree d polynomials p : F_2^n->F_2^m, there is a polynomial-time algorithm that distinguishes the case that p(U_n) has max-entropy smaller than k (where the max-entropy of a random variable is the logarithm of its support size) from the case that p(U_n) has max-entropy at least (1+o(1))k^d (for fixed d and large k).Engineering and Applied Science
The effect of large-decoherence on mixing-time in Continuous-time quantum walks on long-range interacting cycles
In this paper, we consider decoherence in continuous-time quantum walks on
long-range interacting cycles (LRICs), which are the extensions of the cycle
graphs. For this purpose, we use Gurvitz's model and assume that every node is
monitored by the corresponding point contact induced the decoherence process.
Then, we focus on large rates of decoherence and calculate the probability
distribution analytically and obtain the lower and upper bounds of the mixing
time. Our results prove that the mixing time is proportional to the rate of
decoherence and the inverse of the distance parameter (\emph{m}) squared.
This shows that the mixing time decreases with increasing the range of
interaction. Also, what we obtain for \emph{m}=0 is in agreement with
Fedichkin, Solenov and Tamon's results \cite{FST} for cycle, and see that the
mixing time of CTQWs on cycle improves with adding interacting edges.Comment: 16 Pages, 2 Figure
Asymptotic entanglement in a two-dimensional quantum walk
The evolution operator of a discrete-time quantum walk involves a conditional
shift in position space which entangles the coin and position degrees of
freedom of the walker. After several steps, the coin-position entanglement
(CPE) converges to a well defined value which depends on the initial state. In
this work we provide an analytical method which allows for the exact
calculation of the asymptotic reduced density operator and the corresponding
CPE for a discrete-time quantum walk on a two-dimensional lattice. We use the
von Neumann entropy of the reduced density operator as an entanglement measure.
The method is applied to the case of a Hadamard walk for which the dependence
of the resulting CPE on initial conditions is obtained. Initial states leading
to maximum or minimum CPE are identified and the relation between the coin or
position entanglement present in the initial state of the walker and the final
level of CPE is discussed. The CPE obtained from separable initial states
satisfies an additivity property in terms of CPE of the corresponding
one-dimensional cases. Non-local initial conditions are also considered and we
find that the extreme case of an initial uniform position distribution leads to
the largest CPE variation.Comment: Major revision. Improved structure. Theoretical results are now
separated from specific examples. Most figures have been replaced by new
versions. The paper is now significantly reduced in size: 11 pages, 7 figure
Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents
Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease
Counting independent sets in graphs with bounded bipartite pathwidth
The Glauber dynamics can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity λ, can be viewed as a strong generalisation of Jerrum and Sinclair’s work on approximately counting matchings. The class of graphs with bounded bipartite path-width includes line graphs and claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth
Amplifying the Security of Functional Encryption, Unconditionally
Security amplification is a fundamental problem in cryptography. In this work, we study security amplification for functional encryption (FE). We show two main results:
1) For any constant epsilon in (0,1), we can amplify any FE scheme for P/poly which is epsilon-secure against all polynomial sized adversaries to a fully secure FE scheme for P/poly, unconditionally.
2) For any constant epsilon in (0,1), we can amplify any FE scheme for P/poly which is epsilon-secure against subexponential sized adversaries to a fully subexponentially secure FE scheme for P/poly, unconditionally.
Furthermore, both of our amplification results preserve compactness of the underlying FE scheme. Previously, amplification results for FE were only known assuming subexponentially secure LWE.
Along the way, we introduce a new form of homomorphic secret sharing called set homomorphic secret sharing that may be of independent interest. Additionally, we introduce a new technique, which allows one to argue security amplification of nested primitives, and prove a general theorem that can be used to analyze the security amplification of parallel repetitions
Erythropoiesis-stimulating agents in oncology: a study-level meta-analysis of survival and other safety outcomes
BACKGROUND: Cancer patients often develop the potentially debilitating condition of anaemia. Numerous controlled studies indicate that erythropoiesis-stimulating agents (ESAs) can raise haemoglobin levels and reduce transfusion requirements in anaemic cancer patients receiving chemotherapy. To evaluate recent safety concerns regarding ESAs, we carried out a meta-analysis of controlled ESA oncology trials to examine whether ESA use affects survival, disease progression and risk of venous-thromboembolic events
- …