
On Approximating the Entropy
of Polynomial Mappings

The Harvard community has made this
article openly available.  Please share  how
this access benefits you. Your story matters

Citation Dvir, Zeev, Dan Gutfreund, Guy N.Rothblum, and Salil Vadhan.
2011. On approximating the entropy of polynomial mappings. In
Proceedings of the Second Symposium on Innovations in Computer
Science (ICS 2011), January 7-9, 2011, Beijing, China, 460-475.

Published Version http://conference.itcs.tsinghua.edu.cn/ICS2011/content/
papers/28.html

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33896773

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/154863191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=On%20Approximating%20the%20Entropy%20of%20Polynomial%20Mappings&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=492632e04083be62329dec13cdfc0622&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33896773
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP


On Approximating the Entropy of Polynomial Mappings
Zeev Dvir1 Dan Gutfreund2 Guy N.Rothblum1 Salil Vadhan3

1Center for Computational Intractability and Department of Computer Science,
Princeton University, 35 Olden Street, Princeton, NJ, USA.

2IBM Research, Haifa,Israel.
3School of Engineering and Applied Sciences & Center for Research on Computation and Society,

Harvard University, 33 Oxford Street, Cambridge, MA, USA.
zeev.dvir@gmail.com danny.gutfreund@gmail.com rothblum@alum.mit.edu salil@seas.harvard.edu

Abstract: We investigate the complexity of the following computational problem:

POLYNOMIAL ENTROPY APPROXIMATION (PEA): Given a low-degree polynomial mapping p : Fn →
Fm, where F is a finite field, approximate the output entropy H(p(Un)), where Un is the uniform distri-
bution on Fn and H may be any of several entropy measures.

We show:
• Approximating the Shannon entropy of degree 3 polynomials p : Fn

2 → Fm
2 over F2 to within an additive

constant (or even n.9) is complete for SZKPL, the class of problems having statistical zero-knowledge
proofs where the honest verifier and its simulator are computable in logarithmic space. (SZKPL contains
most of the natural problems known to be in the full class SZKP.)

• For prime fields F 6= F2 and homogeneous quadratic polynomials p : Fn → Fm, there is a probabilistic
polynomial-time algorithm that distinguishes the case that p(Un) has entropy smaller than k from the case
that p(Un) has min-entropy (or even Renyi entropy) greater than (2 + o(1))k.

• For degree d polynomials p : Fn
2 → Fm

2 , there is a polynomial-time algorithm that distinguishes the case that
p(Un) has max-entropy smaller than k (where the max-entropy of a random variable is the logarithm of its
support size) from the case that p(Un) has max-entropy at least (1 + o(1)) · kd (for fixed d and large k).

Keywords: cryptography; computational complexity; algebra; entropy; statistical zero knowledge; randomized
encodings

1 Introduction
We consider the following computational problem:

POLYNOMIAL ENTROPY APPROXIMATION
(PEA): Given a low-degree polynomial map-
ping p : Fn → Fm, where F is a finite field,
approximate the output entropy H(p(Un)),
where Un is the uniform distribution on Fn.

In this paper, we present some basic results on the
complexity of PEA, and suggest that a better under-
standing might have significant impact in computational
complexity and the foundations of cryptography.

Note that PEA has a number of parameters that can
be varied: the degree d of the polynomial mapping, the
size of the finite field F, the quality of approximation
(eg multiplicative or additive), and the measure of en-
tropy (eg Shannon entropy or min-entropy). Here we
are primarily interested in the case where the degree d
is bounded by a fixed constant (such as 2 or 3), and the
main growing parameters are n and m. Note that in
this case, the polynomial can be specified explicitly by

m · poly(n) coefficients, and thus “polynomial time”
means poly(m,n, log |F|).

Previous results yield polynomial-time algorithms for
PEA in two special cases:
Exact Computation for Degree 1: For polynomials

p : Fn → Fm of degree at most 1, we can write
p(x) = Ax + b for A ∈ Fm×n and b ∈ Fn.
Then p(Un) is uniformly distributed on the affine
subspace Image(A) + b, and thus has entropy
exactly log | Image(A)| = rank(A) · log |F|.

Multiplicative Approximation over Large Fields:
In their work on randomness extractors for
polynomial sources, Dvir, Gabizon, and Wigder-
son [DGW] related the entropy of p(Un) to
the rank of the Jacobian matrix J(p), whose
(i, j)’th entry is the partial derivative ∂pi/∂xj ,
where pi is the i’th component of p. Specifically,
they showed that the min-entropy of (p(Un))
is essentially within a (1 + o(1))-multiplicative
factor of rank(J(p)) · log |F|, where the rank is
computed over the polynomial ring F[x1, . . . , xn].
This tight approximation holds over prime fields
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of size exponential in n. Over fields that are only
mildly large (say, polynomial in n) the rank of the
Jacobian still gives a one-sided approximation to
the entropy.

In this paper, we study PEA for polynomials of low
degree (namely 2 and 3) over small fields (especially the
field F2 of two elements). Our first result characterizes
the complexity of achieving good additive approxima-
tion:

Theorem 1.1 (informal). The problem PEA+
F2,3 of ap-

proximating the Shannon entropy of degree 3 polynomi-
als p : Fn

2 → Fm
2 to within an additive constant (or

even n.9) is complete for SZKPL, the class of prob-
lems having statistical zero-knowledge proofs where the
honest verifier and its simulator are computable in log-
arithmic space (with two-way access to the input, coin
tosses, and transcript).1

In particular, the output entropy approximation prob-
lem is at least as hard as GRAPH ISOMORPHISM,
QUADRATIC RESIDUOSITY, the DISCRETE LOG-
ARITHM, and the approximate CLOSEST VECTOR
PROBLEM, as the known statistical zero-knowledge
proofs for these problems [GMR, GMW, GK, GG] have
verifiers and simulators that can be computed in loga-
rithmic space.

Theorem 1.1 is proven by combining the reductions
for known SZKP-complete problems [SV, GV] with
the randomized encodings developed by Applebaum,
Ishai, and Kushilevitz in their work on cryptography
in NC0 [IK, AIK]. Moreover, the techniques in the
proof can also be applied to the specific natural com-
plete problems mentioned above, and most of these each
reduce to special cases of PEA+

F2,3 that may be easier
to solve (e.g. ones where the output distribution is uni-
form on its support, and hence all entropy measures co-
incide).

The completeness of PEA+
F2,3 raises several intrigu-

ing (albeit speculative) possibilities:

Combinatorial or Number-Theoretic Complete
Problems for SZKPL:

Ever since the first identification of complete prob-
lems for SZKP (standard statistical zero knowledge,
with verifiers and simulators that run in polynomial time
rather than logarithmic space) [SV], it has been an open
problem to find combinatorial or number-theoretic com-
plete problems. Previously, all of the complete prob-
lems for SZKP and other zero-knowledge classes (e.g.
[SV, DDPY, GV, GSV2, BG, Vad, Mal, CCKV]) re-
fer to estimating statistical properties of arbitrary ef-
ficiently samplable distributions (namely, distributions
sampled by boolean circuits). Moving from a general
model of computation (boolean circuits) to a simpler,

1 See Sections 3 and 4 for the formal definitions of the notions
involved and the formal statement of the theorem.

more structured model (degree 3 polynomials) is a nat-
ural first step to finding other complete problems, simi-
larly to how the reduction from CIRCUITSAT to 3-SAT
is the first step towards obtaining the wide array of
known NP-completeness results. (In fact we can also
obtain a complete problem for SZKPL where each out-
put bit of p : Fn

2 → Fm
2 depends on at most 4 input bits,

making the analogy to 3-SAT even stronger.)

Cryptography Based on the Worst-case Hardness of
SZKPL:

It is a long-standing open problem whether cryp-
tography can be based on the worst-case hardness of
NP. That is, can we show that NP 6⊂ BPP2 im-
plies the existence of one-way functions? A positive an-
swer would yield cryptographic protocols for which we
can have much greater confidence in their security than
any schemes in use today, as efficient algorithms for
all of NP seems much more unlikely than an efficient
algorithm for any of the specific problems underlying
present-day cryptographic protocols (such as FACTOR-
ING). Some hope was given in the breakthrough work
of Ajtai [Ajt], who showed that the worst-case hardness
of an approximate version of the SHORTEST VECTOR
PROBLEM implies the existence of one-way functions
(and in fact, collision-resistant hash functions). Unfor-
tunately, it was shown that this problem is unlikely to be
NP-hard [GG, AR, MX]. In fact, there are more gen-
eral results, showing that there cannot be (nonadaptive,
black-box) reductions from breaking a one-way func-
tion to solving any NP-complete problem (assuming
NP 6⊆ coAM) [FF, BT, AGGM].

We observe that these obstacles for NP do not ap-
ply to SZKP or SZKPL, as these classes are already
contained in AM ∩ coAM [For, AH]. Moreover, be-
ing able to base cryptography on the hardness of SZKP
or SZKPL would also provide cryptographic protocols
with a much stronger basis for security than we have at
present — these protocols would be secure if any of the
variety of natural problems in SZKPL are worst-case
hard (e.g. QUADRATIC RESIDUOSITY, GRAPH ISO-
MORPHISM, DISCRETE LOGARITHM, the approximate
SHORTEST VECTOR PROBLEM).

Our new complete problem for SZKPL provides
natural approaches to basing cryptography on SZKP-
hardness. First, we can try to reduce PEA+

F2,3 to the
approximate SHORTEST VECTOR PROBLEM, which
would suffice by the aforementioned result of Aj-
tai [Ajt]. Alternatively, we can try to exploit the alge-
braic structure in PEA+

F2,3 to give a worst-case/average-
case reduction for it (i.e. reduce arbitrary instances to
random ones). This would show that if SZKPL is
worst-case hard, then it is also average-case hard. Un-

2Or NP 6⊂ i.o.−BPP, where i.o.−BPP is the class of prob-
lems that can be solved in probabilistic polynomial time for infinitely
many input lengths.
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like NP, the average-case hardness of SZKP is known
to imply the existence of one-way functions by a re-
sult of Ostrovsky [Ost], and in fact yields even stronger
cryptographic primitives such as constant-round statis-
tically hiding commitment schemes [OV, RV].

New Algorithms for SZKPL Problems:
On the flip side, the new complete problem may be

used to show that problems in SZKPL are easier than
previously believed, by designing new algorithms for
PEA. As mentioned above, nontrivial polynomial-time
algorithms have been given in some cases via algebraic
characterizations of the entropy of low-degree polyno-
mials (namely, the Jacobian rank) [DGW]. This moti-
vates the search for tighter and more general algebraic
characterizations of the output entropy, which could
be exploited for algorithms or for worst-case/average-
case connections. In particular, this would be a very
different way of trying to solve problems like GRAPH
ISOMORPHISM and QUADRATIC RESIDUOSITY than
previous attempts. One may also try to exploit the
complete problem to give a quantum algorithm for
SZKPL. Aharonov and Ta-Shma [AT] showed that
all of SZKP would have polynomial-time quantum
algorithms if we could solve the QUANTUM STATE
GENERATION (QSG) problem: given a boolean cir-
cuit C : {0, 1}m → {0, 1}n, construct the quantum
state

∑
x |C(x)〉. Using our new complete problem, if

we can solve QSG even in the special case that C is
a degree 3 polynomial over F2, we would get quantum
algorithms for all of SZKPL (including GRAPH ISO-
MORPHISM and the approximate SHORTEST VECTOR
PROBLEM, which are well-known challenges for quan-
tum computing).

While each of these potential applications may be
remote possibilities, we feel that they are important
enough that any plausible approach is worth examin-
ing.

Our Algorithmic Results.
Motivated by the above, we initiate a search for algo-

rithms and algebraic characterizations of the entropy of
low-degree polynomials over small finite fields (such as
F2), and give the following partial results:
• For degree d (multilinear) polynomials p :
Fn

2 → Fm
2 , the rank of the Jacobian J(p) (over

F2[x1, . . . , xn]) does not provide better than a
2d−1 − o(1) multiplicative approximation to the
entropy H(p(Un)). Indeed, the polynomial map-
ping

p(x1, . . . , xn, y1, . . . , yd−1) =
(y1y2 · · · yd−1) · (x1, x2, . . . , xn)

has Jacobian rank n but output entropy smaller
than n/2d−1 + 1.

• For prime fields F 6= F2 and homogeneous
quadratic polynomials p : Fn → Fm, there is a
probabilistic polynomial-time algorithm that dis-
tinguishes the case that p(Un) has entropy smaller
than k from the case that p(Un) has min-entropy
(or even Renyi entropy) greater than (2 + o(1))k.
This algorithm is based on a new formula for the
Renyi entropy of p(Un) in terms of the rank of ran-
dom directional derivatives of p.

• For degree d polynomials p : Fn
2 → Fm

2 , there
is a polynomial-time algorithm that distinguishes
the case that p(Un) has max-entropy smaller than
k (where the max-entropy of a random variable
is the logarithm of its support size) from the case
that p(Un) has max-entropy at least (1+ o(1)) · kd

(for fixed d and large k). This algorithm is based
on relating the max-entropy to the dimension of
the F2-span of the p’s components p1, . . . , pm ∈
F2[x1, . . . , xn].

While our algorithms involve entropy measures other
than Shannon entropy (which is what is used in the
SZKPL-complete problem PEA+

F2,3), recall that many
of the natural problems in SZKPL reduce to special
cases where we can bound other entropy measures such
as max-entropy or Renyi entropy. See Section 4.4.

2 Preliminaries and Notations
For two discrete random variables X, Y taking val-

ues in S, their statistical difference is defined to be
∆(X, Y ) def= maxT⊆S |Pr[X ∈ S] − Pr[Y ∈ S]|. We
say that X and Y are ε-close if ∆(X, Y ) ≤ ε. The
collision probability of X is defined to be cp(X) def=∑

x Pr[X = x]2 = Pr[X = X ′], where X ′ is an iid

copy of X . The support of X is Supp(X) def= {x ∈
S : Pr[X = x] > 0}. X is flat if it is uniform on its
support.

For a function f : Sn → Tm, we write fi : Sn → T
for the i’th component of f . When S is clear from
context, we write Un to denote the uniform distribu-
tion on Sn, and f(Un) for the output distribution of
f when evaluated on a uniformly chosen element of
Sn. The support of f is defined to be Supp(f) def=
Supp(f(Un)) = Image(f).

For a prime power q = pt, Fq denotes the (unique)
finite field of size q. For a mapping P : Fn

q 7→ Fm
q ,

we say that P is a polynomial mapping if each Pi is
a polynomial (in n variables). The degree of P is
deg(P ) = maxi deg(Pi).

Notions of Entropy.
Throughout this work we consider several different

notions of entropy, or the “amount of randomness” in a
random variable. The standard notions of Shannon En-
tropy, Renyi Entropy, and Min-Entropy are three such
notions. We also consider the (log) support size, or
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maximum entropy, as a (relaxed) measure of random-
ness.

Definition 2.1. For a random variable X taking values
in a set S, we consider the following notions of entropy:
• Min-entropy: Hmin(X) def= minx∈S log 1

Pr[X=x] .

• Renyi entropy: HRenyi(X) def=
log 1

E
x

R←X
[Pr[X=x]] = log 1

cp(X) .

• Shannon-entropy: HShannon(X) def=
E

x
R←X

[
log 1

Pr[X=x]

]
.

• Max-entropy: Hmax(X) def= log | Supp(X)|.
(All logarithms are base 2 except when otherwise
noted.)

These notions of entropy are indeed increasingly re-
laxed, as shown in the following claim:

Claim 2.2. For every random variable X it holds that

0 ≤ Hmin(X) ≤ HRenyi(X)
≤ HShannon(X) ≤ Hmax(X).

Moreover, if X is flat, all of the entropy measures are
equal to log | Supp(X)|.

3 Entropy Difference and Polynomial En-
tropy Difference

In this section we define the ENTROPY DIFFERENCE
and POLYNOMIAL ENTROPY DIFFERENCE problems,
which are the focus of this work.

Entropy Difference Promise Problems.
The promise problem ENTROPY DIFFERENCE (ED)

deals with distinguishing an entropy gap between two
random variables represented as explicit mappings,
computed by circuits or polynomials, and evaluated on
a uniformly random input. In this work, we consider
various limitations on these mappings both in terms of
their computational complexity and their degree (when
viewed as polynomials).

In what follows C will be a concrete computational
model, namely every c ∈ C computes a function with
finite domain and range. Examples relevant to this pa-
per include:
• The class CIRC of all boolean circuits C :
{0, 1}n → {0, 1}m (the concrete model corre-
sponding to polynomial time).

• The class BP of all branching programs C :
{0, 1}n → {0, 1}m (the concrete model corre-
sponding to logarithmic space)

• The class POLYNOMIALSF,d of all degree d poly-
nomials p : Fn → Fm.

The promise problem ED [GV] is defined over pairs
of random variables represented as mappings computed
by boolean circuits, where the random variables are the

outputs of the circuits evaluated on uniformly chosen
inputs. The problem is to determine which of the two
random variables has more Shannon entropy, with a
promise that there is an additive gap between the two
entropies of at least 1. We generalize this promise prob-
lem to deal with different notions of entropies, entropy
gaps, and the complexity of the mappings which repre-
sent the random variables.

Definition 3.1 (Generalized Entropy Difference). The
promise problem EDuENT,`ENT,GAP

C , is defined by the
entropy measures uENT and `ENT from the set
{MIN, RENYI, SHANNON, MAX}, an entropy GAP,
which can be +c,×c or exp(c) for some constant c > 0,
refering to additive, multiplicative or exponential gaps
in the problem’s promise, and a concrete computational
model C. For a pair of mappings p, q ∈ C, the random
variables P and Q are (respectively) the evaluation of
the mappings p and q on a uniformly random input. The
Yes and No instances are, for additive GAP = +c

YES = {(p, q) : HuENT(P ) ≥ HlENT(Q) + c},
NO = {(p, q) : HlENT(P ) + c ≤ HuENT(Q)};

for multiplicative GAP = ×c (for c > 1)

YES = {(p, q) : HuENT(P ) ≥ HlENT(Q) · c > 0},
NO = {(p, q) : HlENT(P ) · c ≤ HuENT(Q)};

and for exponential GAP = exp(c)

YES = {(p, q) : HuENT(P ) ≥ HlENT(Q)c > 1},
NO = {(p, q) : HlENT(P )c ≤ HuENT(Q)}.

We always require that uENT is more stringent than
`ENT in that HuENT(X) ≤ HlENT(X) for all random
variables X . (This ensures that the YES and NO in-
stances do not intersect.) If we do not explicitly set the
different parameters, then the default entropy type for
uENT and `ENT is SHANNON, the default gap is an ad-
ditive GAP = +1, and the class C is CIRC.

Note that, by Claim 2.2, with all other parameters be-
ing equal - the more relaxed the entropy notion uENT
is, the easier the problem becomes. Similarly, the more
stringent the entropy notion `ENT is, the easier the prob-
lem becomes.

POLYNOMIAL ENTROPY DIFFERENCE (PED).
The main problem we focus on in this work is entropy

difference for low-degree polynomial mappings.

Definition 3.2 (POLYNOMIAL ENTROPY DIFFERENCE).
The promise problem PEDuENT,`ENT,GAP

F,d is the entropy
difference problem for degree d polynomials over F,
i.e. it is the promise problem EDuENT,`ENT,GAP

POLYNOMIALSF,d (see
Definition 3.1). The default values for uENT, `ENT,
and GAP (if not specified explicitly) are as in Definition
3.1.
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POLYNOMIAL ENTROPY APPROXIMATION.
Another natural algorithmic problem is that of ap-

proximating the entropy of a polynomial mapping up
to a constant, multiplicative, or exponential approxima-
tion factor. We discuss this problem informally, focus-
ing on its connection to POLYNOMIAL ENTROPY DIF-
FERENCE.

The POLYNOMIAL ENTROPY APPROXIMATION
problem is, given a polynomial mapping p of low de-
gree, which induces a random variable P , to output an
approximation k to its entropy. For the approximation
problem PEAuENT,`ENT,+c

F,d , we require that (w.h.p) the
approximation k satisfy:

HuENT(P )− c < k < HlENT(P ) + c.

Using binary search, this approximation problem can
be shown to be equivalent to deciding the following
promise problem:

YES = {(p, k) : HuENT(P ) ≥ k + c},
NO = {(p, k) : HlENT(P ) ≤ k − c}.

For notational convenience, we will also denote this
promise problem by PEAuENT,`ENT,+c

F,d . PEA is de-
fined analogously for multiplicative (×c) and exponen-
tial (exp(c)) approximation.

We note that (as is the case for ENTROPY APPROX-
IMATION and ENTROPY DIFFERENCE in the statistical
zero-knowledge literature [GSV2]), for fixed notions of
entropy in the upper bounds and lower bounds, the PED
and PEA problems are computationally equivalent up
to some loss in the approximation factor, for both addi-
tive and multiplicative approximation.

In one direction, PEDuENT,`ENT,+c
F,d reduces to

PEAuENT,`ENT,+c/2
F,d . To see this, approximate the en-

tropy of the two distributions P and Q, get answers kp

and kq (respectively), and accept if kp > kq . Otherwise
reject. For a YES instance, HuENT(P ) ≥ H`ENT(Q)+ c,
and so if the PEA approximation error is less than c/2
we get that kp must be greater than HuENT(P )−c/2 and
kq must be less than H`ENT(Q) + c/2, and so (w.h.p)
kp > kq and we accept. For NO instances, the reverse
holds and w.h.p we reject.

In the other direction, we get that PEAuENT,`ENT,+c
F,d

reduces to PEDuENT,`ENT,+c
F,d . If the given parameter k is

an integer multiple of log |F|, then we can just construct
q so that Q is a flat distribution with a support of size 2k

(e.g. q is the identity map on Fn for n = k/ log |F|), and
then the answer to the PED instance (p, q) is equal to
the answer to the PEA instance (p, k). In case k is not
an integer, then we instead apply the above reduction
to the instance (pt, dtke) for a large enough integer t,
where pt(x1, . . . , xt) = p(x1), p(x2), . . . , p(xt). For a
YES instance (p, k) of PEA, we have

HuENT(P t) = t ·HuENT(P ) ≥ t · (k + c) ≥ dtke+ c

for t ≥ 1 + 1/c, so (pt, btkc) is also a YES instance of
PEA. NO instances can be analyzed similarly.

For multiplicative approximation, we can reduce
PEAuENT,`ENT,×c

F,d to PEDuENT,`ENT,×c′

F,d for any constant
c′ < c. For a YES instance (p, k) of PEAuENT,`ENT,×c

F,d ,
we have

HuENT(P t) = t ·HuENT(P ) ≥ t · kc ≥ c′ · dtke,
provided t ≥ c′/((c − c′)k). We may assume
that k is bounded below by a constant, because the
Schwartz–Zippel Lemma (cf. Lemma 5.10), implies
that a nonconstant polynomial mapping of degree d
must have min-entropy at least log((1/(1 − |F|−d))),
which is constant for fixed F and d. So for a suffi-
ciently large constant t, (pt, dtke) is a YES instance of
PEAuENT,`ENT,×c′

F,d . NO instances can be analyzed sim-
ilarly, and thus we can apply the above reduction for
integer thresholds.

4 Hardness of POLYNOMIAL ENTROPY
DIFFERENCE

In this section we present evidence that even when we
restrict PED to low degree polynomial mappings, and
even when we work with relaxed notions of entropy, the
problem remains hard. This is done first by using the
machinery of randomizing polynomials [IK, AIK] to re-
duce ED for rich complexity classes (such as log space)
to PED (section 4.1). We then argue the hardness of
ED for log-space computations, first via the problem’s
completeness for a rich complexity class (a large sub-
class of SZKP), and then via reductions from specific
well-studied hard problems.

4.1 Randomized Encodings
We recall the notion of randomized encodings that

was developed by Applebaum, Ishai, and Kushile-
vitz [IK, AIK]. Informally, a randomized encoding of a
function f is a randomized function g such that the (ran-
domized) output g(x) determines f(x), but reveals no
other information about x. We need the perfect variant
of this notion, which we now formally define. (We com-
ment that [IK, AIK] use different, more cryptographic,
terminology to describe some of the properties below).

Definition 4.1. [IK, AIK] Let f : {0, 1}n → {0, 1}`

be a function. We say that the function f̂ : {0, 1}n ×
{0, 1}m → {0, 1}s is a perfect randomized encoding of
f with blowup b if it is:
• Input independent: for every x, x′ ∈ {0, 1}n

such that f(x) = f(x′), the random vari-
ables f̂(x,Um) and f̂(x′, Um) are identically dis-
tributed.

• Output disjoint: for every x, x′ ∈ {0, 1}n

such that f(x) 6= f(x′), Supp(f̂(x,Um)) ∩
Supp(f̂(x′, Um)) = ∅.
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• Uniform: for every x ∈ {0, 1}n the random vari-
able f̂(x,Um) is uniform over Supp(f̂(x,Um)).

• Balanced: for every x, x′ ∈ {0, 1}n

| Supp(f̂(x, Um))| = | Supp(f̂(x′, Um))| = b.

We now set up notations and state some simple
claims about randomized encodings.

Let
f : {0, 1}n → {0, 1}`

be a function and let f̂ : {0, 1}n × {0, 1}m → {0, 1}s

be a perfect randomized encoding of f with blowup b.
For y ∈ Supp(f), define the set Sy ⊆ {0, 1}s to be:

{z ∈ {0, 1}s : ∃(x, r) ∈ {0, 1}n × {0, 1}m

s.t. f(x) = y ∧ f̂(x, r) = z}
By the properties of perfect randomized encodings, the
sets Sy form a balanced partition of Supp(f̂), indeed
Sy = Supp(f̂(x, Um)) for every x such that f(x) = y,
and hence |Sy| = b. With this notation, the following
claim is immediate.

Claim 4.2. Supp(f̂) = b · Supp(f)

For every z ∈ Supp(f̂), we denote by yz the unique
string in Supp(f) such that z ∈ Sy . For any x ∈
{0, 1}n, f̂(x, Um) is uniformly distributed over Sf(x).
It follows that,

Claim 4.3. For every z ∈ Supp(f̂),

Pr[f̂(Un, Um) = z] =
1
b

Pr[f(Un) = yz]

We now state the relation between the entropy of
f̂(Un, Um) and the entropy of f(Un) for each one of
the entropy measures.

Claim 4.4. Let

ENT ∈ {MIN, RENYI, SHANNON, MAX}

then HENT(f̂(Un, Um)) = HENT(f(Un)) + log b

Proof. For ENT = MAX, the claim follows directly
from Claim 4.2. For ENT = MIN, the claim follows
directly from Claim 4.3. For ENT = SHANNON,

HShannon(f̂(Un, Um))

= HShannon(f̂(Un, Um), f(Un))
= HShannon(f(Un)) +

HShannon(f̂(Un, Um)|f(Un))

= HShannon(f(Un)) + HShannon(f̂(Un, Um)|Un)
= HShannon(f(Un)) + log b.

The first equality follows from the fact that f̂(x, r) de-
termines f(x) (follows from output disjointness). The

second equality uses the chain rule for conditional en-
tropy. The third equality follows from input indepen-
dence, and the last equality follows from the fact that
the perfect randomized encoding is uniform, balanced
and has blowup b.

By similar reasoning, for ENT = RENYI, we have

cp(f̂(Un, Um))

= Pr[f̂(Un, Um) = f̂(U ′
n, U ′

m)]
= Pr[f(Un) = f(U ′

n)] ·
Pr[f̂(Un, Um) = f̂(U ′

n, U ′
m)|f(Un) = f(U ′

n)]
= cp(f(Un)) · (1/b).

4.2 From Branching-Program Entropy Differ-
ence to Polynomial Entropy Difference

Applebaum, Ishai and Kushilevitz [IK, AIK] showed
that logspace mappings (represented by the branching
programs that compute the output bits) have random-
ized encodings which are polynomial mappings of de-
gree three over the field with two elements.

Theorem 4.5. [IK, AIK] Given a branching program
f : {0, 1}n → {0, 1}`, we can construct in polynomial
time a degree 3 polynomial f̂ : Fn

2 × Fm
2 → Fs

2 that
is a perfect randomized encoding of f . Moreover, the
blowup b is a power of 2 and can be computed in poly-
nomial time from f .

Based on this theorem we show that the log-space
entropy difference problem (for the various notions of
entropy which we defined above) with additive gap re-
duces to the polynomial entropy difference problem
with the same gap.

Theorem 4.6. The promise problem EDuENT,`ENT,+c

BP ,
for uENT, `ENT ∈ {MIN, RENYI, SHANNON, MAX},
Karp-reduces to the promise problem PEDuENT,`ENT,+c

F2,3 .

Proof. Given an instance (X, Y ) of EDuENT,`ENT,+c

BP ,
apply on each one of the branching programs X and
Y the reduction from Theorem 4.5, to obtain a pair of
polynomials X̂ and Ŷ of degree 3 over F2. By padding
the output of X̂ or Ŷ with independent uniformly dis-
tributed bits, we can ensure that X̂ and Ŷ have the same
blow-up. By Claim 4.4, HuENT(X̂) − HlENT(Ŷ ) =
HuENT(X) − HlENT(Y ), and HlENT(X̂) − HuENT(Ŷ ) =
HlENT(X)−HuENT(Y ). It follows that yes (resp. no) in-
stances of EDuENT,`ENT,+c

BP are mapped to yes (resp. no)

instances of PEDuENT,`ENT,+c
F2,3 .

4.3 Polynomial Entropy Difference and Statisti-
cal Zero-Knowledge

Goldreich and Vadhan [GV] showed that the promise
problem ED (ENTROPY DIFFERENCE problem for
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Shannon entropy with additive gap and polynomial-size
circuits) is complete for SZKP, the class of problems
having statistical zero-knowledge proofs. i We show a
computationally restricted variant of this result, show-
ing that PEDF2,3 is complete for SZKPL, the class
of problems having statistical zero-knowledge proofs
in which the honest verifier and its simulator are com-
putable in logarithmic space (with two-way access to
the input, coin tosses, and transcript).

Theorem 4.7. The promise problem PEDF2,3 is com-
plete for the class SZKPL.

We start with proving that the problem is hard for the
class.

Lemma 4.8. The promise problem PEDF2,3 is hard for
the class SZKPL under Karp-reductions.

Proof. We show that the promise problem EDBP, is
hard (under Karp-reductions) for the class SZKPL.
The proof then follows by Theorem 4.6. The hard-
ness of EDBP follows directly from the reduction of
[GV] which we now recall. Given a promise problem in
SZKP with a proof system (P, V ) and a simulator S,
it is assumed w.l.o.g. that on instances of length n, V
tosses exactly ` = `(n) coins, the interaction between
P and V consists of exactly 2r = 2r(n) messages each
of length exactly `, the prover sends the odd messages
and the last message of the verifier consists of its ran-
dom coins. Furthermore, the simulator for this protocol
always outputs transcripts that are consistent with V ’s
coins. For problems in SZKPL, using the fact that the
verifier is computable in logspace (with two-way access
to the input, its coin tosses, and the transcript), we can
obtain such a simulator that is computable in logspace
(again with two-way access to the input and its coin
tosses). On input x, we denote by S(x)i (1 ≤ i ≤ 2r)
the distribution over the (i · `)-long prefix of the output
of the simulator. That is, the distribution over the simu-
lation of the first i messages in the interaction between
P and V .

The reduction maps an instance x to a pair of distri-
butions (Xx, Yx):
• Xx outputs independent samples from the distribu-

tions S(x)2, S(x)4, . . . , S(x)2r.
• Yx outputs independent samples from the distribu-

tions S(x)1, S(x)3, . . . , S(x)2r−1 and U`−2.
Since S is computable in logarithmic space, we can

efficiently construct branching programs Xx and Yx

that sample from the above distributions.

To complete the proof of Theorem 4.7 we show that
PEDF2,3 is in the class SZKPL. This follows easily
from the proof that ED is in SZKP [GV]. We give
here a sketch of the proof.

Lemma 4.9. PEDF2,3 has a statistical zero-knowledge
proof system where the verifier and the simulator are
computable in logarithmic space.

sketch. We use the same proof system and simulator
from [GV]. We need to show that on instance (X, Y )
where X and Y are POLYNOMIALSF2,3-mappings, the
verifier and the simulator are computable in logarith-
mic space. For simplicity we assume that both X
and Y map n input bits to m output bits. We start
with the complexity of the verifier. The protocol is
public coins, so we only need to check that the veri-
fier’s final decision can be computed in logspace. This
boils down to two operations which the verifier per-
forms a polynomial number of times: (a) evaluating
the POLYNOMIALSF2,3-mapping of either X or Y on
an input specified in the transcript, and (b) evaluating a
function h : {0, 1}n+m → {0, 1}k, from a family of
2-universal hash functions, where both the description
of h and the input on which to evaluate h are specified
in the transcript. (See [GV] for the details.) The former
can be done in logspace as it involves evaluating poly-
nomials of degree 3 over F2. The latter can be done in
logspace if we use standard 2-universal families of hash
functions, such as affine-linear maps from Fn+m

2 to Fk
2 .

Turning to the simulator, we see that its output con-
sists of many copies of triplets taking the following
form: (h, r, x) where r ∈R {0, 1}n, x is an output of ei-
ther X or Y on a uniformly chosen input which is part
of the simulator’s randomness, and h : {0, 1}n+m →
{0, 1}k is a function uniformly chosen from the fam-
ily of 2-universal hash functions subject to the con-
straint that h(r, x) = 0. As in the verifier’s case, x
can be computed by a logspace mapping since X and
Y are POLYNOMIALSF2,3-mappings. Choosing h from
the family of hash functions under a constraint h(z) = 0
can be done efficiently if we use affine-linear hash func-
tions h(z) = Az + b. We simply choose the matrix A
uniformly at random and set b = −Az.

4.3.1 Additional Remarks
We remark, without including proofs, that similar

statements as in the one from Theorem 4.7 can be
shown for other known complete problems in SZKP
and its variants [SV, DDPY, GV, GSV2, Vad, Mal, BG,
CCKV]). We also mention that all the known closure
and equivalence properties of SZKP (e.g. closure un-
der complement [Oka], equivalence between honest and
dishonest verifiers [GSV1], and equivalence between
public and private coins [Oka]) also hold for the class
SZKPL.

Finally, we mention that by using the locality re-
duction of [AIK] we can further reduce PEDF2,3 to
EDNC0

4
, where NC0

4 is the class of functions for which
every output bit depends on at most four input bits.
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4.4 Hardness Results
Given the results of Section 4.3, we can conclude

that POLYNOMIAL ENTROPY DIFFERENCE (with addi-
tive Shannon entropy gap) is at least as hard as prob-
lems with statistical zero-knowledge proofs with log-
arithmic space verifiers and simulators. This includes
problems such as GRAPH ISOMORPHISM, QUADRATIC
RESIDUOSITY, DECISIONAL DIFFIE HELLMAN, and
the approximate CLOSEST VECTOR PROBLEM, and
also many other cryptographic problems.

For the reduction from GRAPH ISOMORPHISM, we
note that the operations run by the verifier and the simu-
lator in the statistical zero-knowledge proof of [GMW],
the most complex of which is permuting a graph, can
all be done in logarithmic space. Similarly, for the ap-
proximate CLOSEST VECTOR PROBLEM, the computa-
tionally intensive operations run by the simulator in the
zero-knowledge proof of [GG] (and the alternate ver-
sions in [MG]) are sampling from a high-dimensional
Gaussian distribution and reducing modulo the funda-
mental parallelepiped. These can be done in logarith-
mic space. (To reduce modulo the fundamental paral-
lelepiped we need to change the noise vector from the
standard basis to the given lattice basis and back. By
pre-computing the change-of-basis matrices, the sam-
pling algorithm only needs to compute matrix-vector
products, which can be done in logarithmic space.)

For the QUADRATIC RESIDUOSITY and
DECISIONAL DIFFIE HELLMAN problems, we show
that in fact they reduce to an easier variant of PED,
where the yes-instances have high min-entropy and
the no-instances have small support size. See [KL] for
more background on these assumptions and the number
theory that comes into play.

4.4.1 Quadratic Residuosity
Definition 4.10 (QUADRATIC RESIDUOSITY). For a
composite N = p ·q where p and q are prime and differ-
ent, the promise problem QUADRATIC RESIDUOSITY is
defined as follows:

QRYES = {(N,x) : N = p · q,
∃y ∈ Z∗N s.t. x = y2 (mod N)}

QRNO = {(N,x) : N = p · q,
6 ∃y ∈ Z∗N s.t. x = y2 (mod N)}

Claim 4.11. QUADRATIC RESIDUOSITY reduces to
PEDMIN,MAX,+1

F2,3 .

Proof. Given an input (N, x), where N = p · q for
primes p, q, we examine the mapping fN,x. This map-
ping gets as input a random c ∈ {0, 1} and coins for
generating r ∼R [N ] and outputs3

xc · r2 (mod N).
3We note that a more natural map to consider (which is easier to

analyze) samples r ∼R Z∗N . We are unaware of a method for uni-

We examine the distribution of fN,x’s output. We
first examine the distribution or mapping R that just
outputs r2. By the Chinese Remainder Theorem, we
have an isomorphism ZN

∼= Zp × Zq and under this
isomorphism, R decomposes into a product distribution
Rp ·Rq, where Rp is over Zp and Rq is over Zq , where
each item in ZN is equivalent to a pair in Zp × Zq via
the Chinese Remainder Theorem. Examining the two
distributions, we see that Rp gives probability 1/p to 0
and 2/p to each of the quadratic residues in Z∗p. Sim-
ilarly, Rq gives probability 1/q to 0 and 2/q to each
quadratic residue in Z∗q . So the support of R is of size
(p + 1) · (q + 1)/4, and each item in the support gets
probability at most 4/pq.

Now examining the output of fN,x, if x is a quadratic
residue in Z∗N , then it is a residue in Z∗p and in Z∗q , and
so the distribution of xc · r2 is equal to the distribution
of r2, so its support and min-entropy are as above.

On the other hand, if x is a non-residue in Z∗N then
it must be a non-residue in Z∗p or in Z∗q , say Z∗p. This
implies that xc ·r2 mod p is uniformly distributed in Zp

and thus has min-entropy log p. Conditioned on c and
r mod p, the value xc · r2 mod q still has min-entropy
at least that of r2 mod q, which is log q − 1 as argued
above. By the Chinese Remainder Theorem, xc·r2 mod
N has min-entropy at least log p + log q − 1.

We can now use fN,x to build two mappings or dis-
tributions X and Y , s.t. if x is a YES instance of
QUADRATIC RESIDUOSITY, then the min-entopy of X
is higher by a small constant (say 1/2) than the log-
support size of Y , and vice-versa if x is a NO instance.
This allows us to reduce QUADRATIC RESIDUOSITY to
EDMIN,MAX,+1.

Finally, the mappings only sample in ZN and com-
pute integer multiplication and division, so they can
be computed in logarithmic space [CDL] and hence by
polynomial-sized branching programs. Using Theorem
4.6, we conclude that QUADRATIC RESIDUOSITY re-
duces to PEDMIN,MAX,+1

F2,3 .

Remark 4.12. In the proof above we assume that we
can sample uniformly from [N ] given uniformly random
bits. This is not accurate since N is not a power of two.
To fix this we slightly modify the mapping fN,x as fol-
lows. Let k = dlog Ne. The mapping receives as input
c ∈ {0, 1} as well as 2k strings r1, . . . , r2k each in
{0, 1}k. It outputs xc · r2

i (mod N), where i ∈ [2k] is
the minimal index such that ri ∈ [N ] (when viewed as
an integer in binary representation). If no such i exist
then the mapping outputs 0. First observe that this new
mapping can still be computed in logarithmic space.

form sampling in Z∗N , given only N , in logarithmic space. Also note,
that we assume that we can sample uniformly from [N ]. This is not
accurate (since N is not a power of 2) and we address this issue in
Remark 4.12 following the proof.
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The probability that for no i ∈ [2k], ri ∈ [N ] is at
most 1/N2. Hence in the analysis above probabilities
change by at most 1/N2. The support of the modified
mapping remains the same as the original one. It fol-
lows (by the proof above) that there is a constant gap
between the max and min entropies of yes and no in-
stances. This gap can be amplified to be more than 1 by
taking two independent copies of the mapping.

4.4.2 Decisional Diffie-Hellman
Definition 4.13 (DECISIONAL DIFFIE HELLMAN).
The promise problem DECISIONAL DIFFIE HELLMAN
is defined with respect to a family G of cyclic groups of
prime order. It is defined as follows:

DDHYES = {(G, g, ga, gb, gab :
G ∈ G of prime order q,

g generator of G, a, b ∈ Zq}
DDHNO = {(G, g, ga, gb, gc :

G ∈ G of prime order q,

g generator of G, a, b, c ∈ Zq, c 6= a · b}

Claim 4.14. DECISIONAL DIFFIE HELLMAN reduces
to the problem PEDMIN,MAX,+1

F2,3 .

Proof Sketch. We use the random self-reducibility of
DDH, due to Naor and Reingold [NR]. They
showed how to transform a given DDH instance x =
(G, g, ga, gb, gc) into a new one (G, g, ga′ , gb′ , gc′),
such that a′, b′ are uniformly random in Zq and: (i) if x
is a YES instance (i.e. c = a · b) then c′ = a′ · b′, so the
output (in its entirety) is uniform over a set of size |G|2.
On the other hand, (ii) if x is a NO instance then c′ (and
also gc′) is uniformly random given (G, g, ga′ , gb′) and
the output (in its entirety) is uniform over a set of size
|G|3.4

The mapping computed by this reduction allows us to
transform a DECISIONAL DIFFIE HELLMAN instance
in an instance of ED, where yes instances are trans-
formed into pair of mappings or distributions (X, Y ),
where X is uniform over a set of size |G|2.5 (some fixed
dummy distribution) and on YES instances Y is uni-
form over a set of size |G|2 and on NO instances Y is
uniform over a set of size |G|3. I.e., it reduces DECI-
SIONAL DIFFIE HELLMAN to EDMIN,MAX,×1.2.

Finally, to reduce DECISIONAL DIFFIE HELLMAN
to PED we need to activate the randomizing polyno-
mial machinery of Theorem 4.6. The maps X and Y
as described above compute multiplication (which can
be done in log-space) and exponentiation, which is not
a log-space operation. However, the elements being ex-
ponentiated are all known in advance. We can thus use
an idea due to Kearns and Valiant [KV] and compute

4 To deal with the problem of sampling uniformly from sets whose
size is not a power of two refer to Remark 4.12.

in advance for each of these basis, say g, the powers
(g, g2, g4, g8, . . .). Each exponentiation can then be re-
placed by an iterated product. By the results of Beame,
Cook and Hoover [BCH] the iterated product can be
computed in logarithmic depth (or space). By Theorem
4.6, we conclude that DECISIONAL DIFFIE HELLMAN
reduces to PEDMIN,MAX,+1

F2,3 .

5 Algorithms for Polynomial Entropy Ap-
proximation

5.1 Approximating Entropy via Directional
Derivatives

In this section we give an approximation algorithm
for the entropy of homogenous polynomial maps of de-
gree two, over prime fields Fq other than F2. The gen-
eral strategy is to relate the entropy of a quadratic map
with the entropy of a random directional derivative of
the map. These derivatives are of degree one and so
their entropy is easily computable.

For a polynomial mapping P : Fn
q → Fm

q and a vec-
tor a ∈ Fn

q we define the directional derivative of P in
direction a as the mapping DaP : Fn

q → Fm
q given by

DaP (x) def= P (x + a)− P (x).

It is easy to verify that for every fixed a, DaP (x) is a
polynomial mapping of degree at most deg(P )− 1.

Throughout this section, q is a prime other than
2 and Q : Fn

q 7→ Fm
q denotes a homogenous

quadratic mapping given by m quadratic polynomials
Q1(x), . . . , Qm(x) in n variables x = (x1, . . . , xn).
For every i ∈ [m] there exists an n× n matrix Mi such
that Qi(x) = xt ·Mi · x. If char(Fq) 6= 2 then we can
assume w.l.o.g that Mi is always symmetric (by replac-
ing Mi with (Mi + M t

i )/2 if needed).
For every fixing of a, DaQ(x) is an affine (degree

at most one) mapping. We denote by r(a) the rank of
DaQ(x, a) (that is, the dimension of the affine subspace
that is the image of the mapping given by DaQ(x)). We
relate the r(a)’s to entropy in the following two lem-
mas:

Lemma 5.1. For every a ∈ Fn
q we have

r(a) ≤ 2 ·HShannon(Q(Un))/ log q.

Lemma 5.2.

E
a

R←Fn
q

[
q−r(a)

]
= 2−HRenyi(Q(Un)).

Before proving these lemmas, we use them to obtain
our algorithm:

Theorem 5.3. There exists a probabilistic polynomial-
time algorithm A that, when given a prime q 6= 2, a
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homogeneous quadratic map Q : Fn
q 7→ Fm

q (as a list
of coefficients), and an integer 0 < k ≤ m and outputs
TRUE or FALSE such that:
• If HRenyi(Q(Un)) ≥ 2k · log(q)+1 then A outputs

TRUE with probability at least 1/2.
• If HShannon(Q(Un) < k · log(q) then A always

outputs FALSE.

Proof. The algorithm simply computes the rank r(a)
of the directional derivative DaQ in a random direc-
tion a ∈ Fn

q . If the value of r(a) is at least 2k the al-
gorithm returns TRUE, otherwise the algorithm returns
FALSE. If HShannon(Q(Un)) < k · log(q) then, from
Lemma 5.1 we have that r(a) will always be smaller
than 2k and so the algorithm will work with probability
one. If HRenyi(Q(Um)) ≥ 2k · log(q) + 1 then, using
Lemma 5.2 and Markov’s inequality, we get that q−r(a)

will be at most 2−2k log q with probability at least 1/2.
Therefore, the algorithm works as promised.

We now prove the two main lemmas.

Proof of Lemma 5.1. Since the output of an affine map-
ping is uniform on its output, we have

HShannon(DaQ(Un)) = log(qr(a)).

By subadditivity of Shannon entropy, we have

HShannon(DaQ(Un))
≤ HShannon(Q(Un + a)) + HShannon(Q(Un))
= 2 HShannon(Q(Un))

The proof of Lemma 5.2 works by expressing both
sides in terms of the Fourier coefficients of the distri-
bution Q(Un), which are simply given by the following
biases:

Definition 5.4. For a prime q and a random variable X
taking values in Fq , we define

bias(X) def=
∣∣E [

ωX
q

]∣∣ ,

where ωq = e2πi/q is the complex primitive q’th root
of unity. For a random variable Y taking values in Fm

q

and a vector u ∈ Fm
q , we define we define

biasu(Y ) def= bias(〈u, Y 〉) =
∣∣∣E

[
ω〈u,X〉

q

]∣∣∣ ,

where 〈·, ·〉 is inner product modulo q.

Note that if Y is uniform on Fm
q , then biasu(Y ) = 0

for all u 6= 0. A relation between bias and rank in the
case of a single output (i.e. m = 1) is given by the
following:

Claim 5.5. Suppose char(Fq) 6= 2. Let
R(x1, . . . , xn) = xtMx be a homogeneous quadratic
polynomial over Fn

q such that rank(M) = k and M is
symmetric. Then,

bias(R(Un)) = q−k/2.

Proof. As shown in [LN], R(x) is equivalent (under a
linear change of variables) to a quadratic polynomial
S(x) =

∑k
i=1 ai · x2

i where a1, . . . , ak ∈ F∗q . Then

bias(R(Un)) = bias(S(Un))

=

∣∣∣∣∣∣
1

qm

∑

x∈Fm
q

ω
∑

i∈[k] ai·x2
i

q

∣∣∣∣∣∣

=
∏

i∈[k]

∣∣∣∣∣∣
1
q

∑

y∈Fq

ωai·y2

q

∣∣∣∣∣∣
= (q−1/2)k = q−k/2,

where the last equality follows from the Gauss for-
mula for quadratic exponential sums in one variable (see
[LN]).

Next we relate biases for many output coordinates to
Renyi entropy.

Claim 5.6. Let X be a random variable taking values
in Fm

q . Then

2−HRenyi(X) = E
u

R←Fm
q

[biasu(X)2].

Proof. We begin by recalling that the Renyi entropy
simply measures the `2 distance of a random variable
from uniform:

2−HRenyi(X) = cp(X)

=
∑

x

Pr[X = x]2

=
∑

x

(Pr[X = x]− 1/qm)2 + 1/qm

= ‖X − Um‖2 + 1/qm,

where ‖X − Um‖ denotes the `2 distance between the
probability mass functions of X and Um (viewed as
vectors of length qm). By Parseval, the `2 distance
does not change if we switch to the Fourier basis: For
u ∈ Fm

q , the u’th Fourier basis function χu : Fm
q → C

is the function given by

χu(x) =
1

qm/2
· ω〈u,x〉

q .

These form an orthonormal basis for the vector space
of functions from Fm

q to C, under the standard inner
product [f, g] =

∑
x∈Fm

q
f(x)g(x).
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Abusing notation, we can view a random variable X
taking values in Fm

q as a function X : Fm
q → C where

X(x) = Pr[X = x]. Then the u’th Fourier coefficient
of X is given by

X̂u
def= [X,χu]

=
1

qm/2
·

∑

x∈Fm
q

Pr[X = x] · ω−〈u,x〉
q

=
1

qm/2
· E

[
ω−〈u,X〉

q

]
,

so |X̂u| = (1/qm/2) · biasu(X).
Thus, by Parseval, we have:

‖X − Um‖2 =
∑

u

∣∣∣X̂u − (Ûm)u

∣∣∣
2

=
∑

u 6=0

∣∣∣X̂u

∣∣∣
2

= E
u

R←Fm
q

[biasu(X)2]− 1/qm.

Putting this together with the first sequence of equations
completes the proof.

Proof of Lemma 5.2. Taking X = Q(Un) in Claim 5.6,
we have

2−HRenyi(Q(Un)) = E
u

R←Fm
q

[biasu(Q(Un))2].

By Claim 5.5, biasu(Q(Un))2 =
bias(

∑
i uiQi(Un))2 = q− rank(

∑
i uiMi). Note that

for a s × t matrix M , q− rank(M) = Pr
v

R←Ft
q

[Mv = 0].

Thus, we have

2−HRenyi(Q(Un)) = E
u

R←Fm
q

[
q− rank(

∑
i uiMi)

]

= E
u

R←Fm
q

[
Pr

a
R←Fn

q

[∑

i

uiMia = 0

]]

= E
a

R←Fn
q

[
Pr

u
R←Fm

q

[∑

i

uiMia = 0

]]

= E
a

R←Fn
q

[
q−r(a)

]
,

where the last equality is because
∑

i uiMia = 0 iff
uMa = 0 where Ma is the matrix whose rows are
M1a, . . . , Mma (and so r(a) = rank(Ma)).

5.2 Approximating Max-Entropy over F2 via
Rank

In this section we deal with degree d polynomials
over F2. Since the field is F2 we can assume w.l.o.g
that the polynomials are multilinear (degree at most 1

in each variable). We show that, for small d, the rank of
the set of polynomials (when viewed as vectors of coef-
ficients) is related to the entropy of the polynomial map.
The results of this section can be extended to any field
but we state them only for F2 since this is the case we
are most interested in (and is not covered by the results
of Section 5.1).

The main technical result of this section is the fol-
lowing theorem, which we prove in Section 5.3 below.
The theorem relates the entropy of a polynomial map-
ping (in the weak form of support) with its rank as a set
of coefficient vectors.

Theorem 5.7. Let P : Fn
2 7→ Fm

2 be a multilinear poly-
nomial mapping of degree ≤ d such that | Supp(P )| ≤
2k, for k, d ∈ N. Then

rank{P1, . . . , Pm} ≤
(

k + 2d

d

)
,

where the rank is understood as the dimension of the F2-
span of P1, . . . , Pm (equivalently, the rank of the m ×(
n+d

d

)
matrix over F2 whose rows are the coefficient-

vectors of the polynomials Pi).

Using this theorem we get the following approxima-
tion algorithm for max-entropy over characteristic two:

Theorem 5.8. There exists a constant c and
polynomial-time algorithm A such that when A is given
as input a degree d polynomial map P : Fn

2 7→ Fm
2 and

an integer 0 < k ≤ n, we have:
• If Hmax(P (Un)) >

(
k+2d

d

)
, then A outputs TRUE.

• If Hmax(P (Un)) ≤ k, then A outputs FALSE.

Proof. The algorithm computes the rank of the set of
polynomials P1, . . . , Pm. If it is greater than

(
k+2d

d

)
then it returns TRUE, otherwise it returns FALSE. The
correctness follows directly from Theorem 5.7 and from
the simple fact that rank at most k implies support size
at most 2k.

5.3 Proof of Theorem 5.7
The idea of the proof is to find an affine-linear sub-

space V ⊂ Fn
2 of dimension ≈ k such that the restric-

tion of the polynomials P1, . . . , Pm to this subspace
does not reduce their rank. Since the restricted poly-
nomials are polynomials of degree≤ d in≈ k variables
we get that their rank is at most ≈ kd.

It turns out that it suffices to take V to be a subspace
that hits a large fraction of the outputs of P , as given by
the image of L in the following lemma:

Lemma 5.9. Let P : Fn
2 7→ Fm

2 be some function such
that | Supp(P (Un))| ≤ 2k and let ε > 0. Then, there
exists an affine-linear mapping L : F`

2 7→ Fn
2 with ` =

dk + log(1/ε)e such that

Pr
x∈Fn

2

[∃y ∈ F`
2 , P (x) = P (L(y))] > 1− ε.

11



Proof. We use the probabilistic method. Let L : F`
2 →

Fn
2 be a uniformly random affine-linear mapping. Fix

z ∈ Image(P ), and let µz = |P−1(z)|/2n. By the
pairwise independence of the outputs of L and Cheby-
chev’s Inequality, it follows that

Pr
L

[Image(L) ∩ P−1(z) = ∅] ≤ 1− µz

µz · 2`
.

(For each point y ∈ F`
2, let Xy be the indicator vari-

able for L(y) ∈ P−1(z). Then the Xy’s are pair-
wise independent, each with expectation µz and vari-
ance µz · (1 − µz). Thus, by Chebychev’s Inequality,
Pr[

∑
y Xy = 0] ≤ (2` · µz · (1− µz))/(2` · µz)2.)

Now, let Iz be an indicator random variable for
Image(L) ∩ P−1(z) = ∅. Then,

E
L

[
Pr

x∈Fn
2

[¬∃y ∈ F`
2 , P (x)P (L(y))]

]

= E
L

[
Pr

x∈Fn
2

[Image(L) ∩ P−1(P (x)) = ∅]
]

= E
L


 ∑

z∈Image(P )

µz · Iz




≤
∑

z∈Image(P )

µz · 1− µz

µz · 2`

=
| Image(P )| − 1

2`

≤ 2k − 1
2`

< ε,

for ` = dk + log(1/ε)e. By averaging, there exists a
fixed L such that

Pr
x∈Fn

2

[¬∃y ∈ F`
2 , P (x) = P (L(y))] < ε,

as desired.

To show that the property of L given in Lemma 5.9
implies that P ◦ L has the same rank as P (when ε is
sufficiently small), we employ the following (known)
version of the Schwartz-Zippel Lemma, which bounds
the number of zeros of a multilinear polynomial of de-
gree d that is not identically zero:

Lemma 5.10. Let P ∈ F2[x1, . . . , xn] be a degree d
multilinear polynomial that is not identically zero. Then

Pr[P (x) = 0] ≤ 1− 2−d.

Proof. The proof is by double induction on d = 1, 2, ...
and n = d, d + 1, .... If d = 1 then the claim is trivial.
Suppose we proved the claim for degree < d and all n
and for degree d and < n variables.

If n = d (it cannot be smaller than d since the degree
is d) then the bound is trivial since there is at least one

point at which P is non zero and this point has weight
2−d.

Suppose n > d and assume w.l.o.g that x1 appears in
P . Write P as

P (x1, . . . , xn) = x1 ·R(x2, . . . , xn) + S(x2, . . . , xn),

where R has degree ≤ d − 1 and S has degree ≤ d.
We separate into two cases. The first case is when
R(x2, . . . , xn) + S(x2, . . . , xn) is identically zero. In
this case we have

P (x) = (x1 + 1) ·R(x2, . . . , xn)

and so, by the inductive hypothesis,

Pr[P (x) = 0] = Pr[x1 = 1] + Pr[x1 = 0] ·
Pr[R(x2, . . . , xn) = 0]

≤ (1/2) + (1/2)(1 + 2−(d−1))
= 1− 2−d.

In the second case we have that R(x2, . . . , xn) +
S(x2, . . . , xn) is not identically zero. Now,

Pr[P (x) = 0]
= Pr[x1 = 0] · Pr[S(x2, . . . , xn) = 0]

+Pr[x1 = 1] · Pr[R + S = 0]
≤ (1/2) · (1− 2−d) + (1/2)(1− 2−d)
= 2−d,

as was required.

We now combine these two lemmas to show that
there exists a linear restriction of P to a small number
of variables that preserves independence of the coordi-
nates of P .

Lemma 5.11. Let P : Fn
2 7→ Fm

2 be a multilinear map-
ping of degree ≤ d such that | Supp(P )| ≤ 2k, for
k, d ∈ N. Denote by P1, . . . , Pm ∈ F2[x1, . . . , xn] the
coordinates of P . Suppose that P1, . . . , Pm are linearly
independent (in the vector space F2[x1, . . . , xn]). Then,
there exists an affine-linear mapping L : F`

2 7→ Fn
2

with ` = k + d such that the restricted polynomials
Pj(L(y1, . . . , y`)), j ∈ [m] are also independent.

Proof. Apply Lemma 5.9 with ε < 2−d on the mapping
P to find an affine-linear mapping L : F`

2 7→ Fn
2 with

` = k + d and such that

Pr
x∈Fn

2

[∃y ∈ F`
2 , P (x) = P (L(y))] > 1− 2−d.

Call an element x ∈ Fn
2 ‘good’ if the event above hap-

pens (so x is good w.p > 1− 2−d).
For j ∈ [m] let Rj(y1, . . . , y`) = Pj(L(y1, . . . , y`))

(notice that since L is linear the polynomials Rj are

12



also of degree at most d but are not necessarily mul-
tilinear). Suppose in contradiction that the polynomials
R1, . . . , Rm are linearly dependent. So there is a non
empty set I ⊂ [m] such that RI(y) =

∑
i∈I Ri(y) = 0

for every y ∈ F`
2. Let PI(x) =

∑
i∈I Pi(x). Then, if

x is good we have that there exists y such that P (x) =
P (L(y)) and so we get that

PI(x) = PI(L(y)) = RI(y) = 0.

This means that PI(x), which is a multilinear polyno-
mial of degree at most d, is zero on a fraction bigger
than 1− 2−d of the inputs. Using Lemma 5.10 we con-
clude that PI(x) is identically zero and so the Pi’s are
linearly dependent – a contradiction.

Corollary 5.12. Let P : Fn
2 7→ Fm

2 be a multilinear
mapping of degree ≤ d such that | Supp(P )| ≤ 2k, for
k, d ∈ N. Denote by P1, . . . , Pm ∈ F2[x1, . . . , xn] the
coordinates of P . Suppose that the set P1, . . . , Pm has
rank ≥ r (in the vector space F2[x1, . . . , xn]). Then,
there exists an affine-linear mapping L : F`

2 7→ Fn
2

with ` = k + d such that that the restricted polynomials
Pj(L(y1, . . . , y`)), j ∈ [m] also have rank ≥ r

Proof. W.l.o.g suppose that P1, . . . , Pr are linearly in-
dependent and apply Lemma 5.11 on the mapping P̃ =
(P1, . . . , Pr) : Fn

2 7→ Fr
2. The support of P̃ is also at

most 2k and so we L : F`
2 → Fn

2 such that the restric-
tion P̃ (L(y)) has rank r. Now, adding the m − r co-
ordinates Pr+1(L(y)), . . . , Pm(L(y)) cannot decrease
the rank.

We are now ready to prove the Theorem.

Proof of Theorem 5.7. Let r denote the rank of the set
of polynomials {P1, . . . , Pm}. Then, using Corol-
lary 5.12, there exists a linear mapping L : F`

2 7→ Fn
2 ,

with ` = k + d, such that the restricted polynomials
P1(L(y)), . . . , Pm(L(y)) also have rank ≥ r. Since
these are polynomials of degree≤ d in ` variables, their
rank is bounded from above by the number of different
monomials of degree at most d in ` = k + d variables,
which equals

(
`+d

d

)
.
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