
Amplifying the Security of Functional Encryption, Unconditionally

Aayush Jain∗ Alexis Korb† Nathan Manohar‡ Amit Sahai§

June 2020

Abstract

Security amplification is a fundamental problem in cryptography. In this work, we study
security amplification for functional encryption (FE). We show two main results:

• For any constant ε ∈ (0, 1), we can amplify any FE scheme for P/poly which is ε-secure
against all polynomial sized adversaries to a fully secure FE scheme for P/poly, uncondi-
tionally.

• For any constant ε ∈ (0, 1), we can amplify any FE scheme for P/poly which is ε-secure
against subexponential sized adversaries to a fully subexponentially secure FE scheme for
P/poly, unconditionally.

Furthermore, both of our amplification results preserve compactness of the underlying FE
scheme. Previously, amplification results for FE were only known assuming subexponentially
secure LWE.

Along the way, we introduce a new form of homomorphic secret sharing called set homo-
morphic secret sharing that may be of independent interest. Additionally, we introduce a new
technique, which allows one to argue security amplification of nested primitives, and prove a
general theorem that can be used to analyze the security amplification of parallel repetitions.

∗UCLA. Email: aayushjain@cs.ucla.edu.
†UCLA. Email: alexiskorb@cs.ucla.edu.
‡UCLA. Email: nmanohar@cs.ucla.edu.
§UCLA. Email: sahai@cs.ucla.edu.

Contents

1 Introduction 1

2 Technical Overview 3
2.1 Amplification via Secret Sharing and Parallel Repetition 3
2.2 Proving Security: Probabilistic Replacement Theorem 5
2.3 Amplifying Security via Nesting . 7
2.4 Organization . 8

3 Preliminaries 8
3.1 Useful Lemmas . 9

4 Functional Encryption 10
4.1 Semi-Functional FE . 12
4.2 From FE to Semi-Functional FE . 13

5 Set Homomorphic Secret Sharing Schemes 15
5.1 Definition . 15
5.2 SetHSS from CFHSS . 18

5.2.1 Construction . 18

6 Covering Sets 19

7 Probabilistic Replacement Theorem 20

8 Amplification via Secret Sharing and Parallel Repetition 38
8.1 Construction . 39
8.2 Security . 41
8.3 Instantiating the Parameters . 52

8.3.1 Amplification Against Polynomial Sized Adversaries 52
8.3.2 Amplification Against Subexponential Sized Adversaries 55

9 Amplification via Nesting 56
9.1 Construction . 57
9.2 Security . 58

10 Amplification of Nested Public-Key Encryption 73
10.1 Construction . 73
10.2 Security . 74

11 Final Amplification Results 76

12 Acknowledgements 76

13 References 77

1 Introduction

Security amplification is a fundamental problem in which one takes a weakly secure cryptographic
primitive and transforms it into a fully secure primitive. For instance, suppose (G,E,D) is a public-
key encryption (PKE) scheme satisfying standard correctness, but which only satisfies the weak
security guarantee that there exists a constant ε ∈ (0, 1) such that for all messages m0,m1 ∈ {0, 1}λ
and for all polynomial-time adversaries A, we have∣∣∣Pr[A(pk, E(pk,m0)) = 1 | (pk, sk)← G(1λ)]− Pr[A(pk, E(pk,m1)) = 1 | (pk, sk)← G(1λ)]

∣∣∣ ≤ ε.
Then, the relevant security amplification goal for such an ε-secure public-key encryption would
be to construct a new PKE (G′, E′, D′) that satisfies standard security, where the constant ε
above would be replaced with a negligible function in λ. It has long been known [DNR04, HR05]
that the security of ε-secure PKE can be amplified to achieve fully secure PKE unconditionally.
(Remarkably, however, there are still natural questions about security amplification for ε-secure
PKE that remain open – see below.)

Aside from being a fundamental question in its own right, security amplification also opens the
door to building cryptographic primitives from new intractability assumptions. For instance, in the
future, we may discover natural sources of hardness that yield cryptographic primitives with only a
weak level of security. Using security amplification, such novel sources of hardness would still yield
fully secure cryptographic primitives. This motivation is especially important for cryptographic
primitives for which only a few assumptions are known to yield that primitive.

There have been numerous works throughout the years on security amplification for various
cryptographic primitives (for example, [Imp95, BIN97, DKS99, Hol05, Hol06, HR05, Wul07, Wul09,
HPWP10, MT10, Tes11, PV07, CHS05, HIKN08, MPW07, MT09, LT13, JP14, CCL18, AJS18,
AJL+19, GJS19]). As with all cryptographic primitives, minimizing assumptions is a major goal in
security amplification research. Indeed, unlike many results in cryptography, security amplification
results can be unconditional (e.g. [Imp95, BIN97, DKS99, Hol05, Hol06, HR05, Wul07, Wul09,
HPWP10, MT10, Tes11, PV07, CHS05, MPW07, LT13]).

Security Amplification for Functional Encryption. The focus of this paper is to study
security amplification in the context of functional encryption. Functional encryption (FE), intro-
duced by [SW05] and first formalized by [BSW11, O’N10], is one of the core primitives in the
area of computing on encrypted data. This notion allows an authority to generate and distribute
keys associated with functions f1, . . . , fq, called functional keys, which can be used to learn the
values f1(x), . . . , fq(x) given an encryption of x. Intuitively, the security notion states that the
functional keys associated with f1, . . . , fq and an encryption of x reveal nothing beyond the values
f1(x), . . . , fq(x).

Functional encryption has been the subject of intense study [SW05, GGH+13, SW14, GGHZ16,
GKP+13, BGG+14, GVW15, ABSV15a, AJ15, BV15, Lin16, Lin17, GPSZ17, GPS16, LV16, AS17,
LT17, AJS18, AJL+19, Agr19, JLMS19] and has opened the floodgates to important cryptographic
applications that have long remained elusive. These applications include, but are not limited to,
multi-party non-interactive key exchange [GPSZ17], universal samplers [GPSZ17], reusable gar-
bled circuits [GKP+13], verifiable random functions [GHKW17, Bit17, BGJS17], and adaptive gar-
bling [HJO+16]. FE has also helped improve our understanding of important theoretical questions,
such as the hardness of Nash equilibrium [GPS16, GPSZ17]. One of the most important applications
of FE is its implication to indistinguishability obfuscation (iO for short) [AJ15, BV15]. There have
also been several recent works on functional encryption combiners [AJS17, ABJ+19, JMS20] and

1

the related problem of iO combiners [AJN+16, FHNS16]. While amplifiers allow one to transform
a weakly secure candidate into a fully secure one, combiners allow one to take many candidates of
which at least one is fully secure (and the others are potentially completely insecure) and transform
them into a fully secure scheme.

Our Results. Remarkably, although functional encryption was introduced 15 years ago in [SW05],
security amplification for ε-secure FE, defined analogously to ε-secure PKE above, was first studied
only recently in [AJS18, AJL+19], which achieved amplification assuming subexponentially secure
LWE. In fact, no security amplification results for FE are known under any other assumptions. In
this paper, we show that one can obtain amplification for FE unconditionally. In particular, we
obtain the following:

Theorem 1.1 (Informal). Assuming an ε-secure FE scheme for P/poly secure against all polyno-
mial sized adversaries for some constant ε ∈ (0, 1), there exists a fully secure FE scheme secure
against all polynomial sized adversaries. Furthermore, the transformation preserves compactness.

Additionally, our amplification result can be generalized to hold against larger adversaries, in
particular, adversaries of subexponential size.

Theorem 1.2 (Informal). Assuming an ε-secure FE scheme for P/poly secure against subexponen-
tial sized adversaries for some constant ε ∈ (0, 1), there exists a subexponentially secure FE scheme.
Furthermore, the transformation preserves compactness.

As a consequence of the above theorem and the FE to iO transformations of [AJ15, BV15,
BNPW16, KS17, KNT18], we observe that we can construct iO from an ε-secure FE scheme secure
against subexponential sized adversaries without the need for any additional assumptions.

Techniques and additional results. To achieve our results, we introduce and construct a new
form of homomorphic secret sharing called set homomorphic secret sharing (SetHSS), informally
defined below in our Technical Overview. This generalizes a recent notion of combiner friendly
homomorphic secret sharing introduced in [JMS20] to a probabilistic scenario tailored for security
amplification.

Our work also involves an intertwined use of hardcore measures [Imp95, KS03, BHK09, MT10,
VZ13] and efficient leakage simulation [TTV09, JP14, Skó15, Skó16, CCL18]. First, we improve
upon and simplify a technique introduced in [AJS18, AJL+19] and then used in [GJS19] that allows
one to argue that some fraction of many parallel repetitions of a weakly secure primitive are likely to
be secure. The original technique critically uses the leakage simulation theorems [JP14, CCL18] in
conjunction with a hardcore measure theorem [MT10], which allows one to escape the computational
overhead of sampling from hardcore measures. We simplify their technique by using a different
leakage simulation theorem [Skó15] which allows for more direct simulation of the applicable leakage.
Moreover, we introduce a new “fine-grained” analysis that is crucial to achieving the parameters
we need for unconditional amplification. Finally, we isolate the core of their technique and derive
a general and applicable theorem (which we call the probabilistic replacement theorem). This
theorem is not specific to any cryptographic primitive and, thus, we believe that it might be useful
for future efforts in cryptographic amplification beyond FE.

Our second technique is a new technique which allows one to argue security amplification of
nested encryptions. In particular, using this technique, we are able to prove the following:

Theorem 1.3 (Informal). For any constant ε ∈ (0, 1) and ε-secure FE scheme FE, the FE scheme
FE∗ obtained by composing FE with itself is ε2 + negl(λ) -secure.

2

We remark that this technique can also be generalized to argue similar security for public-key
encryption (PKE). As such, we also show the following:

Theorem 1.4 (Informal). For any constant ε ∈ (0, 1) and ε-secure PKE scheme PKE, the PKE
scheme PKE∗ obtained by composing PKE with itself is ε2 + negl(λ) -secure.

Prior to our paper, to the best of our knowledge, it was not known how to prove that a simple
nesting provided this amplification even for public-key encryption.

Lastly, we remark that this amplification by nesting technique also critically relies on a combi-
nation of leakage simulation and hardcore measures. We believe our results exemplify how potent
this combination can be for security amplification of cryptographic primitives.

2 Technical Overview

To establish our results, we proceed in two phases:

1. First, we construct an amplifier that converts an ε-secure FE scheme for any constant ε ∈ (0, 1)
to an ε′-secure FE scheme for any arbitrarily small constant ε′ < ε.

2. Second, we construct an amplifier that converts an ε-secure FE scheme for any sufficiently
small constant ε < 1

6 to a fully secure FE scheme.

The above template also works to give an amplifier that is subexponentially secure (Theorem
1.2). By composing the amplifiers of these two stages, we arrive at our results. We will begin by
focusing on the second stage of our amplification procedure, namely, how we amplify an FE scheme
that is ε-secure for a constant ε < 1

6 to one that is fully secure.

2.1 Amplification via Secret Sharing and Parallel Repetition

Typically, in order to amplify a weakly secure primitive to a fully secure one, one proceeds by
constructing a scheme that uses many copies of the weakly secure primitive and is secure if a fraction
of these copies are secure. Intuitively, we expect that if these copies of the weakly secure primitive
are independent, then at least some fraction should be secure, and the resulting construction will
also be secure. This idea of parallel repetitions of the weakly secure primitive is utilized typically in
tandem with a secret sharing scheme. For example, the canonical public-key encryption amplifier
works by secret sharing the message and then encrypting each of these shares independently in
parallel using the weakly-secure public-key encryption scheme [LT13]. This paradigm has also been
used to amplify other primitives such as non-interactive zero-knowledge [GJS19], by constructing
a suitable secret sharing scheme.

In order to amplify functional encryption (FE), a natural approach to utilize this framework is
via function secret sharing (FSS). Function secret sharing allows one to split a function f into shares
f1, . . . , fn such that for any input x, we can also split x into shares x1, . . . , xn such that learning
the evaluations f1(x1), . . . , fn(xn) allows one to recover f(x). Informally, the security property
associated with a function secret sharing scheme is that given all but one of the input shares, the
input should remain hidden (beyond what is revealed by f(x)) even if one is given all the function
shares and their evaluations on the input shares. If we had such a function secret sharing scheme,
we could simply encrypt each input share xi under an instantiation FEi of our weakly secure FE
scheme to obtain cti. A ciphertext in our scheme would be (cti)i∈[n]. Similarly, key generation could
use FEi to generate a key ski for the function fi. The function key in our scheme would then be
(ski)i∈[n]. From these ciphertexts and function keys, one could learn (fi(xi))i∈[n] and recover f(x).

3

For security, one would expect that if the FE scheme is weakly secure, then at least one out of the
n instantiations would be secure, in which case, the overall scheme’s security would follow by the
security of the function secret sharing scheme. This general approach was used in [AJS18, AJL+19]
to amplify FE assuming subexponentially secure LWE.

In this work, our goal is to amplify FE unconditionally. We first observe that we can assume
secure one-way functions and still achieve unconditional amplification since a weakly-secure FE
implies a weakly-secure one-way function, which can subsequently be amplified using the result
of [Imp95]. Unfortunately, we do not know how to construct function secret sharing schemes of
the above form assuming only secure one-way functions. However, we note that the above function
secret sharing scheme allows up to n−1 of the shares to be corrupted while maintaining security. Yet,
if we take many copies of an ε-secure FE scheme, we would expect roughly a (1−ε) fraction of copies
to be secure, not just one! Thus, the above function secret sharing scheme has a stronger security
property than the one we would intuitively expect to require for amplification. All we actually need
is a secret sharing scheme that is secure against typical corruption patterns (that is, one that is
secure with high probability if each share is corrupted independently with some probability p). To
capitalize on this intuition, we introduce and construct a new type of homomorphic secret sharing
scheme, called a set homomorphic secret sharing scheme.

Set Homomorphic Secret Sharing Scheme. In a set homomorphic secret sharing (SetHSS)
scheme, function shares are associated with sets (Ti)i∈[m], where each set Ti ⊂ {1, 2, . . . , n}. The
input x is split into n shares x1, . . . , xn. A function fi associated with the set Ti takes as input all
xj ’s such that j ∈ Ti. Thus, we can think of the Ti’s as sets of the indices of the input shares that
the function takes as input. The security guarantee is that if the adversary corrupts some of the
Ti’s and learns all the input shares corresponding to these sets, security still holds provided there
is at least one input share xi∗ that the adversary does not learn.

Using a SetHSS scheme, it is possible to build (what we expect to be) an FE amplifier. We
follow the same approach detailed above for a function secret sharing scheme to build FE, except
we instead use SetHSS with respect to sets (Ti)i∈[m]. That is, we run m copies of the FE setup
algorithm to obtain m master secret keys (mski)i∈[m]. To encrypt a message x, we n-out-of-n
secret share x into shares x1, . . . , xn. For each i ∈ [m], we encrypt (xj)j∈Ti under mski to obtain
cti and set the ciphertext ct as (cti)i∈[m]. To generate function keys, we use the SetHSS scheme
to obtain function shares f1, . . . , fm and then set skf = (ski)i∈[m], where ski is the function key
for fi generated using mski. Observe that by the correctness of the SetHSS scheme and the FE
scheme, the above is a correct FE construction. Since the FE scheme is only weakly-secure, if we
assume that each encryption becomes corrupted with some probability p (this corresponds to a set
Ti becoming corrupted in the SetHSS scheme), we can calculate the probability that the SetHSS
scheme remains secure when the corresponding input shares are leaked.

The question that naturally follows is how do we construct such a SetHSS scheme? The first
step towards this was taken in the recent work of [JMS20], which introduced a specialized form of
function secret sharing, called combiner-friendly homomorphic secret sharing (CFHSS), which was
constructed assuming only one-way functions. Essentially, a CFHSS is a SetHSS where m =

(
n
3

)
,

and the sets Ti are all possible size 3 subsets of {1, 2, . . . , n}. We observe that unfortunately, such
a SetHSS scheme will not suffice for our purposes, because if any constant fraction of the sets Ti
are corrupted, then almost certainly every input share xj would be corrupted.

Instead, for some parameters n and m, we generate sets (Ti)i∈[m] by including each element
in [n] in each Ti independently at random with some probability q. We can then calculate two
probabilities: First, we can ensure that the probability that at least one share xj is not corrupted,

4

is sufficiently high – this should intuitively guarantee security. Second, we can ensure that all sets
of size 3 are covered by at least one of the sets Ti – this will allow us to ensure correctness by
setting the function share fi in our SetHSS scheme to be the concatenation of the CFHSS function
shares corresponding to each size 3 subset contained in Ti.

It turns out that setting the parameters n,m, and q above to achieve both properties simulta-
neously is nontrivial, and, in fact, we iterate this process twice. The first SetHSS scheme lets us
amplify from ε < 1

6 security to 1/ poly(λ) security. The second SetHSS scheme lets us amplify from
1/ poly(λ) security to negligible (or sub-exponential) security.

However, our security calculations only give us a sense of what we expect the resulting security
level to be. How do we actually prove that the scheme attains this level of security?

2.2 Proving Security: Probabilistic Replacement Theorem

Consider the following situation: There are n ∈ N independent copies of some primitive that is
known to be only weakly secure (over the randomness of the primitive) for some notion of security.
Then, one wants to claim that if n is large enough, with high probability, at least one of these
n instantiations will be secure. Or as a stronger notion, one might want some fraction of the n
instantiations to be secure. This is useful when security of some larger primitive holds provided
that some fraction of these n instantiations are secure. For example, if one were to additively secret
share a message and then independently encrypt each share, the message remains hidden as long
as at least one of the encryptions cannot be broken.

Proofs using Hardcore Lemmas: Typical proofs of this sort rely on hardcore lemmas that
define hardcore measures. First, we review the notion of a hardcore measure. Suppose that a
primitive is secure with some low probability over its randomness. Then, Impagliazzo’s hardcore
lemma [Imp95] states that there exists some “hard core” of the primitive’s randomness such that the
primitive is secure with high probability (against a somewhat smaller class of adversaries) when its
randomness is restricted to this “hard core”. In other words, though the primitive may be weakly
secure over uniform randomness, there is some “hard core” portion of the randomness on which the
primitive is strongly secure. This “hard core” may be defined as a measure over the randomness
(which we call a hardcore measure) or as a subset of the randomness (which we call a hardcore
set). A more precise specification of the relationship between the security gain and the density of
the hardcore measure can be found in various hardcore lemmas (refer to Section 3).

Then, typical security amplification proofs proceed as follows: In the scenario above, each of
the n instances of the primitive independently samples its randomness from a uniform distribu-
tion. However, this is equivalent to having each primitive sample its randomness from its hardcore
measure with probability proportional to the density of the hardcore measure and sample from
the complement of the hardcore measure with probability proportional to the density of the com-
plement. When considered this way, if the density of the hardcore measure is large enough, with
high probability, some of the instances of the primitive will sample randomness from their hardcore
measures. Therefore, those primitives are secure by the definition of the hardcore measure.

Dealing with the Time Complexity of Sampling Hardcore Measures: Now, this proof
technique works whenever it is the final step in a larger proof of security. But what happens when
this is not the case? For instance, suppose we independently encrypt secret shares of a message m,
and then after claiming some fraction of the encryptions are secure, suppose we want to move to
an experiment where the secure shares are replaced with shares corresponding to the message 0.
A natural idea would be to replace the shares known to be secure (those where the randomness of

5

the encryption was sampled from the hardcore measures) with simulated shares via a reduction to
some notion of indistinguishability between the real and simulated shares when the real shares are
hidden.

We note that the reduction in this case, upon receiving either the simulated or real shares,
would need to encrypt these challenge shares using the secure encryption instances. This means
the reduction needs to sample randomness from the hardcore measures of the encryption. This
can be problematic because there is no bound on the efficiency of sampling from these hardcore
measures. Therefore, there is no bound on the efficiency of the reduction. This would be fine if
the secret sharing satisfied a statistical notion of security. Unfortunately, this will not work if the
underlying secret sharing scheme achieves only computational security, such as is the case with our
SetHSS scheme. In general, the same issue can occur whenever computational assumptions need to
be used in the remainder of the proof of security, after applying an appropriate hardcore lemma.

In essence, the issue is that once one uses the fact that one is sampling from the hardcore
measures to prove that an instance is secure, then later reductions may also have to sample from the
hardcore measures. But this sampling may not be efficient, so the reduction may also be inefficient.
To address this problem, we build upon a technique introduced in [AJS18, AJL+19]. We first
observe that hardcore measures of sufficiently high density also have high min-entropy. Then, we
use a leakage simulation theorem from [Skó15] which allows one to simulate sampling from measures
with high min-entropy in a manner that is more efficient; by careful choice of parameters, we show
that this simulation can be made efficient enough to allow us to perform cryptographic reductions.
This allows one to continue performing reductions even after one has invoked the hardcore measures
(instead of sampling from the hardcore measure, we can instead run the simulator for the measure).
Furthermore, we can ensure that the simulator is independent of some of its inputs through the
appropriate use of commitments. We note that instead of using [Skó15] for leakage simulation,
[AJS18, AJL+19] uses a different leakage simulation lemma [CCL18] that deals with low output
length leakage instead of high min-entropy leakage and, therefore, requires the leakage to be first
transformed into an appropriate form. Our proof is thus simpler and more direct. Additionally, by
considering the output of the simulator as a single joint distribution, we can also get slightly better
and more fine-grained parameters, which allows us to get polynomial time simulators for all of the
appropriate parameter regimes we use in this paper. We then present the core of this technique
in a more abstract and modular way so that it can be applied to other situations and proofs. We
note that our abstracted theorem does not refer to hardcore measures at all, but instead refers to
the more natural problem of claiming that some fraction of n primitives is secure.

The Probabilistic Replacement Theorem: More specifically, suppose there are two random-
ized functions E and F that are weakly indistinguishable over their randomness. Then, our theorem
shows indistinguishability between the following two experiments: In one experiment, the adversary
gets n independent evaluations of E on n inputs. In the other experiment, we probabilistically re-
place some of the instances of E with F . Then, we give the adversary evaluations of these instances
of E and F using randomness generated by some bounded-time function h. Essentially, we show
that one can replace some of the instances of E with instances of F , while still maintaining overall
efficiency. Please refer to Section 7 for more details.

Relating this back to the notion of security, we could let F be a “secure” variant of some
primitive E. For instance, F could be an encryption of 0 and E an encryption of the message m. If
E is weakly secure in the sense that E is weakly indistinguishable from F , then if one has enough
independent instances of E, we show that at least some fraction of them will be secure (in the sense
that one can replace these instances of E with the secure variant F). For more details, please refer

6

to the proof overview in Section 7.

Applying the Probabilistic Replacement Theorem: Having shown the probabilistic replace-
ment theorem (Section 7), it is now possible to prove the security of our FE amplifier described
above fairly easily. Roughly, we will use the probabilistic replacement theorem to replace FE en-
cryptions of SetHSS shares with simulated FE encryptions. Once this has been done, we can use
the security of the underlying SetHSS scheme to argue security of our FE amplifier.

Setting the Parameters: By appropriately setting the parameters n (number of input shares),
m (number of sets in the SetHSS scheme), and q (the probability of an element in [n] being included
in any set), we are able to show that our construction indeed amplifies security. We will have to
apply the construction twice. First, we are able to amplify from a constant ε < 1

6 secure FE scheme
to one that is 1/ poly(λ) secure. Then, we are able to amplify a 1/ poly(λ) scheme to one that is
fully secure. An astute reader may have noticed that at each invocation of our amplifier, we also
lose some correctness. However, in between applications of our amplifier, we can easily amplify
correctness by parallel repetition. This is because we only need one of our repetitions to be correct.
This approach does lose a factor of security proportional to the number of repetitions, but the
parameters can be set so that overall we gain in security while preserving correctness. Please refer
to Section 8 for more details.

2.3 Amplifying Security via Nesting

The above FE amplifier was already sufficient to amplify an ε-secure FE scheme with ε < 1
6 to

a fully secure one. However, we would like to be able to amplify an ε-secure FE scheme for any
constant ε ∈ (0, 1). Here, we show how to amplify an ε-secure FE scheme for any ε ∈ (0, 1) to
an ε′-secure FE scheme for any ε′ ∈ (0, 1). To do this, we first show how to amplify an ε-secure
FE scheme to a (roughly) ε2-secure one. By repeatedly applying this transformation a constant
number of times, we can amplify to any smaller constant. The construction itself is to simply nest
two independent copies of the underlying ε-secure FE scheme. Namely, first encrypt the message
under FE1 to compute ct1 and then encrypt ct1 under FE2 to obtain the final ciphertext ct, with
appropriate functional secret keys. Intuitively, since there are two layers of encryption, where
each layer is secure with probability (1 − ε), we would expect the double encryption to be secure
with probability (1 − ε2). However, proving this requires some care. Indeed, to the best of our
knowledge, such a security amplification result, even for nested public-key encryption, was not
previously known.

Proof Overview: As noted above, we expect our nested scheme to be secure if one of the
encryption layers is secure. Now, if we could prove that each layer is independently insecure with
probability at most ε, then we could show that the amplified FE∗ scheme is only insecure with
probability at most ε2. Unfortunately, the security of the two layers is not independent; in general
the hard core sets of randomness which lead to secure encryptions could depend on the message
being encrypted. Instead, we will achieve similar amplification by in some sense “simulating” the
security of the outer FE in a way that is independent of the security of the inner FE.

First, we quantify the security of the outer FE using hardcore measures. If we have an ε-secure
FE, then for any fixed output of the inner FE, the outer FE is secure with probability at least 1− ε.
Therefore, by Theorem 3.1, there exist hardcore measures (of density 1 − ε) of the randomness of
the outer FE such that the outer FE is strongly secure when its randomness is sampled from these
hardcore measures. So, with probability at least 1 − ε, we sample randomness from the hardcore

7

measures of the outer FE and achieve security via these hardcore measures. But with probability
ε, we have no guarantee that the outer FE is secure, so we must rely on the security of the inner
FE.

Now, we want to show that conditioned on the outer FE being potentially insecure (i.e. when
we do not sample from these hardcore measures), then the inner FE is still only insecure with
probability close to ε. In other words, we want to show that the security of the inner and outer
FE schemes are close to independent. To do so, we need to perform a reduction to the ε-security
of the inner FE. At this point, we run into two issues. First, in order to perform our reduction to
the security of the inner FE, we will need to sample from the complement hardcore measures of the
outer FE. (Recall that we first conditioned on the outer FE being potentially insecure.) However,
this is problematic because we have no bound on the efficiency of computing or sampling from
these hardcore measures. Secondly, the hardcore measures of the outer FE depend implicitly on the
randomness used by the inner FE. Or, in other words, the security of the outer FE, as quantified
by these measures, is not independent of the security of the inner FE.

To resolve these issues, we need to find a way to give an efficient reduction to the security of
the inner FE, despite the inefficiencies and dependencies outlined above. Intuitively, we proceed
as follows: Our reduction takes as input the ciphertext produced by the inner FE. The reduction
then uses the fact that the complement of the hard core measure of the outer FE has density ε to
efficiently simulate randomness that is indistinguishable from hardcore randomness; this simulation
uses the leakage simulation theorem of [Skó15]. This allows our reduction to create the outer FE
ciphertext that the adversary expects. Please refer to Section 9 for more details.

2.4 Organization

In Section 3, we recall necessary preliminaries. In Section 4, we define functional encryption
notions with partial security. In Sections 5 and 6, we define and instantiate set homomorphic
secret sharing schemes and analyze their correctness and security when the underlying sets are
sampled in a probabilistic manner. In Section 7, we state and prove the Probabilistic Replacement
Theorem. In Section 8, we show our parallel repetition amplification theorem. In Section 9, we
show our nesting amplification theorem. In Section 10, we show that nesting amplifies the security
of public-key encryption. Finally, in Section 11, we combine our nesting and parallel repetition
amplification results.

3 Preliminaries

Notation Let λ ∈ N be the security parameter. Throughout, we define various size and advantage
parameters as functions of λ. We say that a function f(λ) is negligible, denoted f(λ) = negl(λ), if
f(λ) = λ−ω(1). We say that a function f(λ) is polynomial, denoted f(λ) = poly(λ), if f(λ) = p(λ)
for some fixed polynomial p. Throughout, when we write inequalities in terms of functions of λ,
we mean that these inequalities hold for sufficiently large λ. For n ∈ N, let [n] denote the set
{1, . . . , n}. For a set S, let x← S denote the process of sampling x from the uniform distribution
over S. For a distribution D, let x← D denote the process of sampling x from D.

Definition 3.1 ((s, ε)-Indistinguishability). We say that two ensembles X = {Xλ}λ∈N and Y =
{Yλ}λ∈N are (s, ε)-indistinguishable if for any adversary A of size s,∣∣∣∣ Pr

x←Xλ
[A(1λ, x)]− Pr

y←Yλ
[A(1λ, y)]

∣∣∣∣ ≤ ε
8

for sufficiently large λ ∈ N.

Notation We will say that ensembles satisfy (poly(λ) · s, ε)-indistinguishability if the ensembles
satisfy (p(λ) · s, ε)-indistinguishability for every polynomial p(λ).

We will make use of the following Chernoff bound in our analysis.

Definition 3.2 (Chernoff Bound). Let X1, X2, . . . , Xn be independent and identically distributed
Boolean random variables. Let X =

∑
i∈[n]Xi and let µ = E[X]. Then, for δ ≥ 1,

Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3 .

We define a measure.

Definition 3.3. A measure is a function M : {0, 1}k → [0, 1].

• The size of a measure is |M| =
∑

x∈{0,1}kM(x).

• The density of a measure is µ(M) = |M|2−k.

• The distribution defined by a measure (denoted by DM) is a distribution over {0, 1}k, where
for every x ∈ {0, 1}k, PrX←DM [X = x] =M(x)/|M|.

• A scaled version of a measure for a constant 0 < c < 1 is Mc = cM. Note that Mc induces
the same distribution as M.

• The complement of a measure is M = 1−M.

Definition 3.4 (Min-entropy). The min-entropy of a variable X is

H∞(X) = − log max
x

Pr[X = x]

Definition 3.5 (Worst-case conditional min-entropy). The worst-case conditional min-entropy of
a variable X conditioned on Z is

H∞(X|Z) = min
z

(− log max
x

Pr[X = x | Z = z])

3.1 Useful Lemmas

Theorem 3.1 (Imported Theorem [MT10]). Let E∗ : {0, 1}n → Y and F ∗ : {0, 1}m → Y be two
functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If for all distinguishers A with size s we have∣∣∣∣ Pr

x←{0,1}n
[A(E∗(x)) = 1]− Pr

y←{0,1}m
[A(F ∗(y)) = 1]

∣∣∣∣ ≤ ε
Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}m) that depend on γ, s such that

1. µ(Mb) ≥ 1− ε for b ∈ {0, 1}

2. For all distinguishers A′ of size s′ = sγ2

128(m+n+1)∣∣∣∣ Pr
x←DM0

[A′(E∗(x)) = 1]− Pr
y←DM1

[A′(F ∗(y)) = 1]

∣∣∣∣ ≤ γ
9

Theorem 3.2 (Imported Theorem [Skó15]. See also [Skó16].). Let n,m ∈ N. For every distribution
(X,W) on {0, 1}n×{0, 1}m and every s, ε, there exists a simulator h : {0, 1}n → {0, 1}m such that

1. h has size bounded by sizeh = O(s(n+m)22∆ε−5) where ∆ = m−H∞(W |X) is the min-entropy
deficiency.

2. (X,W) and (X,h(X)) are (s, ε)-indistinguishable. That is, for all circuits C of size s, then∣∣∣∣ Pr
(x,w)←(X,W)

[C(x,w) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]

∣∣∣∣ ≤ ε
4 Functional Encryption

We define the notion of a (secret key) functional encryption scheme.

Syntax of a Functional Encryption Scheme. A functional encryption (FE) scheme FE for a
class of circuits C = {Cλ}λ∈N consists of four polynomial time algorithms (Setup,Enc,KeyGen,Dec)
defined as follows. Let Xλ be the input space of the circuit class Cλ, and let Yλ be the output space
of Cλ. We refer to Xλ and Yλ as the input and output space of the scheme, respectively.

• Setup, msk ← FE.Setup(1λ): It takes as input the security parameter λ and outputs the
master secret key msk.

• Encryption, ct← FE.Enc(msk,m): It takes as input the master secret key msk and a message
m ∈ Xλ and outputs ct, an encryption of m.

• Key Generation, skC ← FE.KeyGen (msk, C): It takes as input the master secret key msk
and a circuit C ∈ Cλ and outputs a function key skC .

• Decryption, y ← FE.Dec (skC , ct): It takes as input a function secret key skC , a ciphertext
ct and outputs a value y ∈ Yλ.

We can similarly define the notion of a public key FE scheme, and our results in this work also hold
for public key FE. However, we choose to focus on secret key FE, as this is a weaker primitive.

We describe the properties associated with an FE scheme.

Correctness.

Definition 4.1 (Approximate Correctness). A functional encryption scheme FE = (Setup,KeyGen,
Enc,Dec) is said to be µ-correct if it satisfies the following property: for every C : Xλ → Yλ ∈
Cλ,m ∈ Xλ it holds that:

Pr


msk← FE.Setup(1λ)
ct← FE.Enc(msk,m)

skC ← FE.KeyGen(msk, C)
C(m)← FE.Dec(skC , ct)

 ≥ µ,
where the probability is taken over the coins of the algorithms.

We refer to FE schemes that satisfy the above definition of correctness with µ = 1− negl(λ) for
a negligible function negl(·) as correct.

10

Efficiency: Sublinearity and Compactness.

Definition 4.2 (Sublinearity and Compactness). A functional encryption scheme FE for a circuit
class C containing circuits of size at most s that take inputs of length ` is said to be sublinear if there
exists some constant ε > 0 such that the size of the encryption circuit is bounded by s1−ε · poly(λ, `)
for some fixed polynomial poly. If the above holds for ε = 1, then the FE scheme is said to be
compact.

In this work, we will focus on FE schemes that are sublinear (and possibly compact).

Security. We recall indistinguishability-based super-selective security for FE. This security no-
tion is modeled as a game between a challenger Chal and an adversary A. The game begins with A
submitting message queries (xi)i∈[Γ], a challenge message query (x∗0, x

∗
1), and a function query C.

Chal samples a bit b and responds with ciphertexts corresponding to (xi)i∈[Γ] and x∗b along with a
function key skC corresponding to C. A wins the game if she can guess b with probability signif-
icantly more than 1/2 and if C(x∗0) = C(x∗1). That is to say, the function evaluation computable
by A on the challenge ciphertext gives the same value regardless of b. We can define our security
notion in terms of the size s = s(λ) of adversaries against which security holds and an advantage
ε = ε(λ) that such adversaries can achieve. We say such a scheme is (s, ε)−secure.

Definition 4.3 ((s, ε)-secure FE). A secret-key FE scheme FE for a class of circuits C = {Cλ}λ∈[N]

and message space X = {Xλ}λ∈[N] is (s, ε)-secure if for any adversary A of size s, the advantage of
A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ ε,
where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined below:

1. Challenge queries: A submits message queries (xi)i∈[Γ], a challenge message query (x∗0, x
∗
1),

and a function query C to the challenger Chal, with xi ∈ Xλ for all i ∈ [Γ], x∗0, x
∗
1 ∈ Xλ, and

C ∈ Cλ such that C(x∗0) = C(x∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in
λ.

2. Chal computes msk ← FE.Setup(1λ) and then computes cti ← FE.Enc(msk, xi) for all i ∈
[Γ]. It then computes ct∗ ← FE.Enc(msk, x∗b) and skC ← FE.KeyGen(msk, C). It sends
((cti)i∈[Γ], ct

∗, skC) to A.

3. The output of the experiment is set to b′, where b′ is the output of A.

Adaptive Security and Collusions. The above security notion is referred to as super-selective
security in the literature. One can consider a stronger notion of security, called adaptive secu-
rity with unbounded collusions, where the adversary can make an unbounded (polynomial) num-
ber of function secret key queries and can interleave the challenge messages and the function
queries in any arbitrary order. In this paper, we only deal with super-selectively secure FE
schemes. However, it holds for any fully-secure sublinear FE scheme that these notions are equiv-
alent [KNT18, ABSV15b], and therefore, we only focus on super-selective security in this work, as
it is a simpler starting place.

11

4.1 Semi-Functional FE

In this work, to simplify some constructions and proofs, we will consider the notion of semi-
functional FE (sFE). Semi-functional FE is simply a functional encryption scheme with the following
auxiliary algorithms:

• Semi-functional Key Generation, sfKG(msk, C, θ): On input the master secret key msk,
circuit C ∈ Cλ, and a value θ, it computes the semi-functional key skC,θ.

• Semi-functional Encryption, sfEnc(msk, 1λ): On input the master secret key msk and the
security parameter 1λ, it computes a semi-functional ciphertext ctsf .

When a semi-functional key is used to decrypt a regular ciphertext, the hardcoded value θ is
ignored and decryption operates as with a regular key. However, when a semi-functional key is
used to decrypt a semi-functional ciphertext, the hardcoded value θ is output.

We define two security properties associated with the above auxiliary algorithms: semi-functional
key indistinguishability and semi-functional ciphertext indistinguishability. Intuitively, the semi-
functional key indistinguishability property states that an adversary cannot distinguish between a
regular function key and a semi-functional one with any hardcoded value θ. The semi-functional
ciphertext indistinguishability property informally states that an adversary cannot distinguish be-
tween a real encryption of a message m and a “fake” semi-functional encryption when given a
semi-functional key for the circuit C with θ = C(m).

We now formally define the semi-functional key indistinguishability property and the semi-
functional ciphertext indistinguishability property.

Definition 4.4 ((s, ν)-Semi-functional Key Indistinguishability). A secret-key semi-functional FE
scheme sFE for a class of circuits C = {Cλ}λ∈[N] and message space X = {Xλ}λ∈[N] satisfies (s, ν)-
semi-functional key indistinguishability if for any adversary A of size s, the advantage of A is

AdvsFEK
A =

∣∣∣Pr[ExptsFEK
A (1λ, 0) = 1]− Pr[ExptsFEK

A (1λ, 1) = 1]
∣∣∣ ≤ ν,

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptsFEK
A (1λ, b) is defined below:

1. Challenge queries: A submits message queries (xi)i∈[Γ], a function query C, and a value
θ to the challenger Chal, with xi ∈ Xλ for all i ∈ [Γ], C ∈ Cλ, and θ ∈ Yλ. Here, Γ is an
arbitrary (a priori unbounded) polynomial in λ.

2. Chal computes msk← FE.Setup(1λ) and then computes cti ← FE.Enc(msk, xi) for all i ∈ [Γ].
If b = 0, it computes sk∗C ← FE.KeyGen(msk, C). If b = 1, it instead computes sk∗C ←
sfKG(msk, C, θ). It sends ((cti)i∈[Γ], sk

∗
C) to A.

3. The output of the experiment is set to b′, where b′ is the output of A.

Definition 4.5 ((s, ε)-Semi-functional Ciphertext Indistinguishability). A secret-key semi-functional
FE scheme sFE for a class of circuits C = {Cλ}λ∈[N] and message space X = {Xλ}λ∈[N] satisfies
(s, ε)-semi-functional ciphertext indistinguishability if for any adversary A of size s, the advantage
of A is

AdvsFEct
A =

∣∣∣Pr[ExptsFEct
A (1λ, 0) = 1]− Pr[ExptsFEct

A (1λ, 1) = 1]
∣∣∣ ≤ ε,

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptsFEct
A (1λ, b) is defined below:

12

1. Challenge queries: A submits message queries (xi)i∈[Γ], a challenge message x∗, and a
function query C to the challenger Chal, with xi ∈ Xλ for all i ∈ [Γ], x∗ ∈ Xλ, and C ∈ Cλ.
Here, Γ is an arbitrary (a priori unbounded) polynomial in λ.

2. Chal sets θ = C(x∗). It computes msk← FE.Setup(1λ) and then computes cti ← FE.Enc(msk,
xi) for all i ∈ [Γ] and skC,θ ← sfKG(msk, C, θ). If b = 0, it computes ct∗ ← FE.Enc(msk, x∗).
If b = 1, it instead computes ct∗ ← sfEnc(msk, 1λ). It sends ((cti)i∈[Γ], ct

∗, skC,θ) to A.

3. The output of the experiment is set to b′, where b′ is the output of A.

We can combine the above two security notions into a single security notion for semi-functional
FE as follows.

Definition 4.6 (Semi-functional Security). A secret-key semi-functional FE scheme sFE for a
class of circuits C = {Cλ}λ∈[N] and message space X = {Xλ}λ∈[N] satisfies (s, ν, ε)-semi-functional
security if it satisfies both (s, ν)-semi-functional key indistinguishability (Definition 4.4) and (s, ε)-
semi-functional ciphertext indistinguishability (Definition 4.5).

4.2 From FE to Semi-Functional FE

It turns out that any (s, ε)−secure functional FE scheme for P/poly can be transformed into a
(s, ν, ε)−semi-functional FE assuming the existence of a symmetric key encryption scheme that
is (p(s, λ), ν) secure for a fixed polynomial p(s, λ). The transformation is described for the case
of single collusion below. Let FE be the underlying functional encryption scheme, let sFE denote
the semi-functional scheme, and let E be the secret key encryption scheme. Assume that E has
the property that the string of all zeros never forms a valid secret key. This can be ensured by
resampling the key.

• Setup(1λ):

1. Run sk← FE.Setup(1λ).

2. Run skE ← E.Setup(1λ).

3. Output msk = (sk, skE).

• Enc(msk,m):

1. Parse msk = (sk, skE).

2. Output ct← FE.Enc(sk, (m, 0`E)) where `E is the length of skE.

• KeyGen(msk, C):

1. Parse msk = (sk, skE).

2. Compute c← E.Enc(skE, 0
`C) where `C is the output length of C.

3. Define Gc(x1, x2): If x2 = 0`, it outputs C(x1); otherwise, it outputs E.Dec(x2, c).

4. Output skC ← FE.KeyGen(sk, Gc).

• Dec(skC , ct): Output y = FE.Dec(skC , ct).

We now describe the semi-functional algorithms:

• sfEnc(msk, 1λ, 1`m):

13

1. Parse msk = (sk, skE).

2. Output ct = FE.Enc(sk, (0`m , skE))

• sfKG(msk, C, θ):

1. Parse msk = (sk, skE).

2. Compute c← E.Enc(skE, θ).

3. Define Gc(x1, x2): If x2 = 0`, it outputs C(x1); otherwise, it outputs E.Dec(x2, c).

4. Output skC,θ = FE.KeyGen(sk, Gc).

Correctness is straightforward to observe. Below, we argue that the sublinearlity property is
preserved.

Sublinearity/Compactness. Let size be the maximum size of the circuit C for which the keys
are issued. Now we upper bound the size of Gc. Observe that Gc simply checks if the input is
formatted with a string of 0`E at the end or not. If that is the case, then it just computes decryption
of c using the second half of the string. The size of this branch is bounded by size · poly(λ) for a
fixed polynomial. Otherwise, it computes the circuit on the first half of the input. The size of this
branch is size. There is an additional overhead of some polynomial in λ to check the formatting of
the pattern of the second half of the input string as the length of the secret key of E is bounded by
a fixed polynomial in λ. Thus the size of the total circuit is bounded by size ·poly(λ) for some fixed
polynomial poly. Sublinearity/compactness thus follows from the sublinearity/compactness of the
underlying scheme FE.

Now we argue the semi-functional security. These reductions are also immediate therefore we
sketch the idea below.

Semi-Functional Key Security. Semi-functional key security follows from the security of the
secret key encryption scheme. Namely, when the honest keys are generated c is an encryption of
0`C , whereas in the other case it is an encryption of θ. Note that in the security game skE is not
involved as the ciphertexts are honestly generated. The time needed by the reduction is the time
needed to run the adversary of size s, issue FE encryptions and keys, and embed c as a challenge to
the adversary. Thus the reduction can be simulated in size p(s, λ) for some fixed polynomial p(s, λ)
depending on the FE scheme. Thus if E is (p(s, λ), ν) secure then sFE also satisfies (s, ν)−semi-
functional key security.

Semi-Functional Ciphertext Security. Semi-functional ciphertext security follows from the
security of the underlying functional encryption scheme FE. Namely, the security game consists
of an FE key for the function Gc where c is an encryption of C(m) for some message m. In the
honest case ciphertext ct is an encryption of (m, 0`E) where as in the semi-functional case, it is an
encryption of (0, skE). Thus if FE is (s, ε) secure then sFE satisfies (s, ε)−semi-functional ciphertext
security property.

Thus we obtain the following theorem:

Theorem 4.1. There exists a fixed constant degree polynomial p(s, λ) with non-negative coeffi-
cients such that assuming a (p(s, λ), ν)−secure secret key encryption scheme, for any large enough
security parameter λ, a (s, ε)−secure FE scheme for P/poly can be transformed into a (s, ν, ε)−semi-
functionally secure FE scheme for P/poly. The transformation also preserves sublinearity/compactness.

14

5 Set Homomorphic Secret Sharing Schemes

In [JMS20], as an intermediate step in their construction of an FE combiner, they define and
construct what they call a combiner-friendly homomorphic secret sharing scheme (CFHSS). We
recall this definition here. It is taken essentially verbatim from [JMS20]. Informally, a CFHSS
scheme consists of input encoding and function encoding algorithms. The input encoding algorithm
runs on an input x and outputs input shares si,j,k for i, j, k ∈ [n]. The function encoding algorithm
runs on a circuit C and outputs function shares Ci,j,k for i, j, k ∈ [n]. Then, the decoding algorithm
takes as input the evaluation of all shares Ci,j,k(si,j,k) and recovers C(x). Informally, the security
notion of a CFHSS scheme says that if the shares corresponding to some index i∗ remain hidden,
then the input is hidden to a computationally bounded adversary and only the evaluation C(x) is
revealed.

5.1 Definition

Definition 5.1. A combiner-friendly homomorphic secret sharing scheme, CFHSS = (InpEncode,
FuncEncode,Decode), for a class of circuits C = {Cλ}λ∈N with input space Xλ and output space Yλ
supporting n ∈ N candidates consists of the following polynomial time algorithms:

• Input Encoding, InpEncode(1λ, 1n, x): It takes as input the security parameter λ, the num-
ber of candidates n, and an input x ∈ Xλ and outputs a set of input shares {si,j,k}i,j,k∈[n].

• Function Encoding, FuncEncode(1λ, 1n, C): It is an algorithm that takes as input the se-
curity parameter λ, the number of candidates n, and a circuit C ∈ C and outputs a set of
function shares {Ci,j,k}i,j,k∈[n].

• Decoding, Decode({Ci,j,k(si,j,k)}i,j,k∈[n]): It takes as input a set of evaluations of function
shares on their respective input shares and outputs a value y ∈ Yλ ∪ {⊥}.

A combiner-friendly homomorphic secret sharing scheme, CFHSS, is required to satisfy the
following properties:

• Correctness: For every λ ∈ N, circuit C ∈ Cλ, and input x ∈ Xλ, it holds that:

Pr

 {si,j,k}i,j,k∈[n] ← InpEncode(1λ, 1n, x)

{Ci,j,k}i,j,k∈[n] ← FuncEncode(1λ, 1n, C)

C(x)← Decode({Ci,j,k(si,j,k)}i,j,k∈[n])

 ≥ 1− negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is a negligible
function in λ.

• Security:

Definition 5.2 (IND-secure CFHSS). A combiner-friendly homomorphic secret sharing scheme
CFHSS for a class of circuits C = {Cλ}λ∈[N] and input space X = {Xλ}λ∈[N] is selectively secure
if for any PPT adversary A, there exists a negligible function µ(·) such that for all sufficiently
large λ ∈ N, the advantage of A is

AdvCFHSSA =
∣∣∣Pr[ExptCFHSSA (1λ, 1n, 0) = 1]− Pr[ExptCFHSSA (1λ, 1n, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N and n ∈ N, the experiment ExptCFHSSA (1λ, 1n, b) is defined
below:

15

ExptCFHSSA (1λ, 1n, b):

1. Secure share: A submits an index i∗ ∈ [n] that it will not learn the input shares
for.

2. Challenge input queries: A submits input queries,(
x`0, x

`
1

)
`∈[L]

with x`0, x
`
1 ∈ Xλ to the challenger Chal, where L = poly(λ) is chosen by A.

3. For all `, Chal computes {s`i,j,k}i,j,k∈[n] ← InpEncode(1λ, 1n, x`b). For all `, the chal-

lenger Chal then sends {s`i,j,k}i,j,k∈[n]\{i∗}, the input shares that do not correspond to
i∗, to the adversary A.

4. Function queries: The following is repeated an at most polynomial number of
times: A submits a function query C ∈ Cλ to Chal. The challenger Chal computes
function shares {Ci,j,k}i,j,k∈[n] ← FuncEncode(1λ, 1n, C) and sends them to A along

with all evaluations {Ci,j,k(s`i,j,k)}i,j,k∈[n] for all ` ∈ [L].

5. If there exists a function query C and challenge message queries (x`0, x
`
1) such that

C(x`0) 6= C(x`1), then the output of the experiment is set to ⊥. Otherwise, the output
of the experiment is set to b′, where b′ is the output of A.

Theorem 5.1 ([JMS20]). Assuming one-way functions, there exists a combiner-friendly homomor-
phic secret sharing scheme for P/ poly for n = O(poly(λ)) candidates.

Moreover, [JMS20] also show the following extension of the above theorem, when the underlying
OWF is (O(s), O(s−1))-secure for s = ω(poly(λ)).

Theorem 5.2 ([JMS20]). Assuming an (O(s), O(s−1))-secure one-way function, there exists an
(O(s), poly(λ) · O(s−1))-secure combiner-friendly homomorphic secret sharing scheme for P/ poly
for n = O(poly(λ)) candidates. Moreover, the size of InpEncode is independent of the size of the
circuit class and the size of any Ci,j,k is bounded by |C| · poly(λ, n) for some fixed polynomial.

In this work, we extend the notion of a combiner-friendly homomorphic secret sharing scheme [JMS20]
to a more general setting, which will be useful for amplification. The CFHSS scheme of [JMS20]
implicitly restricts the shares to correspond to all subsets T ⊆ [n] with |T | = 3. This is clear by
simply noting that we can think of the share si,j,k as corresponding to the set T = {i, j, k} (the
construction in [JMS20] does not care about the ordering of i, j, k, so there are only

(
n
3

)
shares in

their construction, not n3). For amplification, we will need to use a more general approach, where
we allow the sets to be arbitrary and given as input to the scheme.

Definition 5.3. A set homomorphic secret sharing scheme, SetHSS = (InpEncode,FuncEncode,
Decode), for n ∈ N candidates, m ∈ N sets {Ti}i∈[m], where each set Ti ⊆ [n], and a class of
circuits C = {Cλ}λ∈N with input space Xλ and output space Yλ consists of the following polynomial
time algorithms:

• Input Encoding, InpEncode(1λ, 1n, {Ti}i∈[m], x): It takes as input the security parameter λ,
the number of candidates n, a collection of m sets {Ti}i∈[m], where each set Ti ⊆ [n], and an
input x ∈ Xλ and outputs a set of input shares {si}i∈[m].

16

• Function Encoding, FuncEncode(1λ, 1n, {Ti}i∈[m], C): It takes as input the security param-
eter λ, the number of candidates n, a collection of m sets {Ti}i∈[m], where each set Ti ⊆ [n],
and a circuit C ∈ C and outputs a set of function shares {Ci}i∈[m].

• Decoding, Decode({Ci(si)}i∈[m], {Ti}i∈[m]): It takes as input a set of evaluations of function
shares on their respective input shares and m sets and outputs a value y ∈ Yλ ∪ {⊥}.

A set homomorphic secret sharing scheme, SetHSS, for sets {Ti}i∈[m] has the following proper-
ties:

• Correctness: For every λ ∈ N, circuit C ∈ Cλ, and input x ∈ Xλ, it holds that:

Pr

 {si}i∈[m] ← InpEncode(1λ, 1n, {Ti}i∈[m], x)

{Ci}i∈[m] ← FuncEncode(1λ, 1n, {Ti}i∈[m], C)

C(x)← Decode({Ci(si)}i∈[m], {Ti}i∈[m])

 ≥ 1− negl(λ),

where the probability is taken over the coins of the algorithms and negl(λ) is a negligible
function in λ.

• Security:

Definition 5.4 (IND-secure SetHSS). A set homomorphic secret sharing scheme SetHSS
for a class of circuits C = {Cλ}λ∈[N] with input space X = {Xλ}λ∈[N] and sets {Ti}i∈[m] is
selectively secure if for any PPT adversary A, there exists a negligible function µ(·) such that
for all sufficiently large λ ∈ N, the advantage of A is

AdvSetHSSA =
∣∣∣Pr[ExptSetHSSA (1λ, 1n, 0) = 1]− Pr[ExptSetHSSA (1λ, 1n, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N and n ∈ N, the experiment ExptSetHSSA (1λ, 1n, b) is defined
below:

ExptSetHSSA (1λ, 1n, b)

1. Secure share: A submits an index i∗ ∈ [n] that it will not learn the input shares
for.

2. Challenge input queries: A submits input queries,(
x`0, x

`
1

)
`∈[L]

with x`0, x
`
1 ∈ Xλ to the challenger Chal, where L = poly(λ) is chosen by A.

3. For all `, Chal computes {s`i}i∈[m] ← InpEncode(1λ, 1n, {Ti}i∈[m], x
`
b). For all `, the

challenger Chal then sends {s`i}i∈[m],i∗ 6∈Ti, the input shares that do not correspond
to a set containing i∗, to the adversary A.

4. Function queries: The following is repeated an at most polynomial number of
times: A submits a function query C ∈ Cλ to Chal. The challenger Chal computes
function shares {Ci}i∈[m] ← FuncEncode(1λ, 1n, {Ti}i∈[m], C) and sends them to A
along with all evaluations {Ci(s`i)}i∈[m] for all ` ∈ [L].

5. If there exists a function query C and challenge message queries (x`0, x
`
1) such that

17

C(x`0) 6= C(x`1), then the output of the experiment is set to ⊥. Otherwise, the output
of the experiment is set to b′, where b′ is the output of A.

We refer to a SetHSS scheme that satisfies the correctness and security properties as a correct
and secure SetHSS scheme, respectively.

5.2 SetHSS from CFHSS

Given the CFHSS scheme from [JMS20], we can construct a correct SetHSS scheme for sets T1, T2, . . . , Tm
provided that {Ti}i∈[m] covers all subsets of size 3 (formally defined in Def. 6.1). Looking ahead, our
SetHSS scheme will remain secure if the corruption pattern on the Ti’s is such that some element
j ∈ [n] is not in any corrupted set. This is exactly the unmarked element condition in Sec. 6.

Formally, we show the following.

Theorem 5.3. Assuming one-way functions, there exists a set homomorphic secret sharing scheme
for P/ poly for n = O(poly(λ)) candidates for sets T1, T2, . . . , Tm that cover all subsets of size 3.
Moreover, security holds regardless of the sets T1, T2, . . . , Tm.

We simultaneously also show the following for s = ω(poly(λ)).

Theorem 5.4. Assuming an (O(s), O(s−1))-secure one-way function, there exists an (O(s), poly(λ)·
O(s−1))-secure set homomorphic secret sharing scheme for P/ poly for n = O(poly(λ)) candi-
dates for sets T1, T2, . . . , Tm that cover all subsets of size 3. Security holds regardless of the sets
T1, T2, . . . , Tm. Moreover, the size of the circuit InpEncode(·) is independent of the size of the circuit
class and the size of any function encoding Ci has size bounded by |C| · poly(λ, n,m) for some fixed
polynomial.

5.2.1 Construction

Let CFHSS be the combiner-friendly homomorphic secret sharing scheme given by Thm. 5.1.

• Input Encoding, InpEncode(1λ, 1n, {Tα}α∈[m], x): Run CFHSS.InpEncode(1λ, 1n, x) to com-
pute (si,j,k)i,j,k∈[n]. For each α ∈ [m], let Vα be the set of all ordered tuples v = (i, j, k) with
i, j, k ∈ Tα. Let sα = (sv)v∈Vα .

• Function Encoding, FuncEncode(1λ, 1n, {Tα}α∈[m], C): Run CFHSS.FuncEncode(1λ, 1n, C)
to compute (Ci,j,k)i,j,k∈[n]. For each α ∈ [m], let Vα be the set of all ordered tuples v = (i, j, k)
with i, j, k ∈ Tα. Let Cα be the circuit that, for each v ∈ Vα, computes Cv on the sv portion
of the share sα and outputs the concatenation of all these circuit outputs.

• Decoding, Decode({Ci(si)}i∈[m], {Ti}i∈[m]): For each α ∈ [m], parse Cα(sα) as (Cv(sv))v∈Vα .
Reorder these to obtain (Ci,j,k(si,j,k))i,j,k∈[n] and run CFHSS.Decode((Ci,j,k(si,j,k))i,j,k∈[n]).

Correctness. Correctness follows from the correctness of CFHSS and the fact that {Tα}α∈[m]

cover all subsets of size 3. In particular, observe that Decode is given {Cα(sα)}α∈[m]. Cα(sα) is
simply the concatenation of Ci,j,k(si,j,k) for every tuple of 3 elements (i, j, k) in Tα. Since {Tα}α∈[m]

contains every possible tuple of 3 elements (i, j, k) ∈ [n], it is possible to recover (Ci,j,k(si,j,k))i,j,k∈[n]

and then correctness follows by the correctness of CFHSS.Decode.

18

Efficiency. Observe that |InpEncode(·)| is independent of the size of the circuit class since this
property holds for CFHSS.InpEncode. Moreover, since |Ci,j,k| ≤ |C| · poly(λ, n) for any function
encoding Ci,j,k output by CFHSS.FuncEncode, it follows that the size of any function encoding
Ci ≤ |C| · poly(λ, n,m) for a fixed polynomial independent of the size of the circuit class.

Security. Security follows in a straightforward manner from the security of CFHSS. Suppose there
exists an adversary A that can break the security of SetHSS. Then, consider the adversary A′ that
breaks the security of CFHSS. A′ plays the role of the challenger for A and receives an index i∗ and

challenge input queries
(
x`0, x

`
1

)
`∈[L]

from A. It then forwards these to its challenger and receives

{s`i,j,k}i,j,k∈[n]\{i∗} from its challenger. Using these as the output of CFHSS.InpEncode, it runs the
rest of the SetHSS.InpEncode algorithm and sends the input shares to A. Whenever A then sends a
function query, A′ sends the same function query to its challenger and receives {Ci,j,k}i,j,k∈[n]. Using
these as the output of CFHSS.FuncEncode, it runs the rest of the SetHSS.FuncEncode algorithm and
sends the resulting function encoding to A. A′ outputs the result of A as its guess. Observe that A′
perfectly simulates the challenger for A, and so whenever A wins, A′ wins. Thus, if A could break
the security of SetHSS, we would be able to break the security of CFHSS, a contradiction.

6 Covering Sets

In this section, we will define some properties of covering sets that will be useful in our FE con-
struction. Informally, covering sets are a collection of sets (Xi) such that some other collection
of sets (Yj) are covered by the Xi’s. By this, we mean that every Yj is a subset of some Xi. As
discussed previously, our overall plan for constructing an amplified FE is to use a set homomorphic
secret sharing scheme, which will allow us to secret share the message into n shares and then en-
crypt m sets, each which contains some of the n shares. Thus, we can think of the Xi’s as subsets
of [n]. However, we only know how to construct such set homomorphic secret sharing schemes if
the sets cover all subsets of size 3. Furthermore, these set homomorphic secret sharing schemes
have a specific security property defined in Section 5. In this section, we analyze the probability
that randomly sampled sets will cover all size t subsets and the probability that the security prop-
erty is satisfied when the sets are randomly corrupted. These probabilities will be instrumental in
analyzing the correctness and security properties of our amplified FE construction in Section 8.1.

Definition 6.1 (Set t-Covering). We say that a collection of sets T1, T2, . . . , Tm over [n] covers all
subsets of size t if for every T ′ ⊆ [n] with |T ′| = t, there exists some i ∈ [m] such that T ′ ⊆ Ti.

Definition 6.2 (Unmarked Element). Let f : [m]→ {0, 1} be a marking function, where we say an
index i ∈ [n] is “marked” if f(i) = 1 and “unmarked” if f(i) = 0. A collection of sets T1, T2, . . . , Tm
over [n] has an unmarked element with respect to f if there exists an index i ∈ [n] such that for all
sets Tj with i ∈ Tj, f(j) = 0.

Lemma 6.1. Consider sampling m sets T1, T2, . . . , Tm, where each set is chosen by indepen-
dently including each element in [n] with probability q. Then, with probability ≥ 1 − nt(1 − qt)m,
T1, T2, . . . , Tm is a t− covering.

Proof. Let S1, . . . , S(nt)
be all subsets of [n] of size t. For any i ∈ [

(
n
t

)
] and j ∈ [m], then

Pr[Si 6⊆ Tj] = (1− qt).

19

Therefore,
Pr[∀j ∈ [m], Si 6⊆ Tj] = (1− qt)m.

By the union bound,

Pr

[
∃i ∈

[(
n

t

)]
, ∀j ∈ [m], Si 6⊆ Tj

]
≤ nt(1− qt)m,

giving the desired result.

Lemma 6.2. Consider sampling m sets T1, T2, . . . , Tm, where each set is chosen by independently
including each element in [n] with probability q. Define the marking function f : [m] → {0, 1} by
setting, independently at random for each i ∈ [m], f(i) = 1 with probability p. Then, for any δ ≥ 1,

with probability at least (1− e−
δpm
3)(1− (1− (1− q)(1+δ)pm)n), the sets have an unmarked element

with respect to f .

Proof. Let S ⊆ [m]. Define BS to be the event that ∀u ∈ S, f(u) = 1, and ∀v /∈ S, f(v) = 0.
Since any distinct i, j ∈ [n] are independently included in each set, observe that for any S ⊆ [m],
the event that i is unmarked given BS is independent of the event that j is unmarked given BS .
Therefore, since i is included in each marked set (a set Tu with f(u) = 1) with probability 1 − q,
then

Pr [i unmarked | BS] = (1− q)|S|

Pr[∀i ∈ [n], i marked | BS] = (1− (1− q)|S|)n

Pr[∃i ∈ [n], i unmarked | BS] = 1− (1− (1− q)|S|)n.

Then,

Pr [∃i ∈ [n], i unmarked] =
∑

Sj⊆[m]

Pr[BSj](1− (1− (1− q)|Sj |)n)

=

n∑
k=0

∑
Sj ,|Sj |=k

Pr
[
BSj

]
(1− (1− (1− q)k)n)

=

n∑
k=0

Pr[k sets are marked](1− (1− (1− q)k)n)

≥ Pr[at most k sets are marked](1− (1− (1− q)k)n).

for every k ∈ [n]. Let Xi be the event that set Ti is marked (in other words, f(i) = 1). Let
X =

∑
i∈[m]Xi. Note that E[X] = pm. Then, by the Chernoff bound (Def. 3.2) for any δ ≥ 1,

Pr[X ≥ (1 + δ)pm] ≤ e−
δpm
3 .

Therefore,

Pr[∃i ∈ [n], i unmarked] ≥ (1− e−
δpm
3)(1− (1− (1− q)(1+δ)pm)n).

7 Probabilistic Replacement Theorem

Please refer to the technical overview (Section 2.2) for the high level overview and motivation of
this theorem as well as an introduction to hardcore measures.

20

Our Theorem: Suppose there are two randomized functions E and F that are weakly indis-
tinguishable over their randomness and the randomness of the distinguisher. Then, our theorem
below shows indistinguishability between the following two experiments: In one experiment, the
adversary gets n independent evaluations of E on n inputs. In the other experiment, we probabilis-
tically replace some of the instances of E with F . Then, we give the adversary evaluations of these
instances of E and F using randomness generated by some bounded time function h. Essentially,
we show that one can replace some of the instances of E with instances of F while still maintaining
overall efficiency.

We also include some other details. First, we need to determine which inputs to evaluate
E and F on. As such, we define Gen to be any randomized circuit that produces these inputs,
and evaluate E and F on the output of Gen. Second, we also allow for the adversary to receive
additionally auxiliary input, which can also be output by Gen. Lastly, we allow some control over
which inputs of E and F the bounded time function h will depend upon. We can achieve this by
modifying our first experiment to also output a commitment Z of the inputs we wish to remain
hidden. Then, the simulator h produced in the second experiment will only depend on some of the
hidden values, namely the values needed to compute the instances of E and F that are actually
output. (In contrast, h could have been dependent upon on all of the potential inputs of both E
and F in every instance.)

Finally, we note that our introduction of a commitment into the theorem is not a significant
problem when using this theorem to prove the security of some game that did not originally contain
commitments. Rather than proving directly that an adversary cannot break a security game, one
can instead prove a stronger notion of security in which the adversary is unable to break the security
game even when additionally given a commitment of some secret information. Since, an adversary
can only have a smaller advantage in differentiating these experiments when this commitment is not
given (an adversary that can break security without the commitment can break security with the
commitment by ignoring the commitment), regular security trivially follows. In fact, we use this
exact technique in our FE amplification. Note that if the adversary is not strong enough to break
the commitment, then giving them a commitment of the secret information will not significantly
impact security.

Remark 7.1. We wrote our theorem in a very general form in order to facilitate potential reuse
in other research. As such, the security parameters in the theorem statement are quite complex.
However, we have also included three corollaries that use much simpler and more natural param-
eters. We refer the reader to these corollaries rather than the actual theorem when fine-grained
tuning of the parameters is not necessary.

Theorem 7.1 (Probabilistic Replacement Theorem). Let λ be a parameter. Let E : S × X ×
{0, 1}` →W and F : T ×Y × {0, 1}` →W be deterministic O(poly(λ))-time computable functions,
with ` = O(poly(λ)). Let n = O(poly(λ)). Then, if

• Com is any commitment with (sizeHIDE, advHIDE)-computational hiding and (statBIND)-statistical
binding,

• Gen is any randomized circuit of size O(poly(λ)) with range (S × X × T × Y)n × AUX such
that for all ((si, xi, ti, yi)i∈[n], aux) output by Gen(1λ, 1n) for all i ∈ [n] and for all sizeEF
algorithms A,∣∣∣∣ Pr

ri←{0,1}`
[A(E(si, xi, ri)) = 1]− Pr

ri←{0,1}`
[A(F (ti, yi, ri)) = 1]

∣∣∣∣ ≤ advEF ,

21

there exists a randomized function h of size sizeh such that for all algorithms A′ of size size∗,∣∣Pr[A′(EXP0) = 1]− Pr[A′(EXP1) = 1]
∣∣ ≤ adv∗,

where we define

EXP0:

1. Compute ((si, xi, ti, yi)i∈[n], aux)← Gen(1λ, 1n).

2. Compute Z ← Com((si, ti)i∈[n]).

3. Sample ri from {0, 1}` for i ∈ [n].

4. Compute wi = E(si, xi, ri) for i ∈ [n].

5. Output (Z, (wi)i∈[n], aux).

EXP1:

1. Compute ((si, xi, ti, yi)i∈[n], aux)← Gen(1λ, 1n).

2. Compute Z ← Com(0`Z) where `Z = |(si, ti)i∈[n]|.

3. Sample a string α ∈ {0, 1}n such that for each i ∈ [n], we set αi = 1 with probability
(1− advEF) and set αi = 0 with probability advEF .

4. Compute (ri)i∈[n] ← h(α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux) where A0 = {i | αi = 0}
and A1 = {i | αi = 1}.

5. For every i ∈ [n], if αi = 1, compute wi = F (ti, yi, ri); otherwise, compute wi =
E(si, xi, ri).

6. Output (Z, (wi)i∈[n], aux).

and for any parameters sizeSIM > 0 and advSIM, advHCM ∈ (0, 1) and for advmin = min(advEF , 1 −
advEF),

• sizeh = O(poly(λ) · sizeSIM22n log(adv−1
min)adv−5

SIM).

• size∗ is the minimum of the following:

–
sizeEF adv

2
HCM

128(2`+1) − poly(λ)

– sizeSIM − poly(λ)

– sizeHIDE − sizeh − poly(λ)

• adv∗ ≤ n · advHCM + statBIND + advSIM + advHIDE.

Theorem 7.1 immediately gives rise to two corollaries: one where we assume that E and F are
weakly indistinguishable against polynomial sized adversaries, and one where they are weakly in-
distinguishable against subexponential sized adversaries. The proofs of these corollaries can be
found after the proof of the main theorem at the end of this section. Recall the following notation:

22

Notation We say that ensembles satisfy (poly(λ) · s, ε)-indistinguishability if the ensembles satisfy
(p(λ) · s, ε)-indistinguishability for every polynomial p(λ).

Corollary 7.1 (Probabilistic Replacement Theorem Against Poly-Time Adversaries). Let λ be
a parameter. Let E : S × X × {0, 1}` → W and F : T × Y × {0, 1}` → W be deterministic
O(poly(λ))-time computable functions, with ` = O(poly(λ)). Let n = O(poly(λ)). Then, if

• Gen is any randomized circuit of size O(poly(λ)) with range (S × X × T × Y)n × AUX such
that for all ((si, xi, ti, yi)i∈[n], aux) output by Gen(1λ, 1n) for all i ∈ [n] and for all poly-sized
algorithms A,∣∣∣∣ Pr

ri←{0,1}`
[A(E(si, xi, ri)) = 1]− Pr

ri←{0,1}`
[A(F (ti, yi, ri)) = 1]

∣∣∣∣ ≤ advEF ,

• Com is any commitment with (poly(λ)·22n log(adv−1
min), negl(λ))-computational hiding and (negl(λ))-

statistical binding where advmin = min(advEF , 1− advEF),

then for any polynomials v(λ) and q(λ), there exists a randomized function h of size O(poly(λ) ·
22n log(adv−1

min)) such that for all algorithms A′ of size v(λ),∣∣Pr[A′(EXP0) = 1]− Pr[A′(EXP1) = 1]
∣∣ < 1

q(λ)
,

where EXP0 and EXP1 are defined as in Thm. 7.1.

Corollary 7.2 (Probabilistic Replacement Theorem Against Subexponential Time Adversaries).
Let λ be a parameter. Let E : S ×X × {0, 1}` →W and F : T ×Y × {0, 1}` →W be deterministic
O(poly(λ))-time computable functions, with ` = O(poly(λ)). Let n ≤ λt for some constant t > 0.
Then, if

• Gen is any randomized circuit of size O(poly(λ)) with range (S × X × T × Y)n × AUX such
that for all ((si, xi, ti, yi)i∈[n], aux) output by Gen(1λ, 1n) for all i ∈ [n] and for all size 2λ

c

algorithms A for some constant c > 0,∣∣∣∣ Pr
ri←{0,1}`

[A(E(si, xi, ri)) = 1]− Pr
ri←{0,1}`

[A(F (ti, yi, ri)) = 1]

∣∣∣∣ ≤ advEF ,

where 1
p(λ) ≤ advEF ≤ 1− 1

p(λ) for some polynomial p(λ),

• Com is any commitment with (2λ
c′
, 2−λ

c′
)-computational hiding and (2−λ

c′
)-statistical binding

for a constant c′ > max{c, t},

there exists a randomized function h of size O(2λ
c ·22n log(p(λ))) such that for all size 2λ

c′′
algorithms

A′, ∣∣Pr[A′(EXP0) = 1]− Pr[A′(EXP1) = 1]
∣∣ ≤ 2−λ

c′′

for some constant c′′ > 0, where EXP0 and EXP1 are defined as in Thm. 7.1.

Furthermore, using a more fine-grained approach, it is possible to prove a variant of the prob-
abilistic replacement theorem that allows us to lower the size of h at the cost of increasing the
distinguishing advantage of the adversary. We will need to use this fine-grained approach when
proving security against polynomial time adversaries. We state the resulting corollary here and
provide a proof after the proof of the main theorem at the end of this section. We highlight the
changes from Cor. 7.1 in red.

23

Corollary 7.3 (Probabilistic Replacement Theorem Against Poly-Time Adversaries Fine-Grained
Version). Let λ be a parameter. Let E : S × X × {0, 1}` → W and F : T × Y × {0, 1}` → W be
deterministic O(poly(λ))-time computable functions, with ` = O(poly(λ)). Let n = O(poly(λ)). Let
a ∈ N with a ≤ n. Then, if

• Gen is any randomized circuit of size O(poly(λ)) with range (S × X × T × Y)n × AUX such
that for all ((si, xi, ti, yi)i∈[n], aux) output by Gen(1λ, 1n) for all i ∈ [n] and for all poly-sized
algorithms A,∣∣∣∣ Pr

ri←{0,1}`
[A(E(si, xi, ri)) = 1]− Pr

ri←{0,1}`
[A(F (ti, yi, ri)) = 1]

∣∣∣∣ ≤ advEF ,

• Com is any commitment with (poly(λ)·22·[n log((1−advmin)−1)+a log(adv−1
min−1)], negl(λ))-computational

hiding and (negl(λ))-statistical binding where advmin = min(advEF , 1− advEF),

then for any polynomials v(λ) and q(λ), there exists a randomized function h of size O(poly(λ) ·
22·[n log((1−advmin)−1)+a log(adv−1

min−1)]) such that for all algorithms A′ of size v(λ),∣∣Pr[A′(EXP0) = 1]− Pr[A′(EXP1) = 1]
∣∣ < 1

q(λ)
+(
en · advmin

a
)a

where EXP0 and EXP1 are defined as in Thm. 7.1.

Remark 7.2. Theorem 7.1 and Corollaries 7.1, 7.2, and 7.3 hold even when some or all of the input
domains S,X , T ,Y of E and F are empty sets. In this case, we can simply remove all references
to these domain(s) and to variables chosen from these domain(s) in the theorem statements. The
proof of such a modified theorem is simply the original proof but with these domain(s) and variables
removed. For example, if we have E : X × {0, 1}` →W, then the theorem statements are still true
even when all references to S and si are removed. In particular, in this case, the commitment Z in
EXP0 would simply be a commitment of (ti)i∈[n]. In the special case when both S and T are the
empty set, then we do not need a commitment at all. This corresponds to the case when we do not
require any of the inputs to E and F to be hidden from the simulator h. In this case, the theorem
statements also hold when we additionally remove all references to Z. For instance, the output of
EXP0 and EXP1 would simply be ((wi)i∈[n], aux). The proof of such a statement is the same proof,
but with all the references to Z additionally removed as well. In particular, Machine as defined in
Hybrid3 would no longer need to take Z as an input nor break the commitment Z, and Hybrid5

can be removed.

Proof Overview:

Replacing E with F (Hybrids 0-2): Starting with EXP0, our first goal is to swap out some
of the n evaluations of E with evaluations of F . Intuitively, we expect that since E and F are
weakly indistinguishable, then we should be able to replace at least some of the E’s with F ’s.
We prove this using hardcore lemma techniques. First, we use [MT10] to show that for any fixed
inputs si, xi, ti, yi, there exist hardcore measures for E and F such that distinguishing E and
F is hard when we evaluate them on si, xi, ti, yi with randomness drawn from these hardcore
measures. Then, for each instance of E, we sample E’s randomness from its hardcore measure (with
respect to F , si, xi, ti, yi) with probability proportional to the density of this measure and sample
randomness from the complement of this measure with probability proportional to the density of
the complement. Note that this is equivalent to sampling uniform randomness for E. Then, all of
the instances of E that sampled randomness from their hardcore measures can be swapped out for
instances of F since E and F are strongly indistinguishable when their randomness is taken from
these hardcore measures.

24

Moving back to a bounded time hybrid (Hybrids 3-4): We have now moved to a hybrid
where we have swapped some of the instances of E for instances of F as desired. Unfortunately,
this hybrid is inefficient because we must sample from the hardcore measures. To move back to
a more efficient hybrid, we need to replace this hardcore measure with a samplable distribution.
To do so, we will use a theorem from [Skó15] that allows us to simulate any distribution with
high min-entropy in bounded time. Then, we get our simulator by proving a lower bound on the
min-entropy of our hardcore measures.

Commitment scheme (Hybrids 3,5): We have added the commitment scheme so that our
bounded time simulator h is independent of some of the inputs to E and F (apart from what can
be extrapolated from the other inputs). More specifically, our bounded time simulator will not
depend on si for indices i where we have replaced E with F and will not depend on ti for indices
i where we do not replace E with F . This is useful when we want to prove that the output of
EXP1 is independent of these inputs. Now, recall that we are simulating a sampler for the hardcore
sets. Since these hardcore sets depend on (si, ti)i∈[n], the actual sampler must know these values
in order to function correctly. However, if we give the sampler these values directly as input, then
the simulator will also get them as input. Thus, we give these values to the sampler indirectly
in the form of a secure commitment. Since only the output length of the sampler matters, and
not the efficiency, the sampler can brute force break the commitment and retrieve all the values
(si, ti)i∈[n] that it needs. Therefore, although the simulator also receives this commitment, as long
as we ensure that the simulator is too weak to break the commitment, then we can safely replace
the simulator’s commitment of (si, ti)i∈[n] with a commitment of 0. Therefore, the simulator will
not need to receive all of (si, ti)i∈[n] as input and can be independent of some of these values.

25

Hybrid0: This hybrid corresponds to EXP0.

1. Compute ((si, xi, ti, yi)i∈[n], aux)← Gen(1λ, 1n).

2. Compute Z ← Com((si, ti)i∈[n]).

3. Sample ri from {0, 1}` for i ∈ [n].

4. Compute wi = E(si, xi, ri) for i ∈ [n].

5. Output (Z, (wi)i∈[n], aux).

26

Recall the following theorem. We define measures as in Definition 3.3 and use DM to denote the
distribution induced by measure M.

Theorem 7.2 (Imported Theorem [MT10]). Let E∗ : {0, 1}n → Y and F ∗ : {0, 1}m → Y be two
functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If for all distinguishers A with size s we have∣∣∣∣ Pr

x←{0,1}n
[A(E∗(x)) = 1]− Pr

y←{0,1}m
[A(F ∗(y)) = 1]

∣∣∣∣ ≤ ε
Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}m) that depend on γ, s such that

1. µ(Mb) ≥ 1− ε for b ∈ {0, 1}

2. For all distinguishers A′ of size s′ = sγ2

128(m+n+1)∣∣∣∣ Pr
x←DM0

[A′(E∗(x)) = 1]− Pr
y←DM1

[A′(F ∗(y)) = 1]

∣∣∣∣ ≤ γ
Now, we use this theorem to define our hardcore measures for E and F with respect to fixed

inputs si, xi, ti, yi. These measures will allow us to explicitly define when an instance of E can be
securely replaced with F .

Lemma 7.1. Let E : S ×X ×{0, 1}` →W and F : T ×Y ×{0, 1}` →W be two functions, and let
advEF , advHCM ∈ (0, 1) and sizeEF > 0 be given. Let si ∈ S, xi ∈ U , ti ∈ T , yi ∈ V be fixed inputs
such that for all size sizeEF algorithms A,∣∣∣∣ Pr

ri←{0,1}`
[A(E(si, xi, ri)) = 1]− Pr

ri←{0,1}`
[A(F (ti, yi, ri)) = 1]

∣∣∣∣ ≤ advEF .

Define Ei : {0, 1}` → Y by Ei(ri) = E(si, xi, ri). Define Fi : {0, 1}` → Y by Fi(ri) = F (ti, yi, ri).
Then, there exist two measures MEi and MFi (on {0, 1}`) such that

1. µ(MEi) = (1− advEF) and µ(MFi) = (1− advEF)

2. For all distinguishers A′ of size sizeHCM =
sizeEF adv

2
HCM

128(2`+1) ,∣∣∣∣∣ Pr
ri←DMEi

[A′(Ei(ri)) = 1]− Pr
ri←DMFi

[A′(Fi(ri)) = 1]

∣∣∣∣∣ ≤ advHCM,

Proof. By Theorem 7.2, there exist two measures M′Ei and M′Fi (on {0, 1}`) such that

1. µ(M′Ei) ≥ 1− advEF and µ(M′Fi) ≥ 1− advEF

2. For all distinguishers A′ of size sizeHCM =
sizeEF adv

2
HCM

128(2`+1) ,∣∣∣∣∣∣ Pr
ri←DM′

Ei

[A′(Ei(ri)) = 1]− Pr
ri←DM′

Fi

[A′(Fi(ri)) = 1]

∣∣∣∣∣∣ ≤ advHCM,

27

Now, we will simply scale these two measures so that they have the appropriate density. Define

MEi =

(
1−advEF
µ(M′Ei)

)
M′Ei and MFi =

(
1−advEF
µ(M′Fi)

)
M′Fi . Observe that this scaling is valid since

0 < (1−advEF
µ(M′Ei)

), (1−advEF
µ(M′Fi)

) ≤ 1. Then, MEi and MFi have density exactly (1− advEF). Since MEi

andMFi are simply the scaled measures ofM′Ei andM′Fi , then DMEi
= DM′Ei and DMFi

= DM′Fi ,
so the claim holds.

Remark 7.3. In Lemma 7.1, MEi and MFi are the scaled hardcore measures of the randomness
used by E and F for fixed inputs si, xi, ti, yi. As such, MEi and MFi may depend on si, xi, ti, yi.

Hybrid1: This hybrid is identical to the previous hybrid. However, to compute each random
string ri used by E on inputs si, xi, we instead sample ri from the (scaled) hardcore measure
MEi (corresponding to E,F, si, xi, ti, yi and as described in Lemma 7.1 above) with probability
proportional to the density of MEi and sample from the complement measure MEi = 1 −MEi

with probability proportional to the density of the complement. Note that this method of sampling
is equivalent to sampling ri uniformly at random from its domain. A vector α ∈ {0, 1}n is used
to indicate whether each random string ri should be drawn from MEi or MEi . This hybrid is
inefficient since MEi and MEi are not necessarily efficiently computable or samplable.

1. Compute ((si, xi, ti, yi)i∈[n], aux)← Gen(1λ, 1n).

2. Compute Z ← Com((si, ti)i∈[n]).

3. [Change] Sample a string α ∈ {0, 1}n such that for each i ∈ [n], we set αi = 1 with probability
(1− advEF) and set αi = 0 with probability advEF .

4. [Change] For every i ∈ [n], if αi = 1, sample ri ← DMEi
; otherwise, sample ri ← DMEi

.

Note that MEi may depend on si, xi, ti, yi.

5. Compute wi = E(si, xi, ri) for i ∈ [n].

6. Output (Z, (wi)i∈[n], aux).

Lemma 7.2. For any adversary A, |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid0) = 1]| = 0.

Proof. These hybrids are identical. Observe that the measure MEi for every i ∈ [n] has density
exactly (1 − advEF). Thus, we can think of uniform randomness as sampling from MEi with
probability (1− advEF) and from MEi with probability advEF .

28

Hybrid2: This hybrid is inefficient. Here, for every i ∈ [n] where αi = 1, we switch from computing
E with randomness drawn from hardcore measure MEi to computing F with randomness drawn
from hardcore measure MFi (corresponding to E,F, si, xi, ti, yi and as described in Lemma 7.1).
The properties of the hardcore measures ensure that this hybrid is indistinguishable from the
previous hybrid.

1. Compute ((si, xi, ti, yi)i∈[n], aux)← Gen(1λ, 1n).

2. Compute Z ← Com((si, ti)i∈[n]).

3. Sample a string α ∈ {0, 1}n such that for each i ∈ [n], we set αi = 1 with probability
(1− advEF) and set αi = 0 with probability advEF .

4. [Change] For every i ∈ [n], if αi = 1, sample ri ← DMFi
; otherwise, sample ri ← DMEi

.

Note that MEi and MFi may depend on si, xi, ti, yi.

5. [Change] For every i ∈ [n], if αi = 1, compute wi = F (ti, yi, ri); otherwise, compute wi =
E(si, xi, ri).

6. Output (Z, (wi)i∈[n], aux).

Lemma 7.3. If E and F are (sizeEF , advEF)-indistinguishable, then there exists a fixed polynomial

q2(λ), such that for any adversary A of size sizeHCM ≤ (
sizeEF adv

2
HCM

128(2`+1) − q2(λ)),

|Pr[A(Hybrid2) = 1]− Pr[A(Hybrid1) = 1]| ≤ n · advHCM.

Proof. This lemma follows from a direct application of Lemma 7.1. We proceed with a proof
by contradiction. Suppose that there exists A of size sizeHCM such that |Pr[A(Hybrid2) =
1]−Pr[A(Hybrid1) = 1]| > n·advHCM. Let Hybrid1,α and Hybrid2,α represent the corresponding
hybrids where we fix the string α normally sampled in step 3 of the hybrids. Then, by the pigeonhole
principle, since

∑
α∈{0,1}n Pr[α] = 1 and ∀α, 0 < Pr[α] < 1 and

∑
α∈{0,1}n Pr[α]|Pr[A(Hybrid2,α) =

1]− Pr[A(Hybrid1,α) = 1]| ≥ |Pr[A(Hybrid2) = 1]− Pr[A(Hybrid1) = 1]| > n · advHCM,

∃α∗ ∈ {0, 1}n such that |Pr[A(Hybrid2,α∗) = 1]− Pr[A(Hybrid1,α∗) = 1]| > n · advHCM

Note that this α∗ 6= 0n since Hybrid2,0n and Hybrid1,0n are identical, so any adversary would
have a distinguishing advantage of 0.

Fix any such α∗. Now, we will construct a series of intermediate hybrids. Define Hybrid1,α∗,0 =
Hybrid1,α∗ . For each i ∈ [n], define Hybrid1,α∗,i to be identical to the previous hybrid Hybrid1,α∗,i−1

except that if α∗i = 1, we compute wi = F (ti, yi, ri) instead of wi = E(si, xi, ri) in step 5. (If
α∗i = 0, this intermediate hybrid is the same as the previous hybrid.) Observe that Hybrid1,α∗,n =
Hybrid2,α∗ . Since |Pr[A(Hybrid2,α∗) = 1]− Pr[A(Hybrid1,α∗) = 1]| > n · advHCM,

∃j ∈ [n] such that Pr[A(Hybrid1,α∗,j) = 1]− Pr[A(Hybrid1,α∗,j−1) = 1]| > advHCM.

Note that for this value of j, α∗j = 1 since otherwise the intermediate hybrids are identical.
Fix any such j. Now, consider the nonuniform adversary A′ that is given as nonuniform advice,

α∗, j along with randomness rGen for Gen, rCom for Com, and (ri)i 6=j for computing E and F for
which A has the largest advantage in distinguishing hybrids Hybrid1,α∗,j and Hybrid1,α∗,j−1 (i.e.

A has advantage at least advHCM). Let ((si, xi, ti, yi)i∈[n], aux) be the output of Gen(1λ, 1n; rGen).
With (si, xi, ti, yi)i∈[n] fixed, A′ receives as input from its challenger either yj = E(sj , xj , rj) where

29

rj ← DMEj
or yj = F (tj , xj , r

′
j) where r′j ← DMFj

. Then, A′ computes ((si, xi, ti, yi)i∈[n], aux) =

Gen(1λ, 1n; rGen), Z = Com((si, ti)i∈[n]; rCom), and the values wi for i 6= j (computed as either
E(si, xi, ri) or as F (ti, yi, ri) according to hybrids Hybrid1,α∗,i−1 and Hybrid1,α∗,i). A′ then gives
(Z, (wi)i∈[n], aux) to A and outputs whatever A outputs. A′ exactly simulates Hybrid1,α∗,j−1

when it is given wj = E(sj , xj , rj) and Hybrid1,α∗,j when it is given wj = F (tj , xj , r
′
j) (and

when A′ is using the randomness rGen for Gen, rCom for Com, and (ri)i 6=j for which A has the
strongest distinguishing advantage). Therefore, A′ has advantage at least advHCM in distinguishing
E(sj , xj , rj) and F (tj , xj , r

′
j). Observe that A′ does not need to sample from the hardcore measures,

since for i ∈ [n], A′ is either given the randomness needed to compute wi as non-uniform advice
or receives wi directly as input. Therefore, since Gen,Com, E, F are O(poly(λ))-time computable
functions and n = O(poly(λ)), then A′ has size sizeHCM + q(λ) for some polynomial q(λ). Define

q2(λ) = q(λ). Then, size(A′) = sizeHCM + q2(λ) ≤ sizeEF adv
2
HCM

128(2`+1) , contradicting Lemma 7.1.

30

Hybrid3: This hybrid is inefficient. In this hybrid, we introduce a machine Machine which computes
the hardcore measures and samples the required random values from these distributions. However,
instead of explicitly giving Machine all of the values (si, ti)i∈[n] it needs to compute these measures,
we have the machine break a commitment of Z = Com((si, ti)i∈[n]) to get the missing values.
Machine will also ensure that the measures it samples from have the correct minimum densities
by replacing the computed hardcore measures with measures of maximum density if the computed
measures are not dense enough.

Define Machine to be the following randomized algorithm. Let A0 = {i | αi = 0} and A1 = {i |
αi = 1}. Note that though Machine also takes (si)i∈A0 , (ti)i∈A1 , and aux as input, it does not use
them. This formulation is necessary for the reduction in the next hybrid.

Machine(α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux)

1. Break Z to compute (si, ti)i∈[n].

2. For every i ∈ [n], computeMFi andMEi . If µ(MFi) < (1−advEF) or µ(MEi) < advEF ,
then set both measures to be the maximum density measureMmax over the same domain.
We define Mmax(x) = 1 for all x in the domain. Note that µ(Mmax) = 1.

3. For every i ∈ [n], if αi = 1, sample ri ← DMFi
; otherwise, sample ri ← DMEi

. Note that

MEi and MFi may depend on si, xi, ti, yi.

4. Output (ri)i∈[n]

Here is the hybrid:

1. Compute ((si, xi, ti, yi)i∈[n], aux)← Gen(1λ, 1n).

2. Compute Z ← Com((si, ti)i∈[n]).

3. Sample a string α ∈ {0, 1}n such that for each i ∈ [n], we set αi = 1 with probability
(1− advEF) and set αi = 0 with probability advEF .

4. [Change] Generate (ri)i∈[n] ← Machine(α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux) where A0 =
{i | αi = 0} and A1 = {i | αi = 1}.

5. For every i ∈ [n], if αi = 1, compute wi = F (ti, yi, ri) for i ∈ [n]; otherwise, compute
wi = E(si, xi, ri).

6. Output (Z, (wi)i∈[n], aux).

Lemma 7.4. If Com has statBIND statistical binding, then for any adversary A,

|Pr[A(Hybrid3) = 1]− Pr[A(Hybrid2) = 1]| ≤ statBIND.

This indistinguishability is statistical.

Proof. If Com has statBIND statistical binding, then with probability at least 1− statBIND over the
coins of the setup algorithm of the commitment scheme, the hybrids are identical. Note that if
Machine correctly computes (si, ti)i∈[n] from Z, then MFi and MEi will both have the required
minimum densities by Lemma 7.1, so Machine will not replace them with Mmax.

31

Recall the following leakage simulation theorem:

Theorem 7.3 (Imported Theorem [Skó15]). Let n,m ∈ N. For every distribution (X,W) on
{0, 1}n × {0, 1}m and every s, ε, there exists a simulator h : {0, 1}n → {0, 1}m such that

1. h has size bounded by sizeh = O(s(n+m)22∆ε−5) where ∆ = m−H∞(W |X) is the min-entropy
deficiency.

2. (X,W) and (X,h(X)) are (s, ε)-indistinguishable. That is, for all circuits C of size s, then∣∣∣∣ Pr
(x,w)←(X,W)

[C(x,w) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]

∣∣∣∣ ≤ ε
Corollary 7.4. Define Φ to be the distribution (α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux) generated
by running steps 1-3 of Hybrid4 below. Define (Φ,Ψ) to be the distribution of (φ, ψ) generated by
sampling φ ← Φ and then setting ψ = Machine(φ). Then, there exists a simulator h such that for
advmin = min(advEF , 1− advEF) then

1. h has size bounded by sizeh = O(poly(λ) · sizeSIM22n log(adv−1
min)adv−5

SIM).

2. For every adversary A′ of size sizeSIM, then∣∣∣∣ Pr
φ←Φ

[A′(φ,Machine(φ)) = 1]− Pr
φ←Φ,h

[A′(φ, h(φ)) = 1]

∣∣∣∣ ≤ advSIM

Proof. This follows directly from Theorem 7.3 provided that we prove certain lower bounds on
H∞(Ψ | Φ). Note that |Machine(φ)| = n` since Machine outputs n random strings ri each of length
`. Thus, to prove this corollary, it is enough to prove the following:

Claim 7.1. H∞(Ψ|Φ) ≥ n`− n log(adv−1
min).

We will now prove the above claim. Fix any φ← Φ. Recall that advmin = min(advEF , 1− advEF).
Thus, ∀i, µ(MFi) ≥ 1 − advEF ≥ advmin and µ(MEi) ≥ advEF ≥ advmin. Therefore, since
the output of Machine(φ) is n strings, each of which is randomly selected from either MFi or
MEi , then the density of the output of Machine(φ) is at least advnmin. So for any fixed φ, then
maxψ(Pr(Machine(φ) = ψ)) ≤ 1

2n`·advnmin
. Thus,

H∞(Ψ|Φ) = min
φ

(− log max
ψ

Pr[Ψ = ψ | Φ = φ])

≥ − log

(
1

2n` · advnmin

)
= n`− n log(adv−1

min)

Since both |φ| and |ψ| are of size O(poly(λ)), this proves the claim.

Hybrid4: In this hybrid, we simulate Machine using the simulator h from Corollary 7.4 above.
Define (Φ,Ψ), and h as in Corollary 7.4.

1. Compute ((si, xi, ti, yi)i∈[n], aux)← Gen(1λ, 1n).

2. Compute Z ← Com((si, ti)i∈[n]).

32

3. Sample a string α ∈ {0, 1}n such that for each i ∈ [n], we set αi = 1 with probability
(1− advEF) and set αi = 0 with probability advEF .

4. [Change] Generate (ri)i∈[n] ← h(α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux) where A0 = {i |
αi = 0} and A1 = {i | αi = 1}.

5. For every i ∈ [n], if αi = 1, compute wi = F (ti, yi, ri) for i ∈ [n]; otherwise, compute
wi = E(si, xi, ri).

6. Output (Z, (wi)i∈[n], aux).

Lemma 7.5. There exists a fixed polynomial q4(λ) such that for any adversary A of size (sizeSIM−
q4(λ)),

|Pr[A(Hybrid4) = 1]− Pr[A(Hybrid3) = 1]| ≤ advSIM.

Proof. This proof is a direct application of Corollary 7.4. Assume that we have an adversary A of
size (sizeSIM − q4(λ)) that can distinguish between the two hybrids with advantage at least advSIM.
Here is our reduction:

1. Receive (φ, (ri)i∈[n]) where φ = (α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux) generated by running
steps 1-3 of Hybrid4 and (ri)i∈[n] is generated by either Machine(φ) or h(φ).

2. For every i ∈ [n], if αi = 1, compute wi = F (ti, yi, ri) for i ∈ [n]; otherwise, compute
wi = E(si, xi, ri).

3. Send (Z, (wi)i∈[n], aux) to A and output whatever A outputs.

The reduction exactly simulates Hybrid3 when (ri)i∈[n] is generated by Machine(φ) and exactly
simulates Hybrid4 when (ri)i∈[n] is generated by h(φ). Thus, the reduction has advantage at least
advSIM in distinguishing (φ,Machine(φ)) and (φ, h(φ)). Observe that since n, |φ| = O(poly(λ)) and
E,F are O(poly(λ))-time computable functions, the size of the reduction is (sizeSIM− q4(λ) + q(λ))
for some fixed polynomial q(λ). Define q4(λ) = q(λ). Then, the size of the reduction is sizeSIM,
contradicting Corollary 7.4.

33

Hybrid5: In this hybrid, we change the commitment Z to a commitment of 0.

1. Compute ((si, xi, ti, yi)i∈[n], aux)← Gen(1λ, 1n).

2. [Change] Compute Z ← Com(0`Z) where `Z = |(si, ti)i∈[n]|

3. Sample a string α ∈ {0, 1}n such that for each i ∈ [n], we set αi = 1 with probability
(1− advEF) and set αi = 0 with probability advEF .

4. Compute (ri)i∈[n] ← h(α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux) where A0 = {i | αi = 0} and
A1 = {i | αi = 1}.

5. For every i ∈ [n], if αi = 1, compute wi = F (ti, yi, ri) for i ∈ [n]; otherwise, compute
wi = E(si, xi, ri).

6. Output (Z, (wi)i∈[n], aux).

Lemma 7.6. If Com is (sizeHIDE, advHIDE)-hiding and sizeh is the size of the function h, then there
exists a polynomial q5(λ) such that for any adversary A of size (sizeHIDE − sizeh − q5(λ)),

|Pr[A(Hybrid5) = 1]− Pr[A(Hybrid4) = 1]| ≤ advHIDE.

Proof. Suppose that there exist an adversary A of size sizeHIDE− sizeh− q5(λ) that can distinguish
between the two hybrids with advantage at least advHIDE. Let Hybrid4,α and Hybrid5,α represent
the corresponding hybrids where we fix the string α normally sampled in step 3 of the hybrids. Then,
there exists an α∗ ∈ {0, 1}n such that |Pr[A(Hybrid5,α∗) = 1]−Pr[A(Hybrid4,α∗) = 1]| > advHIDE.
Now consider the nonuniform adversary A′ that is given as nonuniform advice α∗ and the random-
ness rGen for Gen for which A has the largest advantage in distinguishing hybrids Hybrid4,α∗ and

Hybrid4,α∗ (i.e A has advantage at least advHIDE.). Let ((si, xi, ti, yi)i∈[n], aux) = Gen(1λ, 1n; rGen).
With (si, ti)i∈[n] fixed, A′ receives as input from its challenger either Z ← Com((si, ti)i∈[n]) or

Z ← Com(0`Z). Then, A′ computes ((si, xi, ti, yi)i∈[n], aux) = Gen(1λ, 1n; rGen) and uses this Z to
generate (wi)i∈[n] according to Hybrid4,α∗ and Hybrid5,α∗ . A′ then send (Z, (wi)i∈[n], aux) to A
and outputs whatever A outputs. Note that A′ exactly simulates Hybrid4,α∗ when it receives a

commitment of (si, ti)i∈[n] and simulates Hybrid5,α∗ when it receives a commitment of 0`Z (and
when using randomness rGen for Gen for which A has the best advantage). Therefore, A′ has ad-
vantage at least advHIDE. Since Gen, E, F are O(poly(λ)) computable functions and n = O(poly(λ)),
then the size of A′ is sizeh + size(A) + q(λ) for some polynomial q(λ). Define q5(λ) = q(λ). Then,
the size of A′ = sizeHIDE which contradicts the (sizeHIDE, advHIDE)-hiding of Com.

34

Putting Everything Together:
Combining all of the intermediate lemmas, we get that for advmin = min(advEF , 1− advEF), there
exists some sizeh such that

• sizeh = O(poly(λ) · sizeSIM22n log(adv−1
min)adv−5

SIM).

and for all adversaries A of size less than the minimum of the following:

• sizeEF adv
2
HCM

128(2`+1) − poly(λ)

• sizeSIM − poly(λ)

• sizeHIDE − sizeh − poly(λ)

then
|Pr[A(Hybrid8) = 1]− Pr[A(Hybrid0) = 1]| ≤ adv∗,

where
adv∗ ≤ n · advHCM + statBIND + advSIM + advHIDE.

Thus, we obtain Theorem 7.1.

Parameter Setting (Proofs of Corollary 7.1 and Corollary 7.2):
By appropriately setting parameters, we obtain the results of Corollary 7.1 and Corollary 7.2.

Corollary 7.1:
First, we will first obtain Corollary 7.1. Let g(λ, advmin) = 22n log(adv−1

min). We are given that
E and F are (poly(λ), advEF) indistinguishable (as defined in Corollary 7.1) and that Com is
(poly(λ) · g(λ, advmin), negl(λ))-computationally hiding and (negl(λ))-statistically binding. Thus,
sizeEF can be set to be any polynomial poly(λ) and sizeHIDE can be set to poly(λ) · g(λ, advmin) for
any polynomial poly(λ). We will now show that the advantage of any polynomial-sized adversary
in distinguishing EXP0 and EXP1 can be made less than the inverse of any polynomial. More
specifically, we will show that size∗ can be made to be any arbitrarily large polynomial v(λ) and
adv∗ can be made < 1

q(λ) for any polynomial q(λ).

• Set advHCM = advSIM = 1
q′(λ) for a polynomial q′(λ) which will be specified later.

• Set sizeEF to be a large enough polynomial so that

sizeEF adv
2
HCM

128(2`+ 1)
− poly(λ) > v(λ).

• Similarly, set sizeSIM to be a polynomial such that sizeSIM − poly(λ) > v(λ).

• Note then that sizeh = O(poly(λ) · sizeSIM · g(λ, advmin)adv−5
SIM) = O(poly(λ) · g(λ, advmin))

• Set
sizeHIDE = v′(λ) · g(λ, advmin),

where v′(λ) is a sufficiently large polynomial so that

sizeHIDE − sizeh − poly(λ) > v(λ).

35

• Note that advHIDE = statBIND = negl(λ).

Then, it follows that for any adversary of size v(λ), for an appropriately chosen q′(λ), then

adv∗ ≤ (n+ 1)
1

q′(λ)
+ negl(λ) <

1

q(λ)

Note that v(λ) and q(λ) can be any arbitrary polynomials. Note also that for any polynomials

v(λ) and q(λ), then sizeh = O(poly(λ) · g(λ, advmin)) = O(poly(λ) · 22n log(adv−1
min)). This gives Corol-

lary 7.1.

Corollary 7.2:
Now, we will obtain Corollary 7.2. Suppose sizeEF = 2λ

c
for some constant c > 0. Let n ≤ λt

for some constant t > 0. Note that since 1
p(λ) ≤ advEF ≤ 1 − 1

p(λ) for some polynomial p(λ), then

advmin = min(advEF , 1− advEF) ≥ 1
p(λ) which implies that adv−1

min ≤ p(λ).

• Set advSIM = advHCM = 2−λ
c/2

.

• Set sizeSIM = 2λ
c/2

.

• Set sizeHIDE = 2λ
c′

for a constant c′ > max{c, t}.

• Set advHIDE = statBIND = 2−λ
c′

.

Then,

• sizeEF adv
2
HCM

128(2`+1) − poly(λ) = 2λ
c
2−2λc/2

128(2`+1) − poly(λ) = 2λ
c
2−2λc/2

poly(λ) − poly(λ)

• sizeSIM − poly(λ) = 2λ
c/2 − poly(λ)

• Note then that sizeh = O(poly(λ)·sizeSIM22n log(adv−1
min)adv−5

SIM) = O(poly(λ)·2λc/2+2n log(adv−1
min)+5λc/2) =

O(2λ
c · 22n log(p(λ))).

• sizeHIDE−sizeh−poly(λ) = 2λ
c′−O(2λ

c+2n log(p(λ))−poly(λ) ≥ 2λ
c′−O(2λ

c+2λt log(p(λ)))−poly(λ)

and
adv∗ ≤ (n+ 1) · 2−λc/2 + 2 · 2−λc

′

Thus, assuming Com is a (2λ
c′
, 2λ

c′
)-computationally hiding (2−λ

c′
)-statistically binding commit-

ment for a constant c′ > max{c, t}, there exists some c′′ > 0 such that for all size size∗ ≤ 2λ
c′′

adversaries, then |Pr[A(Hybrid8) = 1] − Pr[A(Hybrid0) = 1]| ≤ adv∗ ≤ 2−λ
c′′

. Note also that
sizeh = O(2λ

c · 22n log(p(λ))). This gives Corollary 7.2.

Corollary 7.3:
In order to obtain this corollary, we make a minor modification in the proof of the probabilistic
replacement theorem in order to reduce the size of h at the cost of increasing the adversary’s
advantage. Once this is done, we can obtain Corollary 7.3 the same way we obtained Corollary 7.1,
using the modified proof.

36

Let a ∈ N with a ≤ n. To modify the proof, we replace Hybrid3 with Hybrid3,a which
is identical to Hybrid3 except that we replace Machine with a new machine Machinea defined
below. Machinea is the same as Machine except that if α contains too many 0’s (or 1’s), then we
will output values from the maximum density measure instead of from the appropriate hardcore
measures. This is to ensure that we don’t output too many values from low density measures. We
give a description of Machinea and highlight the change from Machine in red. We will also replace
the original simulator h with the simulator from Corollary 7.5 below in all hybrids that use this
simulator.

Definition 7.1 (bad-α-event). Let advmin = min(advEF , 1− advEF). Let bad-α-event be the event
that either advmin = advEF and α contains ≥ a 0’s, or advmin = 1 − advEF and α contains ≥ a
1’s.

Machinea(α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux)

1. Break Z to compute (si, ti)i∈[n].

2. For every i ∈ [n], computeMFi andMEi . If µ(MFi) < (1−advEF) or µ(MEi) < advEF ,
then set both measures to be the maximum density measureMmax over the same domain.
We define Mmax(x) = 1 for all x in the domain. Note that µ(Mmax) = 1.

3. [Change] If bad-α-event has occurred, then for all i ∈ [n], set MFi and MEi to be the
maximum density measure Mmax over the same domain.

4. For every i ∈ [n], if αi = 1, sample ri ← DMFi
; otherwise, sample ri ← DMEi

. Note that

MEi and MFi may depend on si, xi, ti, yi.

5. Output (ri)i∈[n]

Then, we just need to show indistinguishability lemmas between Hybrid2 and Hybrid3,a and
between Hybrid3,a and Hybrid4.

Lemma 7.7. If Com has statBIND statistical binding, then for any adversary A,

|Pr[A(Hybrid3,a) = 1]− Pr[A(Hybrid2) = 1]| ≤ statBIND + (
en · advmin

a
)a.

This indistinguishability is statistical.

Proof. If bad-α-event does not occur and the commitment decommits to the committed value, then
the output distributions of the hybrids are identical. Since Com has statBIND statistical binding,
then with probability at least 1− statBIND over the coins of the setup algorithm of the commitment
scheme, the commitment decommits to the committed value. We then bound the probability that
bad-α-event occurs. Let k be the number of 0’s in α (if advmin = advEF) or the number of 1′s in α
(if advmin = 1− advEF). Then, Pr[k ≥ a] ≤

(
n
a

)
(advmin)a ≤ (ena)a(advmin)a = (en·advmina)a. By the

union bound, we get the lemma.

Next, we prove the following corollary which follows from Theorem 7.3.

Corollary 7.5. Let a ∈ N with a ≤ n. Define Φ to be the distribution (α,Z, (si)i∈A0 , (ti)i∈A1 , (xi, yi)i∈[n], aux)
generated by running steps 1-3 of Hybrid4. Define (Φ,Ψa) to be the distribution of (φ, ψa) gener-
ated by sampling φ← Φ and then setting ψa = Machinea(φ). Then, there exists a simulator h such
that for advmin = min(advEF , 1− advEF) then

37

1. h has size bounded by sizeh = O(poly(λ) · sizeSIM22·[n log((1−advmin)−1)+a log(adv−1
min−1)]adv−5

SIM)

2. For every adversary A′ of size sizeSIM, then∣∣∣∣ Pr
φ←Φ

[A′(φ,Machinea(φ)) = 1]− Pr
φ←Φ,h

[A′(φ, h(φ)) = 1]

∣∣∣∣ ≤ advSIM.

Proof. This follows directly from Theorem 7.3 provided that we prove certain lower bounds on
H∞(Ψa | Φ). Note that |Machinea(φ)| = n` since Machinea outputs n random strings ri, each of
length `. Thus, to prove this corollary, it is enough to prove the following:

Claim 7.2. H∞(Ψa|Φ) ≥ n`− (n log((1− advmin)−1) + a log(adv−1
min − 1)).

Fix any φ ← Φ and note that ∀i, µ(MFi) ≥ 1 − advEF and µ(MEi) ≥ advEF . If the bad-α-
event occurs, Machinea outputs uniformly random strings, and, therefore, the output of Machinea
has density 1. If the bad-α-event does not occur, then the density of Machinea(φ) is at least
(advmin)a(1− advmin)n−a. Thus,

H∞(Ψa|Φ) = min
φ

(− log max
ψa

Pr[Ψa = ψa | Φ = φ])

≥ − log

(
1

2n` · (advmin)a(1− advmin)n−a

)
= n`−

(
a log

(
1

advmin

)
+ (n− a) log

(
1

1− advmin

))
= n`−

(
n log

(
1

1− advmin

)
+ a log

(
1

advmin
− 1

))
.

Since both |φ| and |ψa| are of size O(poly(λ)), this proves the corollary.

Then, we get

Lemma 7.8. There exists a fixed polynomial q4,a(λ) such that for any adversary A of size (sizeSIM−
q4,a(λ)),

|Pr[A(Hybrid4) = 1]− Pr[A(Hybrid3,a) = 1]| ≤ advSIM.

Proof. The proof of this lemma is identical to that Lemma 7.5 except that we use Corollary 7.5
above.

The rest of the proof proceeds as in Corollary 7.1. We note that the adversary’s advantage increases
by (en·advmina)a. However, we get a more fine-grained sizeh, which also affects the required sizeHIDE.

8 Amplification via Secret Sharing and Parallel Repetition

In this section, we prove our main amplification results. As discussed previously, this is done by
building an FE scheme using our set homomorphic secret sharing scheme SetHSS. In our construc-
tion, we encrypt each share in our set homomorphic secret sharing scheme under an instantiation
of a weakly secure FE scheme. (To simplify the proof, we will actually use a weakly secure semi-
functional FE scheme, which can be built from a weakly secure FE scheme assuming OWFs, see
Thm. 4.1). For key generation, we first generate function encodings corresponding to each share us-
ing SetHSS.FuncEncode and then generate function keys for each of these function encodings using
the appropriate weakly secure FE instantiation. Recall from Section 5 that SetHSS is parameterized

38

by n “elements” and m sets (Ti)i∈[m] that are subsets of [n]. We will let n and m be parameters
of our FE construction. To generate the sets (Ti)i∈[m] used by SetHSS, we will sample each set
by including each element in [n] independently with probability q, where q is a parameter of our
construction. Recall that in Section 6, we proved various properties of such sets when sampled in
this manner. These lemmas will come in handy when analyzing the correctness and security of our
FE construction. Once we have analyzed correctness and security as functions of the parameters
n,m, and q, we will set these parameters to obtain our results. We will apply our construction
twice. The first application will amplify a weakly secure FE where an adversary has advantage
ε = c for some small constant c to one where an adversary has advantage ε = 1/ poly(λ). On the
second application, we amplify an FE scheme with ε = 1/ poly(λ) to one with ε = negl(λ) (or 2−λ

c

for some constant c > 0 when dealing with subexponential adversaries).

Recall the following notation:

Notation We say that ensembles satisfy (poly(λ) · s, ε)-indistinguishability if the ensembles satisfy
(p(λ) · s, ε)-indistinguishability for every polynomial p(λ).

Our main results in this section are the following.

Theorem 8.1. Assuming a (poly(λ), ε)-secure FE scheme for P/poly for some constant ε < 1/6,
there exists a (poly(λ), negl(λ))-secure FE scheme for P/poly. Moreover, this transformation pre-
serves sublinearity/compactness.

Theorem 8.2. Assuming a (2O(λc), ε)-secure FE scheme for P/poly for some constant ε < 1/6

and some constant c > 0, there exists a (2O(λc
′
), 2−O(λc

′
))-secure FE scheme for P/poly for some

constant 0 < c′ < c. Moreover, this transformation preserves sublinearity/compactness.

8.1 Construction

Our FE construction makes use of the following primitives.

• Let sFE = (sFE.Setup, sFE.Enc, sFE.KeyGen, sFE.Dec, sFE.SFEnc, sFE.SFKeyGen) be an (s, ν, ε)-
secure semi-functional encryption scheme, where 1

p(λ) ≤ ε < 1− 1
p(λ) for some polynomial p(λ).

Such a scheme is implied by an (s, ε)-secure FE scheme assuming an (s, ν)-secure one-way
function (see Thm. 4.1) and this transformation preserves sublinearity/compactness.

• Let SetGen(1n, 1m, q) be an algorithm that outputs (Ti)i∈[m], where for each Ti ⊆ [n], we
include each element of [n] in Ti independently with probability q.

• Let SetHSS = (SetHSS.InpEncode,SetHSS.FuncEncode,SetHSS.Decode) be a set homomorphic
secret sharing scheme.

• Let Com be a statistically binding, computationally hiding commitment scheme. (Com does
not show up in the construction and is only used in the security proof.)

Our FE scheme is defined, with respect to parameters n,m ∈ N where n,m = O(poly(λ)) and
a probability q ∈ [0, 1], as follows:

• FE.Setup(1λ) : Setup proceeds as follows:

1. Compute (Ti)i∈[m] ← SetGen(1n, 1m, q)

39

2. For each i ∈ [m], generate mski ← sFE.Setup(1λ).

3. Output MSK = ((mski)i∈[m], (Ti)i∈[m]).

• FE.Enc(MSK,msg) : Encryption proceeds as follows:

1. Parse MSK as ((mski)i∈[m], (Ti)i∈[m]).

2. Compute (si)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msg).

3. For i ∈ [m], compute cti ← sFE.Enc(mski, si).

4. Output CT = (cti)i∈[m].

• FE.KeyGen(MSK, C) : Key generation proceeds as follows:

1. Parse MSK as ((mski)i∈[m], (Ti)i∈[m]).

2. Compute (Ci)i∈[m] ← SetHSS.FuncEncode(1λ, 1n, (Ti)i∈[m], C).

3. For i ∈ [m], compute skCi ← sFE.KeyGen(mski, Ci).

4. Output skC = (skCi)i∈[m].

• FE.Dec(skC ,CT) : Decryption proceeds as follows:

1. Parse skC as (skCi)i∈[m] and CT as (cti)i∈[m].

2. For i ∈ [m], compute yi = sFE.Dec(skCi , cti).

3. Output SetHSS.Decode((yi)i∈[m]).

Correctness. Correctness holds provided that sFE is correct and that SetHSS is a correct set
homomorphic secret sharing scheme with respect to the sets (Ti)i∈[m] sampled by the setup algo-
rithm. To see this, observe that sFE.Dec(skCi , cti) = Ci(si) since cti is an encryption of si. Thus,
the output of decryption is SetHSS.Decode((Ci(si))i∈[m]) = C(msg) by correctness of SetHSS.

If we instantiate SetHSS with the scheme constructed in Section 5, we see that SetHSS is correct
provided that (Ti)i∈[m] cover all subsets of [n] of size 3 (Thm. 5.3). For parameters n,m ∈ N and
probability q ∈ [0, 1], the probability of (Ti)i∈[m] covering all subsets of size 3 when sampled in this
manner was calculated in Lemma 6.1 to be

≥ 1− n3(1− q3)m.

By a union bound and the correctness of sFE, the probability that one of the m copies of sFE is
incorrect is ≤ m · negl(λ). Therefore, the constructed scheme is correct with probability

≥ 1− n3(1− q3)m −m · negl(λ).

Sublinearity/Compactness. Let β ∈ (0, 1] denote the sublinearity/compactness parameter of
sFE. Sublinearity/compactness follows from observing that the size of the encryption circuit is
bounded by poly(λ, n,m) + |SetHSS.InpEncode| + m · |Ci|1−β · poly(λ, |si|) for fixed polynomials
independent of the size of the circuit class. Since each |Ci| ≤ |C| · poly(λ, n,m) and n,m = poly(λ),
and |si| and |SetHSS.InpEncode| are both poly(λ, n,m), it follows that the size of the encryption
circuit is ≤ |C|1−β · poly(λ) for some fixed polynomial independent of C.

40

8.2 Security

We define the security of FE according to Definition 4.3, where FE is (s, ε)-secure if for all adver-
saries of size s, then the two specified security experiments are distinguishable with probability at
most ε. However, for our security proof, we will actually prove a slightly stronger notion of security
that trivially implies that the normal security also holds. In particular, we will prove that for all
adversaries of size s, the two experiments are distinguishable with probability at most ε even when
the adversary is additionally given a commitment of some secret information. Since, an adversary
can only have a smaller advantage in differentiating these experiments when this commitment is
not given (an adversary that can break security without the commitment can break security with
the commitment by ignoring the commitment), regular security trivially follows.

Hybrid0: This hybrid corresponds to the real world experiment, with the addition that the ad-
versary also receives a commitment Z ← Com((s∗i)i∈[m]) where (s∗i)i∈[m] are the input encodings of
the challenge ciphertext msg∗b .

1. Queries: A gets as input 1λ and outputs (msgγ)γ∈[Γ],msg∗0,msg∗1 ∈ Xλ and C ∈ Cλ where
C(msg∗0) = C(msg∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in λ.

2. Sample b: Sample a bit b ∈ {0, 1}.

3. Setup:

(a) Compute (Ti)i∈[m] ← SetGen(1n, 1m, q).

(b) For i ∈ [m], generate mski ← sFE.Setup(1λ).

(c) Set MSK = ((mski)i∈[m], (Ti)i∈[m]).

4. Encryption:
Encrypt msg∗b :

(a) Compute (s∗i)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msg∗b).

(b) For i ∈ [m], compute (ct∗i)i∈[m] ← sFE.Enc(mski, si).

(c) Set CT∗ = (ct∗i)i∈[m].

Similarly, for γ ∈ [Γ], encrypt msgγ :

(a) Compute (sγi)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msgγ)

(b) For i ∈ [m], compute (ctγi)i∈[m] ← sFE.Enc(mski, s
γ
i).

(c) Set CTγ = (ctγi)i∈[m].

5. Key Generation:

(a) Compute (Ci)i∈[m] ← SetHSS.FuncEncode(1λ, 1n, (Ti)i∈[m], C).

(b) For i ∈ [m], compute skCi ← sFE.KeyGen(mski, Ci).

(c) Set skC = (skCi)i∈[m])

6. Commitment of Challenge Message Input Encodings: Compute Z ← Com((s∗i)i∈[m]).

7. Adversary’s Guess: Give A the following: (Z,CT∗, (CTγ)γ∈[Γ], skC). A guesses b′ ∈ {0, 1}.

41

Hybrid1: This hybrid is the same as the previous hybrid except that we have rearranged the steps
for increased clarity in later hybrids.

1. Queries: A gets as input 1λ and outputs (msgγ)γ∈[Γ],msg∗0,msg∗1 ∈ Xλ and C ∈ Cλ where
C(msg∗0) = C(msg∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in λ.

2. Sample b: Sample a bit b ∈ {0, 1}.

3. Generate Sets: Compute (Ti)i∈[m] ← SetGen(1n, 1m, q).

4. Input and Circuit Encodings:

(a) Compute (s∗i)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msg∗b)

and (sγi)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msgγ) for γ ∈ [Γ].

(b) Compute (Ci)i∈[m] ← SetHSS.FuncEncode(1λ, 1n, (Ti)i∈[m], C).

5. Commitment of Challenge Message Input Encodings: Compute Z ← Com((s∗i)i∈[m]).

6. For i ∈ [m], do the following:

(a) sFE Setup: Generate mski ← sFE.Setup(1λ).

(b) sFE Encryption Using Input Encodings:

i. Compute ct∗i ← sFE.Enc(mski, s
∗
i).

ii. Similarly, compute ctγi ← sFE.Enc(mski, s
γ
i) for γ ∈ [Γ].

(c) sFE KeyGen: Compute skCi ← sFE.KeyGen(mski, Ci).

7. Ciphertexts and Keys:

(a) Set CT∗ = (ct∗i)i∈[m] as the ciphertext for msg∗b . Set CTγ = (ctγi)i∈[m] as the ciphertext
for msgγ for γ ∈ [Γ].

(b) Set skC = (skCi)i∈[m] as the functional key for circuit C.

8. Adversary’s Guess: Give A the following: (Z,CT∗, (CTγ)γ∈[Γ], skC). A guesses b′ ∈ {0, 1}.

Lemma 8.1. For any adversary A, |Pr[A(Hybrid1) = 1]− Pr[A(Hybrid0) = 1]| = 0.

Proof. These hybrids are identical.

42

Hybrid2: In this hybrid, we generate the function keys using semi-functional key generation instead
of normal key generation.

1. Queries: A gets as input 1λ and outputs (msgγ)γ∈[Γ],msg∗0,msg∗1 ∈ Xλ and C ∈ Cλ where
C(msg∗0) = C(msg∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in λ.

2. Sample b: Sample a bit b ∈ {0, 1}.

3. Generate Sets: Compute (Ti)i∈[m] ← SetGen(1n, 1m, q).

4. Input and Circuit Encodings:

(a) Compute (s∗i)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msg∗b)

and (sγi)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msgγ) for γ ∈ [Γ].

(b) Compute (Ci)i∈[m] ← SetHSS.FuncEncode(1λ, 1n, (Ti)i∈[m], C).

5. [Change] Compute Programmed Values for Semi-functional Keys: For i ∈ [m],
compute θ∗i = Ci(s

∗
i).

6. Commitment of Challenge Message Input Encodings: Compute Z ← Com((s∗i)i∈[m]).

7. For i ∈ [m], do the following:

(a) sFE Setup: Generate mski ← sFE.Setup(1λ).

(b) sFE Encryption Using Input Encoding:

i. Compute ct∗i ← sFE.Enc(mski, s
∗
i).

ii. Similarly, compute ctγi ← sFE.Enc(mski, s
γ
i) for γ ∈ [Γ].

(c) [Change] sFE SFKeyGen: Compute skCi ← sFE.SFKeyGen(mski, Ci, θ
∗
i).

8. Ciphertexts and Keys:

(a) Set CT∗ = (ct∗i)i∈[m] as the ciphertext for msg∗b . Set CTγ = (ctγi)i∈[m] as the ciphertext
for msgγ for γ ∈ [Γ].

(b) Set skC = (skCi)i∈[m] as the functional key for circuit C.

9. Adversary’s Guess: Give A the following: (Z,CT∗, (CTγ)γ∈[Γ], skC). A guesses b′ ∈ {0, 1}.

Lemma 8.2. If sFE satisfies (s, ν)-indistinguishability of semi-functional keys, then there exists a
fixed polynomial p2(λ) such that for any adversary A of size (s− p2(λ)),

|Pr[A(Hybrid2) = 1]− Pr[A(Hybrid1) = 1]| ≤ m · ν.

Proof. Suppose there exists an adversary A of size (s − p2(λ)) such that |Pr[A(Hybrid2) = 1] −
Pr[A(Hybrid1) = 1]| > m · ν. Now, consider intermediate hybrids Hybrid1,0, . . . ,Hybrid1,m,
where in Hybrid1,i, keys are generated semi-functionally for indices i ≤ m and normally for
indices i > m. Observe that Hybrid1,0 = Hybrid1 and Hybrid1,m = Hybrid2. Therefore, there
exists an index j ∈ [m] such that

|Pr[A(Hybrid1,j) = 1]− Pr[A(Hybrid1,j−1) = 1]| > ν

Consider the adversary A′ that is given as nonuniform advice, j along with the queries and all
of the randomness needed for Hybrid2, except for the randomness used in step 7 on index j, for

43

which A has the greatest advantage in distinguishing hybrids Hybrid1,j and Hybrid1,j−1 (i.e. A
has advantage at least ν). Let (s∗j , (s

γ
j)γ∈[Γ], Cj , θj) be the values for index j generated by running

steps 1-6 of Hybrid2 with the fixed randomness of the nonuniform advice given to A′. With
these values fixed, A′ is given as input (ct∗j , (ct

γ
j)γ∈[Γ], skCj), generated according to either the

normal key generation experiment (i.e. step 6 of Hybrid1) or the semi-functional key generation
experiment (i.e. step 7 of Hybrid2) on inputs (s∗j , (s

γ
j)γ∈[Γ], Cj , θj). A′ then computes Z and

(ct∗i , (ct
γ
i)γ∈[Γ], skCi) for all indices i 6= j according to hybrids Hybrid1,j and Hybrid1,j−1 and

the nonuniform advice. A′ gives (Z,CT∗, (CTγ)γ∈[Γ], skC) to A and outputs whatever A outputs.
Observe that when A′ is given a normal function key, it simulates Hybrid1,j−1 for A, and when it
is given a semi-functional key, it simulates Hybrid1,j for A (and when A′ is using the randomness
and index j for which A has the greatest distinguishing advantage). Therefore A′ has advantage
at least ν in distinguishing the semi-functional and normal ciphertexts. Furthermore, the size of
A′ is s − p2(λ) + p(λ) for some polynomial p(λ). Define p2(λ) = p(λ). Then, the size of A′ is s,
contradicting the (s, ν)-indistinguishability of semi-functional keys.

44

Hybrid3: In this hybrid, we make the randomness used by sFE explicit. Instead of considering the
functions of sFE as randomized functions, we now consider them as deterministic functions that
take a random string as input.1

1. Queries: A gets as input 1λ and outputs (msgγ)γ∈[Γ],msg∗0,msg∗1 ∈ Xλ and C ∈ Cλ where
C(msg∗0) = C(msg∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in λ.

2. Sample b: Sample a bit b ∈ {0, 1}.

3. Generate Sets: Compute (Ti)i∈[m] ← SetGen(1n, 1m, q).

4. Input and Circuit Encodings:

(a) Compute (s∗i)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msg∗b)

and (sγi)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msgγ) for γ ∈ [Γ].

(b) Compute (Ci)i∈[m] ← SetHSS.FuncEncode(1λ, 1n, (Ti)i∈[m], C).

5. Compute Programmed Values for Semi-functional Keys: For i ∈ [m], compute θ∗i =
Ci(s

∗
i).

6. Commitment of Challenge Message Input Encodings: Compute Z ← Com((s∗i)i∈[m]).

7. [Change] Generate Randomness: For i ∈ [m], sample Ri = (r1,i, r2,i, (r
γ
3,i)γ∈[Γ], r4,i)

uniformly at random from {0, 1}`S+`E+`E ·|Γ|+`K where `S , `E , and `K are the sizes of the
randomness used by sFE.Setup, sFE.Enc, and sFE.SFKeyGen respectively.

8. For i ∈ [m], do the following:

(a) [Change] sFE Setup: Generate mski = sFE.Setup(1λ; r1,i).

(b) [Change] sFE Encryption Using Input Encoding:

i. Compute ct∗i = sFE.Enc(mski, s
∗
i ; r2,i).

ii. Similarly, compute ctγi = sFE.Enc(mski, s
γ
i ; rγ3,i) for γ ∈ [Γ], .

(c) [Change] sFE SFKeyGen: Compute skCi ← sFE.SFKeyGen(mski, Ci, θ
∗
i ; r4,i).

9. Ciphertexts and Keys:

(a) Set CT∗ = (ct∗i)i∈[m] as the ciphertext for msg∗b . Set CTγ = (ctγi)i∈[m] as the ciphertext
for msgγ for γ ∈ [Γ].

(b) Set skC = (skCi)i∈[m] as the functional key for circuit C.

10. Adversary’s Guess: Give A the following: (Z,CT∗, (CTγ)γ∈[Γ], skC). A guesses b′ ∈ {0, 1}.

Lemma 8.3. For any adversary A,

|Pr[A(Hybrid3) = 1]− Pr[A(Hybrid2) = 1]| = 0.

Proof. These hybrids are identical.

1We overload notation here and use sFE.Enc, sFE.Enc, sFE.SFEnc, sFE.KeyGen, and sFE.SFKeyGen to refer to both
the randomized functions and the corresponding deterministic functions where the randomness is given as an addi-
tional input.

45

Hybrid4: In this hybrid, we utilize the Probabilistic Replacement Theorem (Theorem (7.1) and
the (s, ε)-semi functional ciphertext indistinguishability of sFE to swap some of the instances of
normal encryption with semi-functional encryption. But first, we define several functions in order
to draw a more explicit parallel between this hybrid and the experiments specified in the Proba-
bilistic Replacement Theorem.

Consider the following:

• Define GenV for any fixed value V = ((msgγ)γ∈[Γ],msg∗0,msg∗1, C) output by A in step 1 of
Hybrid3 above.

GenV (1λ, 1m) :

1. Output (s∗i , θ
∗
i , (s

γ
i)γ∈[Γ], Ci)i∈[m] computed by running steps 2-5 of Hybrid3 on

query V .

• Define E, which runs step 8 of Hybrid3 and generates encryption ct∗ as a normal encryption
of s∗.

E(s∗, θ∗, (sγ)γ∈[Γ], C,R = (r1, r2, (r
γ
3)γ∈[Γ], r4)):

1. sFE Setup: Compute msk = sFE.Setup(1λ; r1).

2. sFE Encryption:

(a) Compute ct∗ = sFE.Enc(msk, s∗; r2).

(b) Compute ctγ = sFE.Enc(msk, sγ , rγ3) for γ ∈ [Γ], .

3. sFE KeyGen: Compute skC = sFE.SFKeyGen(msk, C, θ∗; r4).

4. Output (skC , (ct
γ)γ∈[Γ], ct

∗)

• Define F , which is the same as step 8 of Hybrid3 except that it generates encryption ct∗

using semi-functional encryption.

F (θ∗, (sγ)γ∈[Γ], C,R = (r1, r2, (r
γ
3)γ∈[Γ], r4)):

1. sFE Setup: Generate msk = sFE.Setup(1λ; r1).

2. sFE Encryption:

(a) Generate ct∗ = sFE.SFEnc(msk, 1λ; r2).

(b) Compute ctγ = sFE.Enc(msk, sγ ; rγ3) for γ ∈ [Γ],

3. sFE KeyGen: Compute skC = sFE.SFKeyGen(msk, C, θ∗; r4).

4. Output (skC , (ct
γ)γ∈[Γ], ct

∗)

• Observe that Gen, E, and F run in time O(poly(λ)) assuming that their inputs are of size
O(poly(λ)).

• Let `R be the length of the randomness R used in E and F . That is, `R = `S+`E+`E ·|Γ|+`K
where `S , `E , and `K are the sizes of the randomness used by sFE.Setup, sFE.Enc, and
sFE.SFKeyGen respectively. Note that `R = O(poly(λ)). We will assume without loss of
generality that `R ≥ 4λ since we can trivially pad the length of R by any polynomial in λ. If
E and F run in time O(poly(λ)), then after this change, they will still run in time O(poly(λ)).

46

• We commit to Z ← Com((s∗i)i∈[m]).

Now, since sFE satisfies (s, ε)-semi functional ciphertext indistinguishability, then for any V output
by A in step 1 of Hybrid3 or Hybrid4, GenV outputs (s∗i , θ

∗
i , (s

γ
i)γ∈[Γ], Ci)i∈[m] such that for all

i ∈ [m], then Ci(s
∗
i) = θ∗i and for all size s adversaries A,∣∣∣ Pr

Ri←{0,1}`R
[A(E(s∗i , θi, (s

γ
i)γ∈[Γ], Ci, Ri) = 1]− Pr

Ri←{0,1}`R
[A(F (θi, (s

γ
i)γ∈[Γ], Ci, Ri) = 1]

∣∣∣ ≤ ε.
Let us fix a V = ((msgγ)γ∈[Γ],msg∗0,msg∗1, C) output by A in step 1 of Hybrid3. Then, Hybrid3 is
exactly EXP0 of the Probabilistic Replacement Theorem. Therefore, we will invoke this theorem to
get the next hybrid. Observe that for a fixed V , Hybrid4 below is exactly EXP1 of the Probabilis-
tic Replacement Theorem. In the hybrid below, we define g to be the simulator that this theorem
produces for the randomness of E and F in EXP1.

Here is the hybrid:

1. Queries: A gets as input 1λ and outputs (msgγ)γ∈[Γ],msg∗0,msg∗1 ∈ Xλ and C ∈ Cλ where
C(msg∗0) = C(msg∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in λ.

2. Sample b: Sample a bit b ∈ {0, 1}.

3. Generate Sets: Compute (Ti)i∈[m] ← SetGen(1n, 1m, q).

4. Input and Circuit Encodings:

(a) Compute (s∗i)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msg∗b)

and (sγi)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msgγ) for γ ∈ [Γ].

(b) Compute (Ci)i∈[m] ← SetHSS.FuncEncode(1λ, 1n, (Ti)i∈[m], C).

5. Compute Programmed Values for Semi-functional Keys: For i ∈ [m], compute θ∗i =
Ci(s

∗
i).

6. [Change] Commitment of Zero: Compute Z ← Com(0`Z) where `Z = |(s∗i)i∈[m]|.

7. [Change] Sample α: Sample a string α ∈ {0, 1}m such that for each i ∈ [m], we set αi = 1
with probability (1− ε) and set αi = 0 with probability ε.

8. [Change] Use Simulator to Generate Randomness:
Compute (Ri)i∈[m] ← h(α,Z, (s∗i)i∈A0 , (θ

∗
i , (s

γ
i)γ∈[Γ], Ci)i∈[m]) where A0 = {i | αi = 0} and

Ri = (r1,i, r2,i, (r
γ
3,i)γ∈[Γ], r4,i)

9. For i ∈ [m], do the following:

(a) sFE Setup: Generate mski = sFE.Setup(1λ; r1,i).

(b) sFE Encryption Using Input Encoding:

i. [Change] If αi = 1, compute ct∗i = sFE.SFEnc(mski, 1
λ; r2,i).

Otherwise, compute ct∗i = sFE.Enc(mski, s
∗
i ; r2,i).

ii. For γ ∈ [Γ], compute ctγi = sFE.Enc(mski, s
γ
i ; rγ3,i).

(c) sFE KeyGen: Compute skCi = sFE.SFKeyGen(mski, Ci, θ
∗
i ; r4,i).

10. Ciphertexts and Keys:

47

(a) Set CT∗ = (ct∗i)i∈[m] as the ciphertext for msg∗b . Set CTγ = (ctγi)i∈[m] as the ciphertext
for msgγ for γ ∈ [Γ].

(b) Set skC = (skCi)i∈[m] as the functional key for circuit C.

11. Adversary’s Guess: Give A the following: (Z,CT∗, (CTγ)γ∈[Γ], skC). A guesses b′ ∈ {0, 1}.

We will show three different indistinguishability lemmas that follow from the three different corollar-
ies of our Probabilistic Replacement Theorem. Two are for when sFE is secure against all polynomial
sized adversaries, and one is for when sFE is secure against subexponential sized adversaries.

Lemma 8.4. Suppose sFE satisfies (poly(λ), ε)-semi-functional ciphertext indistinguishability for
some parameter ε. Let εmin = min(ε, 1− ε). Then, for all commitment schemes Com with (poly(λ) ·
22m log(ε−1

min), negl(λ))-computational hiding and negl(λ)-statistical binding, then for any polynomials

v(λ) and q(λ), there exists a randomized function h of size O(poly(λ) · 22m log(ε−1
min)) such that for

all algorithms A of size v(λ),

|Pr[A(Hybrid4) = 1]− Pr[A(Hybrid3) = 1]| < 1

q(λ)
.

Proof. Let v(λ) and q(λ) be polynomials. Suppose that there exists an algorithm A of size v(λ) such
that |Pr[A(Hybrid4) = 1] − Pr[A(Hybrid3) = 1]| > 1

q(λ) . Let V = ((msgγ)γ∈[Γ],msg∗0,msg∗1, C)
be the value output by A in step 1 of Hybrid3 or Hybrid4 for which A has the best advantage
in distinguishing the two hybrids. Then, for this fixed V , and the functions GenV , E, F described
above, Hybrid3 is exactly EXP0 of the Probabilistic Replacement Theorem and Hybrid4 is ex-
actly EXP1 of the Probabilistic Replacement Theorem. So, A has advantage greater than 1

q(λ) in
distinguishing EXP0 and EXP1 of the Probabilistic Theorem, which contradicts Cor. 7.1.

Lemma 8.5. Suppose sFE satisfies (poly(λ), ε)-semi-functional ciphertext indistinguishability for
some parameter ε. Let εmin = min(ε, 1 − ε). Let a ∈ N with a ≤ m. Then, for all commit-

ment schemes Com with (poly(λ) · 22·[m log((1−εmin)−1)+a log(ε−1
min−1)], negl(λ))-computational hiding

and negl(λ)-statistical binding, then for any polynomials v(λ) and q(λ), there exists a randomized

function h of size O(poly(λ) · 22·[m log((1−εmin)−1)+a log(ε−1
min−1)]) such that for all algorithms A of size

v(λ),

|Pr[A(Hybrid4) = 1]− Pr[A(Hybrid3) = 1]| < 1

q(λ)
+ (

em · εmin
a

)a.

Proof. The proof of this lemma is identical to the proof of Lemma 8.4 except that we now apply
Cor. 7.3 at the end.

Lemma 8.6. Suppose sFE satisfies (2λ
c
, ε)-semi-functional ciphertext indistinguishability for some

constant c > 0 and where 1
p(λ) ≤ ε < 1− 1

p(λ) for some polynomial p(λ). Suppose m ≤ λt for some

constant t > 0. Then, for all commitment schemes Com with (2λ
c′
, 2−λ

c′
)-computational hiding and

2−λ
c′

-statistical binding for a constant c′ > max{c, t}, there exists a randomized function h of size

O(2λ
c · 22m log(λp(λ))) such that for all size 2λ

c′′
algorithms A,

Pr[A(Hybrid4) = 1]− Pr[A(Hybrid3) = 1]| ≤ 2−λ
c′′

for some constant c′′ > 0.

Proof. The proof of this lemma is identical to the proof of Lemma 8.4 except that we now apply
Cor. 7.2 at the end.

48

Hybrid5: We abort if the security requirement for our SetHSS scheme is not satisfied by α.

1. Queries: A gets as input 1λ and outputs (msgγ)γ∈[Γ],msg∗0,msg∗1 ∈ Xλ and C ∈ Cλ where
C(msg∗0) = C(msg∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in λ.

2. Sample b: Sample a bit b ∈ {0, 1}.

3. Generate Sets: Compute (Ti)i∈[m] ← SetGen(1n, 1m, q).

4. Input and Circuit Encodings:

(a) Compute (s∗i)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msg∗b)

and (sγi)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msgγ) for γ ∈ [Γ].

(b) Compute (Ci)i∈[m] ← SetHSS.FuncEncode(1λ, 1n, (Ti)i∈[m], C).

5. Compute Programmed Values for Semi-functional Keys: For i ∈ [m], compute θ∗i =
Ci(s

∗
i).

6. Commitment of Zero: Compute Z∗ ← Com(0`Z) where `Z = |(s∗i)i∈[m]|.

7. Sample α: Sample a string α ∈ {0, 1}m such that for each i ∈ [m], we set αi = 1 with
probability 1− ε and set αi = 0 with probability ε.

8. [Change] Abort if α Doesn’t Satisfy the Security Requirement: Let α ∈ {0, 1}m
induce a marking function f : [m] → {0, 1} by setting f(i) = 1 iff αi = 0. Abort if (Ti)i∈[m]

does not have an unmarked element with respect to f (Def. 6.2)

9. Use Simulator to Generate Randomness:
Compute (Ri)i∈[m] ← h(α,Z, (s∗i)i∈A0 , (θ

∗
i , (s

γ
i)γ∈[Γ], Ci)i∈[m]) where A0 = {i | αi = 0} and

Ri = (r1,i, r2,i, (r
γ
3,i)γ∈[Γ], r4,i).

10. For i ∈ [m], do the following:

(a) sFE Setup: Generate mski = sFE.Setup(1λ; r1,i).

(b) sFE Encryption Using Input Encoding:

i. If αi = 1, compute ct∗i = sFE.SFEnc(mski, 1
λ; r2,i).

Otherwise, compute ct∗i = sFE.Enc(mski, s
∗
i ; r2,i).

ii. For γ ∈ [Γ], compute ctγi = sFE.Enc(mski, s
γ
i ; rγ3,i).

(c) [Change] sFE KeyGen: Compute skCi = sFE.SFKeyGen(mski, Ci, θ
∗
i , r4,i).

11. Ciphertexts and Keys:

(a) Set CT∗ = (ct∗i)i∈[m] as the ciphertext for msg∗b . Set CTγ = (ctγi)i∈[m] as the ciphertext
for msgγ for γ ∈ [Γ].

(b) Set skC = (skCi)i∈[m] as the functional key for circuit C.

12. Adversary’s Guess: Give A the following: (Z,CT∗, (CTγ)γ∈[Γ], skC). A guesses b′ ∈ {0, 1}.

Lemma 8.7. Suppose SetGen(1n, 1m, q) runs by sampling m sets T1, T2, . . . , Tm, where each set is
chosen by independently including each element in [n] with probability q. Then, for any δ ≥ 1, for
any adversary A,

|Pr[A(Hybrid5) = 1]− Pr[A(Hybrid4) = 1]| ≤ 1− (1− e−
δεm
3)(1− (1− (1− q)(1+δ)εm)n).

49

Proof. The hybrids are identical if the abort condition in step 8 of Hybrid5 is not satisfied. This
probability was calculated in Lemma 6.2. Taking the complement gives us a bound on any adver-
sary’s advantage.

50

Hybrid6: In this hybrid, instead of encrypting msg∗b , we now encrypt msg∗0.

1. Queries: A gets as input 1λ and outputs (msgγ)γ∈[Γ],msg∗0,msg∗1 ∈ Xλ and C ∈ Cλ where
C(msg∗0) = C(msg∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in λ.

2. Sample b: Sample a bit b ∈ {0, 1}.

3. Generate Sets: Compute (Ti)i∈[m] ← SetGen(1n, 1m, q).

4. Input and Circuit Encodings:

(a) [Change] Compute (s∗i)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msg∗0)

and (sγi)i∈[m] ← SetHSS.InpEncode(1λ, 1n, (Ti)i∈[m],msgγ) for γ ∈ [Γ].

(b) Compute (Ci)i∈[m] ← SetHSS.FuncEncode(1λ, 1n, (Ti)i∈[m], C).

5. Compute Programmed Values for Semi-functional Keys: For i ∈ [m], compute θ∗i =
Ci(s

∗
i).

6. Commitment of Zero: Compute Z∗ ← Com(0`Z) where `Z = |(s∗i)i∈[m]|.

7. Sample α: Sample a string α ∈ {0, 1}m such that for each i ∈ [m], we set αi = 1 with
probability 1− ε and set αi = 0 with probability ε.

8. Abort if α Doesn’t Satisfy the Security Requirement: Let α ∈ {0, 1}m induce a
marking function f : [m] → {0, 1} by setting f(i) = 1 iff αi = 0. Abort if (Ti)i∈[m] does not
have an unmarked element with respect to f (Def. 6.2)

9. Use Simulator to Generate Randomness:
Compute (Ri)i∈[m] ← h(α,Z, (s∗i)i∈A0 , (θi, (s

γ
i)γ∈[Γ], Ci)i∈[m]) where A0 = {i | αi = 0} and

Ri = (r1,i, r2,i, (r
γ
3,i)γ∈[Γ], r4,i).

10. For i ∈ [m], do the following:

(a) sFE Setup: Generate mski = sFE.Setup(1λ; r1,i).

(b) sFE Encryption Using Input Encoding:

i. If αi = 1, compute ct∗i = sFE.SFEnc(mski, 1
λ; r2,i).

Otherwise, compute ct∗i = sFE.Enc(mski, s
∗
i ; r2,i).

ii. For γ ∈ [Γ], compute ctγi = sFE.Enc(mski, s
γ
i ; rγ3,i).

(c) [Change] sFE KeyGen: Compute skCi = sFE.SFKeyGen(mski, Ci; θ
∗
i , r4,i).

11. Ciphertexts and Keys:

(a) [Change] Set CT∗ = (ct∗i)i∈[m] as the challenge ciphertext. Set CTγ = (ctγi)i∈[m] as the
ciphertext for msgγ for γ ∈ [Γ].

(b) Set skC = (skCi)i∈[m] as the functional key for circuit C.

12. Adversary’s Guess: Give A the following: (Z,CT∗, (CTγ)γ∈[Γ], skC). A guesses b′ ∈ {0, 1}.

We will show two lemmas for indistinguishability: one for the polynomial sized adversary case
and one for the subexponential sized adversary case. Observe that due to the results of Lemmas 8.4,
8.5, and 8.6, the size of h in the hybrids differs based on whether we are proving indistinguishability
against polynomial sized or subexponential sized adversaries. The lemma statements are written
accordingly.

51

Lemma 8.8. Suppose SetHSS is a set-homomorphic secret sharing scheme for m candidates that
is secure against size O(poly(λ) · sizeh) adversaries where sizeh is the size of the simulator h. Then,
for any polynomial sized adversary A, |Pr[A(Hybrid6) = 1]− Pr[A(Hybrid5) = 1]| ≤ negl(λ).

Proof. Nonuniformly fix the queries in step 1, bit b in step 2, and the sets generated in step 3
to maximize A’s advantage. Also, nonuniformly fix the α sampled in step 7 to maximize A’s
advantage subject to the condition that α doesn’t cause the hybrid to abort in step 8 (if the
hybrids abort, then A has advantage 0). Fix an unmarked element j ∈ [n] given by the choices
of (Ti)i∈[m] and α ∈ {0, 1}m. Consider the adversary A′ that is given as input the challenge
((s∗i)i:j 6∈Ti , (Ci)i∈[m], (θ

∗
i = Ci(s

∗
i))i∈[m]). It generates (sγi)i∈[m] according to step 4 of the hybrids

and then runs steps 6 and 8 of the hybrids. It then uses its challenge along with (sγi)i∈[m] to run
step 9 of the hybrids. Observe that since j is an unmarked element, A′ will never need to use a
share s∗i that it does not know in order to generate a ciphertext ct∗i . A′ finally runs step 10 of the
hybrids. A′ gives its results to A and outputs whatever A outputs. Since A′’s advantage will be
A’s advantage and |A′| = |A|+O(sizeh)+poly(λ), the lemma follows by the security of SetHSS.

Lemma 8.9. Let m ≤ λt for some constant t > 0. Let c > 0 be some constant. Suppose SetHSS

is a set-homomorphic secret sharing scheme for m candidates that is (2λ
c′
, 2−λ

c′
) − secure for

some constant c′ > max{c, t}. Then, for any adversary A of size 2λ
c
, |Pr[A(Hybrid6) = 1] −

Pr[A(Hybrid5) = 1]| ≤ 2−λ
c
.

Proof. The proof is identical to the proof of Lemma 8.8 except that we now rely on subexponential

security of SetHSS. Since the size of A′ is |A| + O(2λ
c · 22m log(λp(λ))) + poly(λ) < 2λ

c′
, the result

follows by subexponential security of SetHSS.

Observe that the output of Hybrid6 is information-theoretically independent of b. Therefore, the
advantage of any adversary in guessing the bit b in this hybrid is 0.

8.3 Instantiating the Parameters

Here, we instantiate the various parameters of our construction from Section 8.1 and calculate the
correctness and security properties of the resulting FE scheme. Recall the following notation:

Notation We say that ensembles satisfy (poly(λ) · s, ε)-indistinguishability if the ensembles satisfy
(p(λ) · s, ε)-indistinguishability for every polynomial p(λ).

8.3.1 Amplification Against Polynomial Sized Adversaries

From constant to 1/ poly(λ) security: Suppose sFE is (poly(λ), negl(λ), ε)-secure for a constant
ε < 1

6 . Set the following parameters:

• n = λ2c+1.

• m = log λ
ε .

• q = 1− 2−c.

• δ = 1.

52

where c > 0 is some constant.

Let τ = − log(1− (1− 2−c)3). Then, it follows that the correctness of the resulting scheme is

≥ 1− n3(1− q3)m −m · negl(λ)

= 1− λ6c+3
(
1− (1− 2−c)3

)log λ/ε − negl(λ)

= 1− λ6c+3 · 2−τ log λ/ε − negl(λ)

= 1− λ6c+3 · λ−τ/ε − negl(λ).

We require that 6c+ 3− τ/ε < 0, so that the above becomes ≥ 1− 1/ poly(λ). This holds when

ε <
τ

6c+ 3
.

Since, the limit of the above expression as c → ∞ is 1
6 , for any ε < 1

6 , we can find a sufficiently
large c so that our required inequality holds.

For security, let v(λ) and w(λ) be polynomials. Observe that εmin = min(ε, 1− ε) is a constant.
Then, by the sequence of hybrids shown in Sec. 8.2 with Lemmas 8.4 and 8.8, assuming Com is
(poly(λ) · 22m log(ε−1

min), negl(λ)) = (poly(λ) · 2O(log(λ)), negl(λ)) = (poly(λ), negl(λ))-computationally
hiding and negl(λ) statistically binding, then for any adversary of size v(λ), then there exists a

value sizeh = O(poly(λ) · 22m log(ε−1
min)) = O(poly(λ)) such that assuming SetHSS is secure against

size O(poly(λ) · sizeh) = O(poly(λ)) adversaries, the advantage is less than

m · negl(λ) +
1

w(λ)
+ 1− (1− e−δεm/3)(1− (1− (1− q)(1+δ)εm)n) + negl(λ)

= negl(λ) +
1

w(λ)
+ 1− (1− e− log(λ)/3)(1− (1− (2−c)2 log(λ))λ

2c+1
)

= negl(λ) +
1

w(λ)
+ 1− (1− 1

λ1/(3 ln(2))
)(1− (1− 1

λ2c
)λ

2c+1
)

≤ negl(λ) +
1

w(λ)
+ 1− (1− 1

λ1/(3 ln(2))
)(1− 2

eλ
)

≤ 1

w(λ)
+

1

λ0.4
.

First note that if SetHSS is secure against all polynomial-sized adversaries, then v(λ) and w(λ)
can be any arbitrary polynomials. In particular, setting w(λ) = 1

λ0.4
, this means that the advantage

of any polynomial-sized adversary is bounded by 2
λ0.4

.
Observe that the resulting correctness is no longer ≥ 1−negl(λ). Rather, it is now ≥ 1−λα for

some constant α > 0. However, we can easily amplify correctness while maintaining a 1/ poly(λ)
level of security by simply considering a new scheme that consists of log(λ) independent copies of
the original scheme. Note that as long as one of the copies is correct, the resulting scheme is correct.
This follows since whether the scheme is correct or not is known as soon as the Ti’s are sampled
(by simply seeing if they cover all size 3 subsets). Thus, any copy of our scheme can be thought of
as either correct or always outputting ⊥. Thus, correctness is now ≥ 1− (λ−α)log λ = 1− negl(λ).
Moreover, we lose at most a multiplicative log λ factor in security, so the adversary’s advantage is
bounded by 2 log(λ)/(λ0.4).

Remark 8.1. We believe that by using a tighter Chernoff bound and more sufficiently small
constants when setting the parameters n,m, q, and δ that we can make our amplification work

53

for any ε < 1/3. However, since there is an inherent limitation to this approach, we will need a
transformation that amplifies the security from any constant to a sufficiently small constant (which
we show in Section 9). Thus, we do not worry about this optimization.

From 1/ poly(λ) to negl(λ) security: Suppose sFE is (poly(λ), negl(λ), ε)-secure for ε < 1/λc for
some constant c > 0. Set the following parameters:

• n = λ.

• m = log4+7α λ.

• q = 1
log1+2α λ

.

• δ = log1+α λ
2εm ≥ 1.

where α > 0 is some constant.

Then, it follows that the correctness of the resulting scheme is

≥ 1− n3(1− q3)m −m · negl(λ)

= 1− λ3(1− 1/ log3+6α λ)log4+7α λ − negl(λ)

≥ 1− λ3(2/elog1+α λ)− negl(λ)

≥ 1− negl(λ).

For security, we will make use of the following calculation. Let a ∈ N be any constant with
a ≤ m. Since m = log4+7α(λ), then for large enough λ, a can be any arbitrarily large constant
integer. Since ε < 1/λc, then εmin = min(ε, 1 − ε) = ε. We also note that since ε > negl(λ), then
ε > 1/λc

′
for some constant c′ > c. Then,

2[m log((1− εmin)−1) + a log(ε−1
min − 1)]

= 2m log((1− ε)−1) + 2a log(ε−1 − 1)

≤ 2m log((1− ε)−1) + 2a log(λc
′ − 1)]

= 2m log((1− ε)−1) +O(log(λ))

≤ 2 log4+7α(λ) · (− log((1− 1/λc)) +O(log(λ))

≤ 2 log4+7α(λ) ·
(

1

ln(2) · (λc − 1)

)
+O(log(λ))

≤ O(log(λ)),

which follows from the fact that (− log(1−1/λc)) ≤ 1
ln(2)·(λc−1) . To see this, set z = 1/λc and observe

that − log(1−z) = 1
ln 2

∫ z
0

dy
1−y ≤

z
ln(2)·(1−z) . Then, we observe that by the sequence of hybrids shown

in Sec. 8.2 with Lemmas 8.5 and 8.8, if we let v(λ) and w(λ) be arbitrary polynomials, then for

any adversary of size v(λ), assuming Com is (poly(λ) · 22·[m log((1−εmin)−1)+a log(ε−1
min−1)], negl(λ)) =

(poly(λ) · 2O(log(λ)), negl(λ)) = (poly(λ), negl(λ))-computationally hiding and negl(λ) statistically

binding and SetHSS is secure against size O(poly(λ)·22·[m log((1−εmin)−1)+a log(ε−1
min−1)])) = O(poly(λ))

54

adversaries, the advantage is less than

m · negl(λ) +
1

w(λ)
+ (em · ε/a)a + 1− (1− e−δεm/3)(1− (1− (1− q)(1+δ)εm)n) + negl(λ)

≤ negl(λ) +
1

w(λ)
+ (e log4+7α(λ)/λc)a + 1− (1− e− log1+α λ/6)(1− (1− (1− 1/ log1+2α λ)log1+α λ)λ)

≤ negl(λ) +
1

w(λ)
+ (e log4+7α(λ)/λc)a + 1− (1− negl(λ))(1− (1− (1/e)1/ logα λ)λ)

≤ negl(λ) +
1

w(λ)
+ (e log4+7α(λ)/λc)a + 1− (1− negl(λ))(1− (1/e)λ/e

1/ logα λ
)

≤ negl(λ) +
1

w(λ)
+ (e log4+7α(λ)/λc)a + 1− (1− negl(λ))(1− negl(λ))

≤ negl(λ) +
1

w(λ)
+ (e log4+7α(λ)/λc)a.

Now, for any polynomial p(λ), there exists a constant a such that (e log4+7α(λ)/λc)a < 1/p(λ).
Thus, since a can be any constant and w(λ) can be any polynomial, it follows that this advantage
can be made smaller than 1/p(λ) for any polynomial p(λ). Therefore, we get that the advantage is
negligible. Since the size of the adversary v(λ) can also be an arbitrary polynomial, it follows that
security holds against all polynomial-sized adversaries.

Putting everything together: From these results, we obtain Theorem 8.2 as follows. Assume
our weakly-secure FE scheme is (poly(λ), ε)-secure for ε < 1/6. We apply the FE to sFE transfor-
mation (Thm. 4.1) to obtain a (poly(λ), negl, ε)-secure sFE scheme. We then instantiate our FE
construction with the constant to 1/ poly(λ) parameters. We then apply correctness amplification
to obtain a new FE construction that is 1 − negl(λ) correct and 1/ poly(λ)-secure. We transform
this construction to a semi-functional FE construction sFE′ (Thm. 4.1) and then instantiate our
construction a final time with the 1/ poly(λ) to negl(λ) security parameters using sFE′. The under-
lying schemes Com and SetHSS can be instantiated assuming a (poly(λ), negl(λ))-secure one-way
function. Such a one-way function can be instantiated from a (poly(λ), ε)-secure FE scheme using
the fact that a weakly-secure FE scheme implies a weakly-secure OWF and that OWF security can
be amplified [Imp95]. This gives Theorem 8.1.

8.3.2 Amplification Against Subexponential Sized Adversaries

From constant to 1/ poly(λ) security: Suppose sFE is (2O(λc), 2−O(λc), ε)-secure for ε < 1/6 for
some constant c > 0. By the same setting of parameters as in the above section (and the same

correctness amplification), it follows that we can obtain a (2O(λc
′′

), log(λ)/λ0.4)-secure FE scheme

for some c′′ > 0, assuming a (2O(λc
′
), 2−O(λc

′
))-secure one-way function for some c′ > c.

From 1/ poly(λ) to 2−O(λφ
′
) security: Suppose sFE is (2O(λc), 2−O(λc), ε)-secure for ε < 1/λβ for

constants c, β > 0. Set the parameters as follows:

• n = λ.

• m = λ4α.

• q = 1/λα.

55

• δ = λα

2εm ≥ 1 when α < β/3.

• p(λ) = λcp such that ε > 1/λcp (such a cp exists since ε > negl(λ)),

where 0 < α < β/3 is some constant.

Then, it follows that the correctness of the resulting scheme is

≥ 1− n3(1− q3)m −m · negl(λ)

= 1− λ3(1− 1/λ3α)λ
4α − negl(λ)

≥ 1− 2λ3 · (1/e)λα

≥ 1− negl(λ).

For security, we observe that by the sequence of hybrids shown in Sec. 8.2 that for any 2O(λc
′′

)-

sized adversary for some constant c′′ < c, assuming Com is (2O(λc
′
), 2−O(λc

′
))-computationally hiding

and 2−O(λc
′
) statistically binding and SetHSS is 2−O(λc

′
)-secure against size 2O(λc

′
) adversaries for

some cosntant c′ > c, the advantage is bounded by

m · 2−O(λc) + 2−O(λc
′′

) + 1− (1− e−δεm/3)(1− (1− (1− q)(1+δ)εm)n) + 2−O(λc)

≤ 2−O(λc
′′

) + 1− (1− e−λα/6)(1− (1− (1− 1/λα)λ
α
)λ)

≤ 2−O(λc
′′

) + 1− (1− e−λα/6)(1− (1− (1/e))λ)

≤ 2−O(λc
′′

) + 2−O(λφ)

≤ 2−O(λφ
′
),

for some constant φ > 0 and constant φ′ = min{c′′, φ}. Thus, the resulting FE scheme is

(2O(λφ
′
), 2−O(λφ

′
))-secure.

Putting everything together: From these results, we obtain Theorem 8.2 as follows. Assume

our weakly-secure FE scheme is (2O(λc
′
), ε)-secure for ε < 1/6. We apply the FE to sFE transfor-

mation (Thm. 4.1) to obtain a (2O(λc
′
), 2−O(λc

′
), ε)-secure sFE scheme. Observe that since c′ > c, it

follows that the sFE scheme must also be a (2O(λc), 2−O(λc), ε)-secure sFE scheme. We then instan-
tiate our FE construction with the constant to 1/ poly(λ) parameters. We then apply correctness
amplification to obtain a new FE construction that is 1 − negl(λ) correct and 1/ poly(λ)-secure.
We transform this construction to a semi-functional FE construction sFE′ (Thm. 4.1) and then

instantiate our construction a final time with the 1/ poly(λ) to 2−O(λφ
′
) security parameters using

sFE′. The underlying schemes Com and SetHSS can be instantiated assuming a (2O(λc
′
), 2−O(λc

′
))-

secure one-way function. Such a one-way function can be instantiated from a (2O(λc
′
), ε)-secure

FE scheme using the fact that a weakly-secure FE scheme implies a weakly-secure OWF and that
OWF security can be amplified [Imp95]. This gives Theorem 8.2.

9 Amplification via Nesting

In this section, we amplify a secret key FE scheme that is secure with some constant probability
(1 − ε) to another secret key FE scheme that is secure with some larger constant probability (in

56

the neighborhood of (1− ε2)). In this way, we can create an ε′ secure FE scheme for any arbitrarily
small constant ε′ from any constantly secure FE scheme by repeating this transformation a constant
number of times. We show that this amplification preserves compactness and note that although
we consider the secret key variant, our proofs extend to the case of public key FE.

Recall the following notation:

Notation We say that ensembles satisfy (poly(λ) · s, ε)-indistinguishability if the ensembles satisfy
(p(λ) · s, ε)-indistinguishability for every polynomial p(λ).

Our main results in this section are the following:

Theorem 9.1. If there exists a (poly(λ), ε)-secure functional encryption scheme for P/poly for
some constant ε ∈ (0, 1), then there exists a (poly(λ), ε′)-secure functional encryption scheme for
P/poly for any constant ε′ ∈ (0, 1). Moreover, the transformation preserves compactness.

Theorem 9.2. If there exists a (2λ
c
, ε)-secure functional encryption scheme for P/poly for some

constant ε ∈ (0, 1) and some constant c > 0, then there exists a (2λ
c′
, ε′)-secure functional en-

cryption scheme for P/poly for any constant ε′ ∈ (0, 1) and any constant c′ < c. Moreover, the
transformation preserves compactness.

9.1 Construction

Let FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) be a secret key functional encryption scheme for
P/poly that satisfies (s, ε)−security (as described in Definition 4.3) for some constant ε ∈ (0, 1).

We now construct an amplified functional encryption scheme FE∗ as described below. Essen-
tially, FE∗ works by nesting the original functional encryption FE. Intuitively, the idea is that as
long as one layer of FE is secure, then the nested FE∗ is secure. Therefore, we can get amplification
since our nested FE∗ is broken only when all layers of FE are broken. We formalize this notion in
the security proof.

We will use a two-layer nesting where we have an “inner” and “outer” FE. To encrypt a message,
we first encrypt using the “inner” FE and then encrypt the result using the “outer” FE. To create
a function key for C, we first create a normal function key for C using the “inner” FE. Then, our
final function key for C is the function key for the “outer” FE of the function that decrypts the
input with the “inner” function key.

FE∗ (Amplified Functional Encryption)

• Setup(1λ):

1. Generate msk1 ← FE.Setup(1λ) and msk2 ← FE.Setup(1λ).

2. Output MSK = (msk1,msk2).

• Enc(MSK,m):

1. Parse MSK as (msk1,msk2).

2. Compute ct1 ← FE.Enc(msk1,m).

3. Compute ct2 ← FE.Enc(msk2, ct1).

4. Output CT = ct2.

57

• KeyGen(MSK, C):

1. Parse MSK as (msk1,msk2).

2. Compute skC,1 ← FE.KeyGen(msk1, C).

3. Compute skC,2 ← FE.KeyGen(msk2, G) where G(x) = FE.Dec(skC,1, x).

4. Output skC = skC,2.

• Dec(skC ,CT):

1. Output y = FE.Dec(skC ,CT).

Correctness: If the underlying FE is correct, then so is the scheme FE∗. This is because for any
function C, message m, honestly generated ciphertext CT ← FE.Enc(msk2,FE.Enc(msk1,m)) and
key skC ← FE.KeyGen(msk2, G) whereG(x) = FE.Dec(FE.KeyGen(msk1, C), x), then FE.Dec(skC ,CT) =
G(FE.Enc(msk1,m)) = FE.Dec(FE.KeyGen(msk1, C),FE.Enc(msk1,m)) = C(m). Thus, correctness
holds with probability 1.

Preserving Compactness: It follows immediately that if FE satisfies compactness, then so does
FE∗. If the running time needed to compute an FE ciphertext is independent of the function size,
then so is the running time needed to compute an FE∗ encryption of a message.

9.2 Security

We will prove the following two lemmas.

Lemma 9.1. For any constant ε ∈ (0, 1) if

• FE is a (poly(λ), ε)-secure functional encryption scheme for P/poly,

• Com is any commitment with (poly(λ), negl(λ))-computational hiding and negl(λ)-statistical
binding,

then FE∗ is a (poly(λ), ε2 + negl(λ))-secure functional encryption scheme.

Lemma 9.2. For any constant ε ∈ (0, 1), any constant c′ > 0, and any constant c > c′, if

• FE is a (2λ
c
, ε)-secure functional encryption scheme for P/poly,

• Com is any commitment with (2λ
c
, negl(λ))-computational hiding and negl(λ)-statistical bind-

ing,

then FE∗ is a (2λ
c′
, ε2 + negl(λ))-secure functional encryption scheme.

Since weakly-secure FE implies a weakly-secure OWF (which can then be amplified to a fully
secure OWF via [Imp95]), Theorems 9.1 and 9.2 immediately follow from Lemmas 9.1 and 9.2 by
instantiating Com using this OWF and repeating the transformation a constant number of times.

Proof Overview: Our amplified FE∗ is basically a two-nested FE scheme. Since each layer is
a separate FE scheme, we expect our amplified FE∗ to be secure as long as at least one of the
layers is secure. Now, if we could prove that each layer is independently insecure with probability

58

at most ε, then we could show that the amplified FE∗ scheme is only insecure with probability at
most ε2. Unfortunately, the security of the two layers is not independent; in general the hard core
sets of randomness which lead to secure encryptions could depend on the message being encrypted.
Instead, we will achieve similar amplification by in some sense “simulating” the security of the outer
FE in a way that is independent of the security of the inner FE. To do so, we will use techniques
similar to those used in our Probabilistic Replacement Theorem (Theorem 7.1). In particular, an
explanation of hardcore measures proofs can be found in the technical overview in Section 2.2.

First, we quantify the security of the outer FE using hardcore measures. By the (s, ε)-security
of FE, for any fixed output of the inner FE, the outer FE is secure with probability at least 1 − ε.
Therefore, by Theorem 3.1, there exist hardcore measures (of density 1 − ε) of the randomness of
the outer FE such that the outer FE is strongly secure when its randomness is sampled from these
hardcore measures. So, with probability at least 1 − ε, we sample randomness from the hardcore
measures of the outer FE and achieve security via these hardcore measures. But with probability
ε, we have no guarantee that the outer FE is secure, so we must rely on the security of the inner
FE.

Now, we want to show that conditioned on the outer FE being potentially insecure (i.e. when
we do not sample from these hardcore measures), then the inner FE is still only insecure with
probability close to ε. In other words, we want to show that the security of the inner and outer FE
schemes are close to independent. To do so, we need to perform a reduction to the (s, ε)-security
of the inner FE. At this point, we run into two issues. First, in order to perform our reduction to
the security of the inner FE, we will need to sample from the complement hardcore measures of the
outer FE. (Recall that we first conditioned on the outer FE being potentially insecure.) However,
this is problematic because we have no bound on the efficiency of computing or sampling from
these hardcore measures. Secondly, the hardcore measures of the outer FE depend implicitly on the
randomness used by the inner FE. Or, in other words, the security of the outer FE, as quantified
by these measures, is not independent of the security of the inner FE.

To resolve these issues, we need to find a way to give an efficient reduction to the security of
the inner FE, despite the inefficiencies and dependencies outlined above. Intuitively, we proceed
as follows: Our reduction takes as input the ciphertext produced by the inner FE. The reduction
then uses the fact that the complement of the hard core measure of the outer FE has density ε to
efficiently simulate randomness that is indistinguishable from hardcore randomness; this simula-
tion uses the leakage simulation theorem [Skó15].This allows our reduction to create the outer FE
ciphertext that the adversary expects.

Proof:

Security Game:
Recall the definition of (s, ε)-secure FE from Definition 4.3:

Definition 9.1 ((s, ε)-secure FE). A secret-key FE scheme FE for a class of circuits C = {Cλ}λ∈[N]

and message space X = {Xλ}λ∈[N] is (s, ε)-secure if for any adversary A of size s, the advantage of
A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ ε,
where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined below:

1. Challenge queries: A submits message queries (xi)i∈[Γ], a challenge message query (x∗0, x
∗
1),

and a function query C to the challenger Chal, with xi ∈ Xλ for all i ∈ [Γ], x∗0, x
∗
1 ∈ Xλ, and

59

C ∈ Cλ such that C(x∗0) = C(x∗1). Here, Γ is an arbitrary (a priori unbounded) polynomial in
λ.

2. Chal computes msk ← FE.Setup(1λ) and then computes cti ← FE.Enc(msk, xi) for all i ∈
[Γ]. It then computes ct∗ ← FE.Enc(msk, x∗b) and skC ← FE.KeyGen(msk, C). It sends
((cti)i∈[Γ], ct

∗, skC) to A.

3. The output of the experiment is set to b′, where b′ is the output of A.

Now, we define security for our amplified FE∗ in terms of the following definitions:

• Challenge Queries (aux): Define aux = (m∗0,m
∗
1, (m

γ)γ∈[Γ], C) to be a set of challenge

queries output by some adversary A in step 1 of ExptFE
∗

A (1λ, b). In particular, (m∗0,m
∗
1)

are the challenge message queries, (mγ)γ∈[Γ] are the message queries, and C is the function
query. For the rest of this proof, whenever we refer to aux, we will assume that it is of the
appropriate form and satisfies the constraint that C(m∗0) = C(m∗1). We will also assume that
all adversaries are of large enough size to output any particular aux since |aux| = O(poly(λ))
is fixed based on the FE scheme and λ.

• Inner Encryption: For a fixed aux, define InnerFEaux which takes as input b and random-
ness Rin, and outputs the ciphertexts and key of the “inner” functional encryption using
randomness Rin for challenge aux of experiment ExptFE

∗

A (1λ, b).

InnerFEaux(b, Rin = (r1, r2, (r
γ
3)γ∈[Γ], r4)):

1. Setup: Generate msk1 ← FE.Setup(1λ; r1).

2. Encryption:

(a) Compute ct∗1 ← FE.Enc(msk1,m
∗
b ; r2).

(b) Compute ctγ1 ← FE.Enc(msk1,mi; r
γ
3) for γ ∈ [Γ].

3. KeyGen: Compute skC,1 ← FE.KeyGen(msk1, C; r4).

4. Output: Output X = (ct∗1, (ct
γ
1)γ∈[Γ], skC,1).

• Outer Encryption: Similarly, for a fixed aux define OuterFEaux which takes as input ran-
domness Rout and the results X of an “inner” encryption and outputs the ciphertexts and
keys of the “outer” encryption using randomness Rout.

OuterFEaux(X = (ct∗1, (ct
γ
1)γ∈[Γ], skC,1), Rout = (r1, r2, (r

γ
3)γ∈[Γ], r4))

1. Setup: Generate msk2 ← FE.Setup(1λ; r1).

2. Encryption:

(a) Compute ct∗ = ct∗2 ← FE.Enc(msk2, ct
∗
1; r2).

(b) Compute ctγ = ctγ2 ← FE.Enc(msk2, ct
γ
1 ; rγ3) for γ ∈ [Γ].

3. KeyGen: Compute skC = skC,2 ← FE.KeyGen(msk2, G; r4)
where G(x) = FE.Dec(skf,1, x)

4. Output: Output Y = (ct∗, (ctγ)γ∈[Γ], skC).

• Length of Randomness: Let `in be the length of Rin and `out be the length of Rout. Note
that `in and `out have size O(poly(λ)) since FE is composed of O(poly(λ))-time computable
functions.

60

Therefore, for our amplified FE∗ scheme, we can write ExptFE
∗

A (1λ, b) in the following way:

1. A submits aux = (m∗0,m
∗
1, {mi}i∈[Γ], C).

2. Sample Rin ← {0, 1}`in and Rout ← {0, 1}`out

3. Output Y = OuterFEaux(InnerFEaux(b, Rin), Rout)

Thus, FE∗ is (s′, ε′)-secure if for all aux and all adversaries A of size s′, then∣∣∣∣∣ Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ < ε′ (1)

Security of the Outer Encryption:
We will now show that for any fixed value output by the inner FE, then the outer FE is secure with
probability 1−ε. This holds by the (s, ε)-security of FE. We quantify this using hardcore measures.
First, recall the following theorem:

Theorem 9.3 (Imported Theorem [MT10]). Let E∗ : {0, 1}n → Y and F ∗ : {0, 1}m → Y be two
functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If for all distinguishers A with size s we have∣∣∣∣ Pr

x←{0,1}n
[A(E∗(x)) = 1]− Pr

y←{0,1}m
[A(F ∗(y)) = 1]

∣∣∣∣ ≤ ε
Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}m) that depend on γ, s such that

1. µ(Mb) ≥ 1− ε for b ∈ {0, 1}

2. For all distinguishers A′ of size s′ = sγ2

128(m+n+1)∣∣∣∣ Pr
x←DM0

[A′(E∗(x)) = 1]− Pr
y←DM1

[A′(F ∗(y)) = 1]

∣∣∣∣ ≤ γ
We now use this theorem to construct hardcore measures for the outer FE on fixed values of the
inner FE.

Corollary 9.1. Let ε, advHCM ∈ (0, 1) and s > 0 be given. Fix aux and Rin. For b ∈ {0, 1}, define
Eb(Rout) = OuterFEaux(InnerFEaux(b, Rin), Rout). Then, if FE is (s, ε)-secure, then there exist two
measures M0,aux,Rin (on {0, 1}`in) and M1,aux,Rin (on {0, 1}`out) that depend on aux, Rin such that

1. µ(Mb,aux,Rin) = 1− ε for b ∈ {0, 1}.

2. For all distinguishers A′ of size sizeHCM =
s·adv2HCM

128(`in+`out+1)∣∣∣∣∣ Pr
Rout←D0,aux,Rin

[
A′
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rout←D1,aux,Rin

[
A′
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ < advHCM

where for b ∈ {0, 1}, Db,aux,Rin is the induced distribution of measure Mb,aux,Rin.

61

Proof. This follows directly from Theorem 9.3. For any fixed aux and Rin, the (s, ε)-security of FE
implies that for all adversaries A of size s, then∣∣∣∣∣ Pr

Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ < ε.

Therefore, the theorem gives us two measures M′b,aux,Rin such that µ(M′b,aux,Rin) ≥ 1 − ε and for

all distinguishers A′ of size sizeHCM =
s·size2HCM
128(2`+1)∣∣∣∣∣ Pr

Rout←D′0,aux,Rin

[
A′
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rout←D′1,aux,Rin

[
A′
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ < advHCM

where for b ∈ {0, 1}, D′b,aux,Rin is the induced distribution of measureM′b,aux,Rin . Then, we can scale

these measures and set Mb,aux,Rin = 1−ε
µ(M′b,aux,Rin)

M′b,aux,Rin . Then Mb,aux,Rin has density exactly

1− ε. Since Mb,aux,Rin induces the same distribution as M′b,aux,Rin , the result holds.

Thus, for any fixed value output by the inner FE, with probability proportional to the density
of the hardcore measures, the outer FE will be secure. More specifically, for b ∈ {0, 1}, we define
Db,aux,Rin be to the induced distribution of measure Mb,aux,Rin . Then, by the triangle inequality,

62

for all aux and for all adversaries A of size sizeHCM =
s·adv2HCM

128(`in+`out+1) , then∣∣∣∣∣ Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣

=

∣∣∣∣∣2−`in ∑
Rin∈{0,1}`in

(
Pr

Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
])∣∣∣∣∣

≤

∣∣∣∣∣2−`in ∑
Rin∈{0,1}`in

(1− ε) ·
(

Pr
Rout←D0,aux,Rin

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rout←D1,aux,Rin

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
])∣∣∣∣∣

+

∣∣∣∣∣2−`in ∑
Rin∈{0,1}`in

ε ·
(

Pr
Rout←D0,aux,Rin

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rout←D1,aux,Rin

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
])∣∣∣∣∣

≤(1− ε) · advHCM

+ ε ·

∣∣∣∣∣ Pr
Rin←{0,1}`in ,Rout←D0,aux,Rin

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rin←{0,1}`in ,Rout←D1,aux,Rin

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ (2)

Therefore with probability 1−ε, we sample from the hardcore measures of the outer FE and achieve
security via the hardcore measures.

Security of the Inner Encryption:
Now, with probability ε, we do not sample from the hardcore measures of the outer FE. Thus,
when this occurs, we cannot rely on the outer FE for security; instead, we must rely on the security
of the inner FE. We will focus on bounding the following term, which refers to the security of the
inner FE conditioned on the outer FE being potentially insecure.∣∣∣∣∣ Pr

Rin←{0,1}`in ,Rout←D0,aux,Rin

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rin←{0,1}`in ,Rout←D1,aux,Rin

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ (3)

For b ∈ {0, 1} and for any aux, define

63

EXPb,aux:

1. Sample Rin ← {0, 1}`in

2. Compute X = InnerFEaux(b, Rin).

3. Sample Rout ← Db,aux,Rin

4. Output Y = OuterFEaux(X,Rout)

Then, the above term (Equation 3) can be written as∣∣∣∣∣Pr
[
A(EXP0,aux) = 1

]
− Pr

[
A(EXP1,aux) = 1

]∣∣∣∣∣ (4)

At this point, we want to prove that this quantity is small by performing a reduction to the
(s, ε)-security of the inner FE. However, consider how this reduction would work. The reduction
would get X as input from its challenger where X is computed as either InnerFEaux(0, Rin) or
InnerFEaux(1, Rin). Then, the reduction would have to sample Rout from the correct complement
hardcore measure Db,aux,Rin and compute OuterFEaux(X,Rout). Here, we have two problems. First,
in order to know which measure to sample from, the reduction needs to know b and Rin. This is
because the security of the outer FE (as quantified by the complement hardcore measures) may
be dependent on the security of the inner FE. Secondly, we have no bound on the efficiency of
computing or sampling from these complement measures. So, our reduction may not be efficient.
To solve these problems, we use techniques similar to those used in our Probabilistic Replacement
Theorem (Theorem 7.1). In particular, we show that there is a bounded time function h that can
simulate sampling from these complement hardcore measures and that is independent of b and Rin.
Then, we can perform our reduction. Our proof proceeds via a series of hybrids.

Hybrid0,b,aux: This hybrid corresponds to EXPb,aux.

1. Sample Rin ← {0, 1}`in

2. Compute X = InnerFEaux(b, Rin).

3. Sample Rout ← Db,aux,Rin

4. Output Y = OuterFEaux(X,Rout)

64

First, we introduce Machaux which samples from the complement hardcore measure Db,aux,Rin .
Now, since the output of Machaux has high-min entropy, we can use the leakage simulation theo-
rem from [Skó15] to efficiently simulate Machaux. However, note that since the hardcore measures
depend on (b, Rin), then Machaux must know these values in order to function correctly. But, if we
give Machaux these values directly as input, then the simulator will also get them as input. This
is an issue since we want the simulator to be independent of (b, Rin). To solve this problem, we
instead give (b, Rin) to Machaux only indirectly in the form of a secure commitment. Our sampler
Machaux will then brute force break the commitment and retrieve the values that it needs. Since
the efficiency of the simulator only depends on the min-entropy of the output of Machaux, then
Machaux will still be efficiently simulatable. Then, although the simulator also receives this com-
mitment, as long as we ensure that the simulator is too weak to break the commitment, then we
can safely replace the simulator’s commitment of (b, Rin) with a commitment of 0. Therefore, the
final simulator will be independent of (b, Rin).

Hybrid1,b,aux: In this hybrid, we use a machine Machaux to compute Db,aux,Rin and and output a
sample Rout from this distribution. However, Machaux does not directly receive (b, Rin) as input,
but must instead brute force break a commitment of Z = Com(b, Rin) to get (b, Rin). Machaux
also ensures that the measure it samples from has the correct minimum density by replacing the
computed complement hardcore measure with the maximum density measure if this computed
measure is not dense enough. Note that Machaux also takes X as additional input, but does not
use this value. This input is necessary for a reduction in a later hybrid.

Machaux(Z,X)

1. Break open Z by brute force to recover (b, Rin).

2. Compute Mb,aux,Rin . If µ(Mb,aux,Rin) < ε, then set this measure to be the maximum
density measure Mmax over the same domain. We define Mmax(x) = 1 for all x in the
domain. Note that µ(Mmax) = 1.

3. Sample Rout ← Db,aux,Rin and output Rout.

Here is the hybrid.

1. Sample Rin ← {0, 1}`in

2. Compute X = InnerFEaux(b, Rin).

3. [Change]: Compute Z ← Com(b, Rin).

4. [Change]: Compute Rout ← Machaux(Z,X).

5. Output Y = OuterFEaux(X,Rout)

Lemma 9.3. For any bit b ∈ {0, 1}, if Com is a (statBIND)-statistically binding commitment, then
for any adversary A,

|Pr[A(Hybrid1,b,aux) = 1]− Pr[A(Hybrid0,b,aux) = 1]| ≤ statBIND.

This indistinguishability is statistical.

65

Proof. If Com is (statBIND)-statistically binding, then with probability at least 1− statBIND over the
coins of the setup algorithm of the commitment scheme, the hybrids are identical. Note that if
Machaux correctly computes (b, Rin) from Z, thenMb,aux,Rin has the required minimum density by
Corollary 9.1, so Machaux will not replace it with Mmax.

66

Now, we will simulate Machaux. Recall the following leakage simulation theorem:

Theorem 9.4 (Imported Theorem [Skó15]). Let n,m ∈ N. For every distribution (X,W) on
{0, 1}n × {0, 1}m and every s, ε, there exists a simulator h : {0, 1}n → {0, 1}m such that

1. h has size bounded by sizeh = O(s(n+m)22∆ε−5) where ∆ = m−H∞(W |X) is the min-entropy
deficiency.

2. (X,W) and (X,h(X)) are (s, ε)-indistinguishable. That is, for all circuits C of size s, then∣∣∣∣ Pr
(x,w)←(X,W)

[C(x,w) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]

∣∣∣∣ ≤ ε
Corollary 9.2. Define Φ to be the distribution (Z,X) generated by running steps 1-3 of Hybrid2,b,aux

below. Define (Φ,Ψ) to be the distribution of (φ, ψ) generated by sampling φ← Φ and then setting
ψ = Machaux(φ). Let sizeSIM, advSIM > 0. Then, there exists a simulator h such that

1. haux has size bounded by sizeh = O(poly(λ) · sizeSIM · adv−5
SIM).

2. For every adversary A′ of size sizeSIM, then∣∣∣∣ Pr
φ←Φ

[A′(φ,Machaux(φ)) = 1]− Pr
φ←Φ,h

[A′(φ, h(φ)) = 1]

∣∣∣∣ ≤ advSIM

Proof. This follows directly from Theorem 9.4 provided that we prove certain lower bounds on the
min-entropy of the output of Machaux(φ). Note that |Machaux(φ)| = `out since Machaux outputs a
random string Rout of length `out. First, we will prove the following claim:

Claim 9.1. H∞(Ψ|Φ) ≥ `out − log(1
ε).

Fix any φ ← Φ. Note that µ(Mb,aux,Rin) ≥ ε by definition of Machaux. Therefore, the density of
the output of Machaux(φ) is also ε. So for any fixed φ, then maxψ(Pr(Machaux(φ) = ψ)) ≤ 1

2`out ·ε .
Thus,

H∞(Ψ|Φ) = min
φ

(− log max
ψ

Pr[Ψ = ψ | Φ = φ])

≥ − log

(
1

2`out · ε

)
= `out − log(

1

ε
)

Therefore, since both |φ| and |ψ| are of size O(poly(λ)), we get our corollary where haux has size
bounded by sizeh = O(poly(λ) · sizeSIM · 22 log(1/ε) · adv−5

SIM) = O(poly(λ) · sizeSIM · adv−5
SIM) since ε is a

constant.

Hybrid2,b,aux: In this hybrid, we simulate Machaux using the simulator haux from Corollary 9.2
above. Define (Φ,Ψ), and haux as in Corollary 9.2.

1. Sample Rin ← {0, 1}`in

2. Compute X = InnerFEaux(b, Rin).

3. Compute Z ← Com(b, Rin).

67

4. [Change]: Compute Rout ← haux(Z,X).

5. Output Y = OuterFEaux(X,Rout)

Lemma 9.4. For any bit b ∈ {0, 1}, there exists a fixed polynomial p2(λ) such that for any adversary
A of size (sizeSIM − p2(λ)),

|Pr[A(Hybrid2,b,aux) = 1]− Pr[A(Hybrid1,b,aux) = 1]| ≤ advSIM.

Proof. This proof is a direct application of Corollary 9.2. Assume that we have an adversary
A of size (sizeSIM − p2(λ)) that can distinguish between the two hybrids with advantage at least
advSIM. Then, consider an adversary A′ that receives (φ,Rout) as input from its challenger where
φ = (Z,X) is generated by running steps 1-3 of Hybrid2,b,aux and Rout is generated by either
Machaux(φ) or haux(φ). Then, A′ computes Y = OuterFEaux(X,Rout). A′ sends Y to A and
outputs whatever A outputs. Thus, A′ exactly simulates Hybrid1,b,aux when Rout is generated
by Machaux(φ) and exactly simulates Hybrid2,b,aux when Rout is generated by haux(φ). Therefore,
A′ has advantage advSIM in distinguishing (φ,Machaux(φ)) and (φ, haux(φ)). Observe that since
OuterFEaux is a poly(λ)-time computable function and Z,Rout, X are of size poly(λ), then the size
of A′ is (sizeSIM − p2(λ) + p(λ)) for some fixed polynomial p(λ). Define p2(λ) = p(λ). Then, the
size of A′ is sizeSIM, contradicting Corollary 9.2.

68

Hybrid3,b,aux: In this hybrid, we change the commitment Z to a commitment of 0.

1. Sample Rin ← {0, 1}`in

2. Compute X = InnerFEaux(b, Rin).

3. [Change]: Compute Z ← Com(0`in+1).

4. Compute Rout ← haux(Z,X).

5. Output Y = OuterFEaux(X,Rout)

Lemma 9.5. For any b ∈ {0, 1}, if Com is (sizeHIDE, advHIDE)-hiding and sizeh is the size of the
function haux, then there exists a polynomial p3(λ) such that for any adversary A of size (sizeHIDE−
sizeh − p3(λ)),

|Pr[A(Hybrid3,b,aux) = 1]− Pr[A(Hybrid2,b,aux) = 1]| ≤ advHIDE.

Proof. Suppose that there exist an adversary A of size sizeHIDE− sizeh− p3(λ) that can distinguish
between the two hybrids with advantage at least advHIDE. Now consider the nonuniform adversary
A′ that is given as nonuniform advice the randomness Rin for which A has the largest advantage
in distinguishing hybrids Hybrid2,b,aux and Hybrid2,b,aux (i.e A has advantage at least advHIDE.).

WithRin fixed, A′ receives as input from its challenger either Z ← Com(b, Rin) or Z ← Com(0`in+1).
Then, A′ computes X = InnerFEaux(b, Rin), uses this Z to compute Rout ← haux(Z,X), and com-
putes Y = OuterFEaux(X,Rout). A′ gives Y to A and outputs whatever A outputs. Note that A′ ex-
actly simulates Hybrid2,b,aux when it receives a commitment of (b, Rin) and simulates Hybrid3,b,aux

when it receives a commitment of 0`in+1 (and when using randomness Rin for which A has the best
advantage). Therefore, A′ has advantage at least advHIDE in distinguishing a commitment of (b, Rin)
from a commitment of 0`in+1. Since OuterFEaux is a poly(λ)-time computable function, then the
size of A′ is sizeh + size(A) + p(λ) for some polynomial p(λ). Define p3(λ) = p(λ). Then, the size
of A′ = sizeHIDE which contradicts the (sizeHIDE, advHIDE)-hiding of Com.

Finally, we will argue that Hybrid3,0,aux and Hybrid3,1,aux are ε-close by the security of the
inner FE. Since the simulator h now only depends on X and not on (b, Rin), then we can carry out
our reduction.

Lemma 9.6. If FE is (s, ε)-secure for some constant ε ∈ (0, 1) and sizeh is the size of function haux,
then there exists a fixed polynomial p4(λ) such that for all adversaries A of size (s− sizeh − p4(λ))
and for all aux,

|Pr[A(Hybrid3,0,aux) = 1]− Pr[A(Hybrid3,1,aux) = 1]| ≤ ε

Proof. If FE is (s, ε)-secure for some constant ε ∈ (0, 1), then for any aux and any adversary A′ of
size s, by the definition of FE security, then∣∣∣∣∣ Pr

Rin←{0,1}`in

[
A′
(
InnerFEaux(0, Rin)

)
= 1
]
− Pr
Rin←{0,1}`in

[
A′
(
InnerFEaux(1, Rin)

)
= 1
]∣∣∣∣∣ < ε

Now, suppose that there exist an adversary A of size (s − sizeh − p4(λ)) that can distinguish
between the two hybrids with advantage at least ε. Consider an adversary A′ that receives X as
input from its challenger where X is computed as either InnerFEaux(0, Rin) for a random Rin or
as InnerFEaux(1, R

′
in) for a random R′in. Then, A′ computes Z ← Com(0`in+1), computes Rout ←

69

haux(Z,X), and computes Y = OuterFEaux(X,Rout). A′ gives Y to A and outputs whatever A
outputs. Note that A′ exactly simulates Hybrid3,0,aux when it receives InnerFEaux(0, Rin) and
simulates Hybrid3,1,aux when it receives InnerFEaux(1, R

′
in). Therefore, A′ has advantage at least ε

in distinguishing between InnerFEaux(0, Rin) and InnerFEaux(1, R
′
in). Since Com and OuterFEaux are

poly(λ)-time computable functions, then the size of A′ is size(A) + sizeh + p(λ) = s− p4(λ) + p(λ)
for some polynomial p(λ). Define p4(λ) = p(λ). Then, the size of A′ = s which contradicts the
(s, ε)-security of FE.

From EXP0,aux to EXP1,aux:
Assume FE is (s, ε)-secure for some constant ε ∈ (0, 1) and Com is a (sizeHIDE, advHIDE)-computationally
hiding and statBIND-statistically binding commitment. Then, by combining all of the intermediate
lemmas, we get that for

sizeh = O(poly(λ) · sizeSIM · adv−5
SIM)

and for all adversaries A of size less than the minimum of the following:

• (sizeSIM − poly(λ))

• (sizeHIDE − sizeh − poly(λ))

• (s− sizeh − poly(λ))

then for any aux, ∣∣∣Pr[A(EXP0,aux) = 1]− Pr[A(EXP1,aux) = 1]
∣∣∣ ≤ adv∗

where
adv∗ ≤ 2(statBIND + advSIM + advHIDE) + ε

70

Putting it Together:
Now, if FE is (s, ε)-secure for some constant ε ∈ (0, 1) and Com is a (sizeHIDE, advHIDE)-computationally
hiding and statBIND-statistically binding commitment, then by plugging our result from above into
the inequality in Equation 2, we get that for

sizeh = O(poly(λ) · sizeSIM · adv−5
SIM)

and all adversaries A of size less than the minimum of the following:

• s·adv2HCM
128(`in+`out+1)

• (sizeSIM − poly(λ))

• (sizeHIDE − sizeh − poly(λ))

• (s− sizeh − poly(λ))

then for any aux,∣∣∣∣∣ Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ ≤ ε′

where
ε′ ≤ (1− ε) · advHCM + ε(2(statBIND + advSIM + advHIDE) + ε).

Proof of Lemma 9.1
We will now obtain Lemma 9.1. Let FE be a (poly(λ), ε)-secure functional encryption scheme for
some constant ε ∈ (0, 1) and let Com be a (poly(λ), negl(λ))-computationally hiding and negl(λ)-
statistically binding commitment. Then, we will show that FE∗ is (p(λ), ε2 + 1

q(λ) + negl(λ))-secure

for any arbitrarily large polynomials p(λ) and q(λ). Now,

• We are given that advHIDE = statBIND = negl(λ).

• Set advHCM = 1
2q(λ) .

• Set advSIM = 1
4ε·q(λ)

• Set sizeSIM to be a large enough polynomial so that

sizeSIM − poly(λ) > p(λ).

• Let s be a large enough polynomial so that

s · adv2
HCM

128(`in + `out + 1)
− poly(λ) > p(λ).

and
s− sizeh − poly(λ) = s−O(poly(λ) · sizeSIM · adv−5

SIM)− poly(λ) > p(λ).

71

• Set sizeHIDE to be a sufficiently large polynomial so that

sizeHIDE − sizeh − poly(λ) = sizeHIDE −O(poly(λ) · sizeSIM · adv−5
SIM)− poly(λ) > p(λ).

Then, for all p(λ)-sized adversaries A′ and for any aux,∣∣∣∣∣ Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ ≤ ε′

where

ε′ ≤ (1− ε) · advHCM + ε(2(statBIND + advSIM + advHIDE) + ε)

= (1− ε) 1

2q(λ)
+ ε2 + 2ε(negl(λ) +

1

4ε · q(λ)
+ negl(λ))

≤ ε2 +
1

q(λ)
+ negl(λ)

By Equation 1, this is equivalent to showing that FE∗ is (p(λ), ε2 + 1
q(λ) + negl(λ))-secure. Since

p(λ) was an arbitrary polynomial, this result holds for all poly-sized adversaries. Moreover, since
the result holds for any polynomial q(λ), it follows that the advantage is less than ε2 + 1

q(λ) +negl(λ)

for any polynomial q(λ) and, thus, is less than ε2 + negl(λ). This gives us Lemma 9.1.

Proof of Lemma 9.2
We will now obtain Lemma 9.2. Let ε ∈ (0, 1) be a constant, let c′ > 0 be a constant, and let c > c′

be a constant. Let FE be (2λ
c
, ε)-secure, and let Com be a (2λ

c
, negl(λ))-computationally hiding and

negl(λ)-statistically binding commitment. Then, we will show that FE∗ is (2λ
c′
, ε2 + 1

q(λ) +negl(λ))-
secure.

• We are given that s = sizeHIDE = 2λ
c
.

• We are given that advHIDE = statBIND = negl(λ).

Now,

• Set advHCM = 1
2q(λ) .

• Set advSIM = 1
4ε·q(λ)

• Set sizeSIM = 2λ
c′+(c−c

′
2)

Then,

• sizeSIM − poly(λ) = 2λ
c′+(c−c

′
2)

− poly(λ) > 2λ
c′

.

• s·adv2HCM
128(`in+`out+1) − poly(λ) = 2λ

c

(2q(λ))2·128(`in+`out+1)
− poly(λ) = 2λ

c

poly(λ) − poly(λ) > 2λ
c′

.

72

• s− sizeh − poly(λ) = 2λ
c −O(poly(λ) · 2λ

c′+(c−c
′

2)

· (4ε · q(λ))5)− poly(λ) > 2λ
c′
.

• sizeHIDE − sizeh − poly(λ) = 2λ
c −O(poly(λ) · 2λ

c′+(c−c
′

2)

· (4ε · q(λ))5)− poly(λ) > 2λ
c′
.

Then, for all 2λ
c′

-sized adversaries A′, and for any aux,∣∣∣∣∣ Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterFEaux(InnerFEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ ≤ ε′

where

ε′ ≤ (1− ε) · advHCM + ε(2(statBIND + advSIM + advHIDE) + ε)

= (1− ε) 1

2q(λ)
+ ε2 + 2ε(negl(λ) +

1

4ε · q(λ)
+ negl(λ))

≤ ε2 +
1

q(λ)
+ negl(λ)

By Equation 1, this is equivalent to showing that FE∗ is (2λ
c′
, ε2 + 1

q(λ) + negl(λ))-secure. Since the

result holds for any polynomial q(λ), it follows that the advantage is less than ε2 + 1
q(λ) + negl(λ)

for any polynomial q(λ) and, thus, is less than ε2 + negl(λ). This gives us Lemma 9.2.

10 Amplification of Nested Public-Key Encryption

Our amplification techniques for nested functional encryption can also be easily extended to prove
amplification for nested public-key encryption. We assume familiarity with public-key encryption
(PKE). Our main results in this section are the following:

Theorem 10.1. If there exists a (poly(λ), ε)- indistinguishability of encryption secure public-key
encryption scheme PKE for message space {0, 1}λ and for some constant ε ∈ (0, 1), then there exists
a (poly(λ), ε′)-indistinguishability of encryption secure public-key encryption scheme PKE∗ for any
constant ε′ ∈ (0, 1), where PKE∗ is obtained by nesting PKE a constant number of times.

Theorem 10.2. If there exists a (2λ
c
, ε)- indistinguishability of encryption secure public-key en-

cryption scheme PKE for message space {0, 1}λ and for some constants ε ∈ (0, 1) and c > 0, then

there exists a (2λ
c′
, ε′)-indistinguishability of encryption secure public-key encryption scheme PKE∗

for any constants ε′ ∈ (0, 1) and c′ < c, where PKE∗ is obtained by nesting PKE a constant number
of times.

10.1 Construction

Let PKE = (PKE.Setup,PKE.Enc,PKE.Dec) be a public-key encryption scheme that satisfies (s, ε)-
indistinguishability of encryption security for some constant ε ∈ (0, 1).

We now construct an amplified public-key encryption scheme PKE∗ as described below which
simply nests the original PKE scheme.

73

PKE∗ (Amplified Public-Key Encryption)

• Setup(1λ):

1. Generate (sk1, pk1),← PKE.Setup(1λ) and (sk1, pk2)← PKE.Setup(1λ).

2. Output SK = (sk1, sk2) and PK = (pk1, pk2).

• Enc(PK,m):

1. Parse PK as (pk1, pk2).

2. Compute ct1 ← PKE.Enc(pk1,m).

3. Compute ct2 ← PKE.Enc(pk2, ct1).

4. Output CT = ct2.

• Dec(SK,CT):

1. Parse SK as (sk1, sk2).

2. Output y = PKE.Dec(sk1,PKE.Dec(sk2,CT)).

Correctness: Correctness is straightforward to observe. If the underlying PKE is correct, then
so is the scheme PKE∗ since we are simply nesting the encryption.

10.2 Security

We prove the following two lemmas:

Lemma 10.1. For any constant ε ∈ (0, 1) if

• PKE is a (poly(λ), ε)-indistinguishability of encryption secure public-key encryption scheme
for message space {0, 1}λ,

• Com is any commitment with (poly(λ), negl(λ))-computational hiding and negl(λ)-statistical
binding,

then PKE∗ is a (poly(λ), ε2 +negl(λ))-indistinguishability of encryption secure public-key encryption
scheme.

Lemma 10.2. For any constant ε ∈ (0, 1), any constant c′ > 0, and any constant c > c′, if

• PKE is a (2λ
c
, ε)-indistinguishability of encryption secure public-key encryption scheme for

message space {0, 1}λ,

• Com is any commitment with (2λ
c
, negl(λ))-computational hiding and negl(λ)-statistical bind-

ing,

then PKE∗ is a (2λ
c′
, ε2 + negl(λ))-indistinguishability of encryption secure public-key encryption

scheme.

Since weakly-secure PKE implies a weakly-secure OWF (which can then be amplified to a fully
secure OWF via [Imp95]), Theorems 10.1 and 10.2 immediately follow from Lemmas 10.1 and 10.2
by instantiating Com using this OWF and repeating the transformation a constant number of times.

74

Proof: The proofs of these two lemmas are basically the same as the proofs in the previous sec-
tion except with the inner and outer functional encryption schemes replaced by inner and outer
public-key encryption schemes. We describe more detail below:

Security Game:
We use the original definition of (s, ε)-indistinguishability of encryption secure PKE (see, for in-
stance, [Gol04]). Note that we focus our attention to this definition because a fully secure public key
encryption satisfying this notion implies IND-CPA-adaptively secure public key encryption (refer to
Chapter 5 in [Gol04] for both the definition and this claim).

Definition 10.1 ((s, ε)-indistinguishability of encryption secure PKE). A public-key encryption
scheme PKE for message space {0, 1}λ is (s, ε)-indistinguishability of encryption secure if for any
adversary A of size s, the advantage of A is

AdvPKEA =
∣∣∣Pr[ExptPKEA (1λ, 0) = 1]− Pr[ExptPKEA (1λ, 1) = 1]

∣∣∣ ≤ ε,
where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptPKEA (1λ, b) is defined below:

1. Challenge queries: A submits challenge message queries (x∗0, x
∗
1) to the challenger Chal

with x∗0, x
∗
1 ∈ {0, 1}λ.

2. Chal computes (sk, pk)← PKE.Setup(1λ) and then computes ct∗ ← PKE.Enc(pk, x∗b). It sends
(ct∗, pk) to A.

3. The output of the experiment is set to b′, where b′ is the output of A.

Now, we define security for our amplified PKE∗ in terms of the following definitions:

• Challenge Queries (aux): Define aux = (m∗0,m
∗
1) to be a set of challenge message queries

output by some adversary A in step 1 of ExptPKE
∗

A (1λ, b).

• Inner Encryption: For a fixed aux, define InnerPKEaux which takes as input b and ran-
domness Rin, and outputs the ciphertext and public key of the “inner” public-key encryption
using randomness Rin for challenge aux of experiment ExptPKE

∗

A (1λ, b).

InnerPKEaux(b, Rin = (r1, r2)):

1. Setup: Generate (sk1, pk1)← PKE.Setup(1λ; r1).

2. Encryption: Compute ct∗1 ← PKE.Enc(pk1,m
∗
b ; r2).

3. Output: Output X = (ct∗1, pk1).

• Outer Encryption: Similarly, for a fixed aux define OuterPKEaux which takes as input
randomness Rout and the results X of an “inner” encryption and outputs the ciphertext and
public key of the “outer” encryption using randomness Rout.

OuterFEaux(X = (ct∗1, pk1), Rout = (r1, r2))

1. Setup: Generate (sk2, pk2)← PKE.Setup(1λ; r1).

2. Encryption: Compute ct∗ = ct∗2 ← PKE.Enc(pk2, ct
∗
1; r2).

3. Public Key: Set PK = (pk1, pk2)

75

4. Output: Output Y = (ct∗,PK).

• Length of Randomness: Let `in be the length of Rin and `out be the length of Rout. Note
that `in and `out have size O(poly(λ)) since PKE is composed of O(poly(λ))-time computable
functions.

Therefore, for our amplified PKE∗ scheme, we can write ExptPKE
∗

A (1λ, b) in the following way:

1. A submits aux = (m∗0,m
∗
1).

2. Sample Rin ← {0, 1}`in and Rout ← {0, 1}`out

3. Output Y = OuterPKEaux(InnerPKEaux(b, Rin), Rout)

Thus, PKE∗ is (s′, ε′)-indistinguishability of encryption secure if for all aux and all adversaries A of
size s′, then∣∣∣∣∣ Pr

Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterPKEaux(InnerPKEaux(0, Rin), Rout)

)
= 1
]
−

Pr
Rin←{0,1}`in ,Rout←{0,1}`out

[
A
(
OuterPKEaux(InnerPKEaux(1, Rin), Rout)

)
= 1
]∣∣∣∣∣ < ε′

Then, the rest of the proof is identical to the previous section except with InnerFEaux replaced by
InnerPKEaux and OuterFEaux replaced by OuterPKEaux.

11 Final Amplification Results

By combining the main results of Sections 8 and 9, we immediately obtain our final amplification
results.

Theorem 11.1. Assuming a (poly(λ), ε)-secure FE scheme for P/poly for some constant ε ∈ (0, 1),
there exists a (poly(λ), negl(λ))-secure FE scheme for P/poly. Moreover, this transformation pre-
serves compactness.

Theorem 11.2. Assuming a (2O(λc), ε)-secure FE scheme for P/poly for some constant ε ∈ (0, 1)

and some constant c > 0, there exists a (2O(λc
′
), 2−O(λc

′
))-secure FE scheme for P/poly for some

constant 0 < c′ < c. Moreover, this transformation preserves compactness.

12 Acknowledgements

We thank the anonymous CRYPTO reviewers for their helpful feedback regarding this work. We
also thank Maciej Skórski for useful discussions about [Skó15, Skó16].

This research is supported in part from DARPA SAFEWARE and SIEVE awards, NTT Re-
search, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty
Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa
Foundation Research Grant. This material is based upon work supported by the Defense Advanced
Research Projects Agency through Award HR00112020024 and the ARL under Contract W911NF-
15-C- 0205. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation, NTT Research, or the
U.S. Government.

We would also like to thank A.K.’s cat, Mr. Floof, for emotional support during the research
process, despite his complete apathy towards the research process and our existence in general.

76

13 References

[ABJ+19] Prabhanjan Ananth, Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and
Amit Sahai. From fe combiners to secure mpc and back. In TCC, 2019.

[ABSV15a] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677.
Springer, Heidelberg, August 2015.

[ABSV15b] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In CRYPTO, 2015.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer,
Heidelberg, May 2019.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg,
August 2015.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. In-
distinguishability obfuscation without multilinear maps: New paradigms via low de-
gree weak pseudorandomness and security amplification. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
284–332. Springer, Heidelberg, August 2019.

[AJN+16] Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Universal
constructions and robust combiners for indistinguishability obfuscation and witness
encryption. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 491–520. Springer, Heidelberg, August 2016.

[AJS17] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Robust transforming combiners
from indistinguishability obfuscation to functional encryption. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS,
pages 91–121. Springer, Heidelberg, April / May 2017.

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation
without multilinear maps: io from lwe, bilinear maps, and weak pseudorandomness.
IACR Cryptology ePrint Archive, 2018:615, 2018.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In

77

Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 533–556. Springer, Heidelberg, May 2014.

[BGJS17] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. A note on
vrfs from verifiable functional encryption. IACR Cryptology ePrint Archive, 2017:51,
2017.

[BHK09] Boaz Barak, Moritz Hardt, and Satyen Kale. The uniform hardcore lemma via ap-
proximate bregman projections. In SODA, pages 1193–1200, 2009.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols? In FOCS, pages 374–383, 1997.

[Bit17] Nir Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II,
volume 10678 of LNCS, pages 567–594. Springer, Heidelberg, November 2017.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania
to obfustopia through secret-key functional encryption. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 391–418. Springer,
Heidelberg, October / November 2016.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, March 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE
Computer Society Press, October 2015.

[CCL18] Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of simulating
auxiliary input. In EUROCRYPT, Cham, 2018.

[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly
verifiable puzzles. In TCC, pages 17–33, 2005.

[DKS99] Ivan Damg̊ard, Joe Kilian, and Louis Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In EUROCRYPT,
pages 56–73, 1999.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes
from decryption errors. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 342–360. Springer, Heidelberg, May 2004.

[FHNS16] Marc Fischlin, Amir Herzberg, Hod Bin Noon, and Haya Shulman. Obfuscation com-
biners. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 521–550. Springer, Heidelberg, August 2016.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

78

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption
without obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II,
volume 9563 of LNCS, pages 480–511. Springer, Heidelberg, January 2016.

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic
approach to constructing and proving verifiable random functions. In Yael Kalai and
Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of LNCS, pages 537–566.
Springer, Heidelberg, November 2017.

[GJS19] Vipul Goyal, Aayush Jain, and Amit Sahai. Simultaneous amplification: The case
of non-interactive zero-knowledge. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 608–637. Springer,
Heidelberg, August 2019.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
555–564. ACM Press, June 2013.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,
Heidelberg, August 2016.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking
the sub-exponential barrier in obfustopia. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 156–181.
Springer, Heidelberg, April / May 2017.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg,
August 2015.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-combiners
via secure computation. In TCC, pages 393–411, 2008.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel
Wichs. Adaptively secure garbled circuits from one-way functions. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 149–178. Springer, Heidelberg, August 2016.

[Hol05] Thomas Holenstein. Key agreement from weak bit agreement. In Harold N. Gabow
and Ronald Fagin, editors, 37th ACM STOC, pages 664–673. ACM Press, May 2005.

[Hol06] Thomas Holenstein. Strengthening key agreement using hard-core sets. PhD thesis,
ETH Zurich, 2006.

[HPWP10] Johan H̊astad, Rafael Pass, Douglas Wikström, and Krzysztof Pietrzak. An efficient
parallel repetition theorem. In TCC, pages 1–18, 2010.

79

[HR05] Thomas Holenstein and Renato Renner. One-way secret-key agreement and appli-
cations to circuit polarization and immunization of public-key encryption. In Victor
Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 478–493. Springer, Hei-
delberg, August 2005.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS,
pages 538–545, 1995.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
251–281. Springer, Heidelberg, May 2019.

[JMS20] Aayush Jain, Nathan Manohar, and Amit Sahai. Combiners for functional encryption,
unconditionally. In EUROCRYPT, 2020.

[JP14] Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary input. In TCC, pages
566–590, 2014.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-key
functional encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 603–648. Springer, Heidelberg,
April / May 2018.

[KS03] Adam Klivans and Rocco Servedio. Boosting and hard-core set construction. Machine
Learning, 51:217–238, 06 2003.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key func-
tional encryption. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 122–151. Springer, Heidelberg,
April / May 2017.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 28–57. Springer, Heidelberg, May 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume
10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

[LT13] Huijia Lin and Stefano Tessaro. Amplification of chosen-ciphertext security. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 503–519. Springer, Heidelberg, May 2013.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer, Heidelberg,
August 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS,
pages 11–20. IEEE Computer Society Press, October 2016.

80

[MPW07] Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners for obliv-
ious transfer. In TCC, pages 404–418, 2007.

[MT09] Ueli M. Maurer and Stefano Tessaro. Computational indistinguishability amplification:
Tight product theorems for system composition. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 355–373. Springer, Heidelberg, August 2009.

[MT10] Ueli M. Maurer and Stefano Tessaro. A hardcore lemma for computational indistin-
guishability: Security amplification for arbitrarily weak prgs with optimal stretch. In
TCC, pages 237–254, 2010.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[PV07] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. An efficient parallel repe-
tition theorem for arthur-merlin games. In STOC, pages 420–429, 2007.

[Skó15] Maciej Skórski. Efficiently simulating high min-entroy sources in the presence of side
information. In INDOCRYPT, 2015.

[Skó16] Maciej Skórski. A subgradient algorithm for computational distances and applications
to cryptography. IACR Cryptology ePrint Archive, 2016:158, 2016.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidel-
berg, May 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[Tes11] Stefano Tessaro. Security amplification for the cascade of arbitrarily weak PRPs: Tight
bounds via the interactive hardcore lemma. In Yuval Ishai, editor, TCC 2011, volume
6597 of LNCS, pages 37–54. Springer, Heidelberg, March 2011.

[TTV09] Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and efficiently
simulating every high-entropy distribution. In CCC, pages 126–136, 2009.

[VZ13] Salil P. Vadhan and Colin Jia Zheng. A uniform min-max theorem with applications
in cryptography. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 93–110. Springer, Heidelberg, August 2013.

[Wul07] Jürg Wullschleger. Oblivious-transfer amplification. In EUROCRYPT, pages 555–572,
2007.

[Wul09] Jürg Wullschleger. Oblivious transfer from weak noisy channels. In TCC, pages 332–
349, 2009.

81

	Introduction
	Technical Overview
	Amplification via Secret Sharing and Parallel Repetition
	Proving Security: Probabilistic Replacement Theorem
	Amplifying Security via Nesting
	Organization

	Preliminaries
	Useful Lemmas

	Functional Encryption
	Semi-Functional FE
	From FE to Semi-Functional FE

	Set Homomorphic Secret Sharing Schemes
	Definition
	SetHSS from CFHSS
	Construction

	Covering Sets
	Probabilistic Replacement Theorem
	Amplification via Secret Sharing and Parallel Repetition
	Construction
	Security
	Instantiating the Parameters
	Amplification Against Polynomial Sized Adversaries
	Amplification Against Subexponential Sized Adversaries

	Amplification via Nesting
	Construction
	Security

	Amplification of Nested Public-Key Encryption
	Construction
	Security

	Final Amplification Results
	Acknowledgements
	References

