62 research outputs found

    Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception

    Get PDF
    Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas

    3T3 Cell Lines Stably Expressing Pax6 or Pax6(5a) – A New Tool Used for Identification of Common and Isoform Specific Target Genes

    Get PDF
    Pax6 and Pax6(5a) are two isoforms of the evolutionary conserved Pax6 gene often co-expressed in specific stochiometric relationship in the brain and the eye during development. The Pax6(5a) protein differs from Pax6 by having a 14 amino acid insert in the paired domain, causing the two proteins to have different DNA binding specificities. Difference in functions during development is proven by the fact that mutations in the 14 amino acid insertion for Pax6(5a) give a slightly different eye phenotype than the one described for Pax6. Whereas quite many Pax6 target genes have been published during the last years, few Pax6(5a) specific target genes have been reported on. However, target genes identified by Pax6 knockout studies can probably be Pax6(5a) targets as well, since this isoform also will be affected by the knockout. In order to identify new Pax6 target genes, and to try to distinguish between genes regulated by Pax6 and Pax6(5a), we generated FlpIn-3T3 cell lines stably expressing Pax6 or Pax6(5a). RNA was harvested from these cell lines and used in gene expression microarrays where we identified a number of genes differentially regulated by Pax6 and Pax6(5a). A majority of these were associated with the extracellular region. By qPCR we verified that Ncam1, Ngef, Sphk1, Dkk3 and Crtap are Pax6(5a) specific target genes, while Tgfbi, Vegfa, EphB2, Klk8 and Edn1 were confirmed as Pax6 specific target genes. Nbl1, Ngfb and seven genes encoding different glycosyl transferases appeared to be regulated by both. Direct binding to the promoters of Crtap, Ctgf, Edn1, Dkk3, Pdgfb and Ngef was verified by ChIP. Furthermore, a change in morphology of the stably transfected Pax6 and Pax6(5a) cells was observed, and the Pax6 expressing cells were shown to have increased proliferation and migration capacities

    Variações ecomorfológicas e de uso de habitat em Piabina argentea (Characiformes, Characidae) da bacia do Rio das Velhas, Minas Gerais, Brasil

    Full text link
    O presente estudo teve como objetivo investigar os padrões local e regional de uso de habitat de Piabina argentea Reinhardt, 1867 em quatro diferentes rios da bacia do rio das Velhas. Os habitat amostrados foram caracterizados quanto à velocidade da água, profundidade e tipo de substrato. Para a análise ecomorfológica, foram calculados 17 atributos ecomorfológicos de 40 exemplares de cada rio. Embora estas populações tenham se sobreposto no espaço ecomorfológico, a Análise Discriminante Canônica mostrou haver diferença significativa entre elas, principalmente da população do rio das Velhas em relação às demais. A separação se deu em termos do índice de compressão, altura relativa do corpo e índice de achatamento ventral. Os padrões locais de seleção de habitat não foram congruentes em todos os rios, mas em geral, houve predomínio do padrão regional: habitat lênticos, profundidade entre 20 e 40 cm e 60 e 80 cm e substrato areia, silte+argila e banco de folhas. Considerando as características físicas de cada rio e o padrão regional da espécie, a maior parte dos seus requerimentos de habitat é contemplada nos quatro rios. Entretanto, um corpo d'água assoreado como o trecho do rio das Velhas, tende a ter maiores velocidades da água, menores profundidades e substrato finos, o que atende em parte à seleção de habitat da espécie estudada

    Immunological Risk of Injectable Drug Delivery Systems

    Full text link
    corecore