31 research outputs found

    False-vacuum decay in generalized extended inflation

    Get PDF
    False-vacuum decay was studied in context of generalized extended inflationary theories, and the bubble nucleation rates was computed for these theories in the limit of G(sub N) yields 0. It was found that the time dependence of the nucleation rate can be exponentially strong through the time dependence of the Jordan-Brans-Dicke field. This can have a pronounced effect on whether extended inflation can be successfully implemented

    Extended inflation from higher dimensional theories

    Get PDF
    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation

    False vacuum decay in Jordan-Brans-Dicke cosmologies

    Get PDF
    The bubble nucleation rate in a first-order phase transition taking place in a background Jordan-Brans-Dicke cosmology is examined. The leading order terms in the nucleation rate when the Jordan-Brans-Dicke field is large (i.e., late times) are computed by means of a Weyl rescaling of the fields in the theory. It is found that despite the fact that the Jordan-Brans-Dicke field (hence the effective gravitational constant) has a time dependence in the false vacuum at late times the nucleation rate is time independent

    Gravity Waves Generated by the Hunga Tonga-Hunga Ha‘Apai Volcanic Eruption and Their Global Propagation in The Mesosphere/Lower Thermosphere Observed by Meteor Radars And Modeled With the High-Altitude General Mechanistic Circulation Model

    Get PDF
    The Hunga Tonga-Hunga Ha‘apai volcano erupted on 15th January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanic- caused gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic General Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward propagating gravity wave packet with an observed phase speed of 240±5.7 m/s and a westward propagating gravity wave with an observed phase speed of 166.5 ±6.4 m/s. We identified these waves in the HIAMCM and obtained very good agreement of the observed phase speeds of 239.5±4.3 m/s and 162.2±6.1 m/s for the eastward and the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 minutes of the nominal value of 15th January 2022 04:15 UTC and localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano confirming our estimates to be realistic

    Traveling ionospheric disturbances induced by the secondary gravity waves from the Tonga eruption on 15 January 2022:Modeling with MESORAC-HIAMCM-SAMI3 and comparison with GPS/TEC and ionosonde data

    Get PDF
    We simulate the gravity waves (GWs) and traveling ionospheric disturbances (TIDs) created by the Hunga Tonga-Hunga Ha'apai (hereafter “Tonga”) volcanic eruption on 15 January 2022 at ∼04:15 UT. We calculate the primary GWs and forces/heatings generated where they dissipate with MESORAC, the secondary GWs with HIAMCM, and the TIDs with SAMI3. We find that medium and large-scale TIDs (MSTIDs and LSTIDs) are induced by the secondary GWs, with horizontal phase speeds cH ≃ 100–750 m/s, horizontal wavelengths λH ≃ 600–6,000 km, and ground-based periods τr ≃ 30 min to 3 hr. The LSTID amplitudes over New Zealand are ≃2–3 TECU, but decrease sharply ≃ 5,000 km from Tonga. The LSTID amplitudes are extremely small over Australia and South Africa because body forces create highly asymmetric GW fields and the GWs propagate perpendicular to the magnetic field there. We analyze the TIDs from SAMI3 and find that a 30 min detrend window eliminates the fastest far-field LSTIDs. We analyze the GPS/TEC via detrending with 2–3 hr windows, and find that the fastest LSTIDs reach the US and South America at ∼8:30–9:00 UT with cH ≃ 680 m/s, λH ≃ 3,400 km, and τr ≃ 83 min, in good agreement with model results. We find good agreement between modeled and observed TIDs over New Zealand, Australia, Hawaii, Japan and Norway. The observed F-peak height, hmF2, drops by ≃ 110–140 km over the western US with a 2.8 hr periodicity from 8:00 to 13:00 UT. We show that the Lamb waves (LWs) observed by AIRS with λH = 380 km have amplitudes that are ≃ 2.3% that of the primary GWs at z ≃ 110 km. We conclude that the observed TIDs can be fully explained by secondary GWs rather than by “leaked” LWs

    Systematic Detection of Anomalous Ionospheric Perturbations Above LEOs From GNSS POD Data Including Possible Tsunami Signatures

    Get PDF
    In this article, we show the capability of a global navigation satellite system (GNSS) precise orbit determination (POD) low Earth orbit (LEO) data to detect anomalous ionospheric disturbances in the spectral range of the signals associated with earthquakes and tsunamis, applied to two of these events in Papua New Guinea (PNG) and the Solomon Islands during 2016. This is achieved thanks to the new PIES approach (POD-GNSS LEO Detrended Ionospheric Electron Content Significant Deviations). The significance of such ionospheric signals above the swarm LEOs is confirmed with different types of independent data: in situ electron density measurements provided by the Langmuir Probe (LP) onboard swarm LEOs, DORIS, and ground-based GNSS colocated measurements, as it is described in this article. In this way, we conclude the possible detection of the tsunami-related ionospheric gravity wave in PNG 2016 event, consistent with the most-recent theory, which shows that a tsunami (which is localized in space and time) excites a spectrum of gravity waves, some of which have faster horizontal phase speeds than the tsunami. We believe that this work shows as well the feasibility of a future potential monitoring system of ionospheric disturbances, to be made possible by hundreds of CubeSats with POD GNSS receivers among other appropriate sensors, and supported for real-time or near real-time confirmation and characterization by thousands of worldwide existing ground GNSS receivers

    Inferring neutral winds in the ionospheric transition region from atmospheric-gravity-wave traveling-ionospheric-disturbance (AGW-TID) observations with the EISCAT VHF radar and the Nordic Meteor Radar Cluster

    Get PDF
    Atmospheric gravity waves and traveling ionospheric disturbances can be observed in the neutral atmosphere and the ionosphere at a wide range of spatial and temporal scales. Especially at medium scales, these oscillations are often not resolved in general circulation models and are parameterized. We show that ionospheric disturbances forced by upward-propagating atmospheric gravity waves can be simultaneously observed with the EISCAT very high frequency incoherent scatter radar and the Nordic Meteor Radar Cluster. From combined multi-static measurements, both vertical and horizontal wave parameters can be determined by applying a specially developed Fourier filter analysis method. This method is demonstrated using the example of a strongly pronounced wave mode that occurred during the EISCAT experiment on 7 July 2020. Leveraging the developed technique, we show that the wave characteristics of traveling ionospheric disturbances are notably impacted by the fall transition of the mesosphere and lower thermosphere. We also demonstrate the application of using the determined wave parameters to infer the thermospheric neutral wind velocities. Applying the dissipative anelastic gravity wave dispersion relation, we obtain vertical wind profiles in the lower thermosphere.</p
    corecore