330 research outputs found

    The genus <i>Batzella</i>: a chemosystematic problem

    Get PDF
    Biogenetically unrelated cyclic guanidine alkaloids and pyrroloquinoline alkaloids have been reported from sponges assigned to the genus Batzella. These sponges have been assigned to this genus because of their possession of a simple complement of thin strongyles in irregular plumoreticulate arrangement. Cyclic guanidine alkaloids were first reported from an alleged axinellid species from the Caribbean, Ptilocaulis aff. P. spiculifer, and subsequently from a second Carribean specimen identified as Ptilocaulis spiculifer and at the same time from a Red Sea poecilosclerid, Hemimycale sp. Closely related compounds were described from a Caribbean specimen identified as Batzella sp. and also from the poecilosclerids Crambe crambe (Mediterranean) and Monanchora arbuscula (Brazil). Isobatzellins (pyrroloquinoline alkaloids) were reported from a black deep-water species from the Bahamas identified as Batzella sp. Chemically related pyrroloquinoline alkaloids were found in Pacific representatives of the fistular poecilosclerid genus Zyzzya, the hadromerid genus Latrunculia and the ?haplosclerid genus Prianos. Most of the voucher specimens involved in this puzzle were re-examined and several conclusions can be drawn: when inspected closely it appears, that the cyclic guanidine alkaloids are produced by sponges containing anisostrongyles, often in two categories, a thicker and a thinner one. Monanchora arbuscula, which has been recently discovered to produce these compounds, has monactinal spicules differentiated into a thinner subtylostyle and a thicker (tylo-) style, but many specimens have anisostrongylote modifications. Microscleres in Monanchora can be absent or very rare. By association, all the sponges from which cyclic guanidine alkaloids are known may be united in one family, possibly in a single wider defined genus Monanchora. However, further relationships with Crambe need to be studied. Both have cyclic guanidine alkaloids, both have megascleres of very variable shapes and thickness, differentiated mostly into two overlapping categories, microscleres and other additional spicules are often rare or absent. Relationships with the type of Hemimycale, viz. H. columella remain obscure, but in view of the much larger spicules of that species and the intricate ectosomal specialization (lacking in the above mentioned specimens) it is possible that similarities between the Red Sea Hemimycale and the European species are the product of parallel evolution. The strongyles of sponges producing pyrroloquinoline alkaloids are perfect isostrongyles and in the ectosome these are arranged in a definite ectosomal tangential crust. A good proportion of these strongyles have a faint spination on the apices. Assignment of these sponges to Batzella rest on the properties of its type species Batzella inops. Examination of a type spicule slide of that species did not solve that question, but until further notice Batzella may be used for the deep-water material. A further unsolved problem that remains is the phylogenetic relationships of Batzella with Zyzzya and Latrunculia. The likelyhoods of possible causes for this distribution of compounds are discussed

    Un Spongiaire Sphinctozoaire colonial apparenté aux constructeurs de récifs triasiques survivant dans le bathyal de Nouvelle-Calédonie

    Get PDF
    Un second représentant actuel des Sphinctozoaires, importants constructeurs de récifs au Permo-Trias, a été découvert dans la zone bathyale de la NouvelleCalédonie. Contrairement au survivant déjà connu, #Valecetia crypta$, il a conservé le mode de croissance colonial et les capacités constructrices de ses analogues fossiles. Sa croissance est bien plus lente que celle des coraux récifaux actuels. La base d'une construction de 10 cm d'épaisseur a été datée de 700 ans. (Résumé d'auteur

    Signification géodynamique des calcaires de plate-forme en cours de subduction sous l'arc des Nouvelles-Hébrides (Sud-Ouest de l'océan Pacifique)

    Get PDF
    Note présentée par Jean DercourtInternational audienceThe analysis of carbonates from New Hébrides Trench shows that three main épisodes of shallow water carbonate déposition occurred during Late Eocene,Late Oligocene-Early Miocène,Mio-Pliocene-Quaternary, controlled by eustatism and tectonic.L'analyse de carbonates issus de la fosse des Nouvelles-Hébrides a permis de reconnaître trois périodes favorables au développement de plates-formes(Éocène supérieur,Oligocène supérieur-Miocène inférieur,Mio-Pliocène-Quaternaire)contrôlé par l'eustatisme et la tectonique

    Global Diversity of Sponges (Porifera)

    Get PDF
    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future

    Séance spécialisée : géodynamique des bassins océaniques et des marges continentales

    Get PDF
    Une morphologie de fonds sous-marins bathyaux comportant des indurations liées à des dépôts ferro-manganésifères inclus dans des sédiments hémipélagiques peu ou pas cimentés a été découverte sur une ride volcanique tertiaire au large de la Nouvelle-Calédonie (SW Pacifique). Elle semble être en relation avec des circulations hydrothermales au travers de la couverture sédimentaire pendant l'activité volcanique miocène de la ride des Loyauté. (Résumé d'auteur

    Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy

    Get PDF
    The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 +/- 1.1 specimens m(-2) (approximately 230 gWW m(-2) of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 +/- 0.7 specimens m(-2), approximately 315 gWW m(-2) of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m(-2)). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic-pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 +/- 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter

    Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    Get PDF
    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations

    Action plan for the conservation of habitats and species associated with seamounts, underwater caves and canyons, aphotic hard beds and chemo-synthetic phenomena in the Mediterranean Sea (Dark Habitats action plan)

    Get PDF
    Dark habitats are environments where the luminosity is extremely weak, or even absent (aphotic area) leading to an absence of macroscopic autochthonous photosynthesis. The bathymetric extension of this lightless area depends to a great extent on the turbidity of the water and corresponds to benthic and pelagic habitats starting from the deep circa-littoral. Caves which show environmental conditions that favour the installation on of organisms characteristic of dark habitats, are also taken into account. Dark habitats are dependent on very diverse geomorphological structures (e.g. underwater caves, canyons, slopes, isolated rocks, abyssal plains, cold seeps, brine anoxic lakes, hydrothermal springs and seamounts). Dark habitats represent outstanding and potential ecosystems with regard to their: Frailty and vulnerability to any land-based pressure Play an important part in the way the Mediterranean ecosystem functions, insofar as they constitute the main route for transferring matter between the coast and the deep sea Considered as biodiversity hotspots and recruiting areas forming a veritable reservoirs of knowledge and biodiversity Natural habitats that come under Habitat Directive on the conservation of natural habitats and of wild fauna and flora and appear as such as priority habitats requiring protection (Directive 92/43). A certain number of underwater caves enjoy protection status because they fall within the geographical boundaries of Marine Protected Areas (MPAs) Understanding of these functions is necessary for a better understanding and management of the biodiversity of Mediterranean coastal zones and continental shelf.peer-reviewe
    corecore