5 research outputs found

    Preservation of modern and MIS 5.5 erosional landforms and biological structures as sea level markers : a matter of luck?

    Get PDF
    The Mediterranean Basin is characterized by a significant variability in tectonic behaviour, ranging from subsidence to uplifting. However, those coastal areas considered to be tectonically stable show coastal landforms at elevations consistent with eustatic and isostatic sea level change models. In particular, geomorphological indicators—such as tidal notches or shore platforms—are often used to define the tectonic stability of the Mediterranean coasts. We present the results of swim surveys in nine rocky coastal sectors in the central Mediterranean Sea using the Geoswim approach. The entire route was covered in 22 days for a total distance of 158.5 km. All surveyed sites are considered to have been tectonically stable since the last interglacial (Marine Isotope Stage 5.5 [MIS 5.5]), because related sea level markers fit well with sea level rise models. The analysis of visual observations and punctual measurements highlighted that, with respect to the total length of surveyed coast, the occurrence of tidal notches, shore platforms, and other indicators accounts for 85% of the modern coastline, and only 1% of the MIS 5.5 equivalent. Therefore, only 1% of the surveyed coast showed the presence of fossil markers of paleo sea levels above the datum. This significant difference is mainly attributable to erosion processes that did not allow the preservation of the geomorphic evidence of past sea level stands. In the end, our research method showed that the feasibility of applying such markers to define long-term tectonic behaviour is much higher in areas where pre-modern indicators have not been erased, such as at sites with hard bedrock previously covered by post-MIS 5.5 continental deposits, e.g., Sardinia, the Egadi Islands, Ansedonia, Gaeta, and Circeo. In general, the chances of finding such preserved indicators are very low.peer-reviewe

    The application of UAV-derived SfM-MVS photogrammetry for the investigation of storm wave boulder deposits on a small rocky island in the semi-enclosed Northern Adriatic Sea

    No full text
    AbstractThe inventory and categorization of an extensive coastal boulder assemblage originating from storm wave transport on the coastline of Fenoliga Island (Northern Adriatic Sea, southern Istria, Croatia) are presented and discussed herein. The study adopted the use of a commercial Uncrewed Aerial Vehicle (UAV) and Structure from Motion-MultiView Stereo (SfM-MVS) photogrammetry for the construction of a 3D model of the island. A Digital Elevation Model (DEM) and an orthomosaic were produced and employed for the mapping of the boulder assemblage in a GIS. In total, 592 boulders were identified and mapped. Using SfM-MVS-derived products allowed for the identified boulders to be categorized based on size classification. Amassed data relating to the boulder characteristics was inserted and stored in a GIS, including the results of a comparative assessment with historical Google Earth imagery which enabled the ‘quantification of boulder transport over a 9-year timeframe’. Field evidence indicates that boulders were created in-situ via the quarrying of bedrock strata by breaking waves causing increased water pressure within preexisting surfaces of weakness such as bedding planes and sub-vertical fractures. Once detached, the boulders were transported and deposited during storm wave events. Repeated storm events can further displace previously detached clasts

    Submerged Speleothems and Sea Level Reconstructions: A Global Overview and New Results from the Mediterranean Sea

    Get PDF
    International audienceThis study presents a global overview of the submerged speleothems used to reconstruct paleo sea levels and reports new results from two stalactites collected in the Mediterranean Sea. Coastal cave deposits significantly contributed to the understanding of global and regional sea-level variations during the Middle and Late Quaternary. The studied speleothems cover the last 1.4 Myr and focused mainly on Marine Isotope Stages (MIS) 1, 2, 3, 5.1, 5.3, 5.5, 7.1, 7.2, 7.3 and 7.5. The results indicate that submerged speleothems represent extraordinary archives that can provide detailed information on former sea-level changes. The two stalactites collected in the central Mediterranean Sea, at Favignana and Ustica islands (Sicily, Italy), are both characterized by continental, phreatic or marine layers. The U-Th and 14C ages of the new speleothems provide results of great interest for relative sea-level changes over the last 1000 year

    Tn (Tidal notches) in the western Adriatic coast as markers of local coastal stability during late Holocene.

    Get PDF
    none12noneStefano Furlani, Daniela Piacentini, Francesco Troiani, Sara Biolchi, Matteo Roccheggiani, Andrea Tamburini, Emanuela Tirincanti, Valeria Vaccher, Fabrizio Antonioli, Stefano Devoto, Olivia Nesci, Marco MenichettiFurlani, Stefano; Piacentini, Daniela; Troiani, Francesco; Biolchi, Sara; Roccheggiani, Matteo; Tamburini, Andrea; Tirincanti, Emanuela; Vaccher, Valeria; Antonioli, Fabrizio; Devoto, Stefano; Nesci, Olivia; Menichetti, Marc
    corecore