12 research outputs found

    Regioselectivitat en l'orto-carborà : mono- i multisubstitució : clústers de bor en líquids iònics /

    Get PDF
    Consultable des del TDXTítol obtingut de la portada digitalitzadaVegeu avpresum1de1.pd

    Synthesis, structural, spectroscopic and electrochemical studies of carborane substituted naphthyl selenides

    Full text link
    [EN] New unsymmetrical selenides bearing an o-carborane and a naphthalene ring as the substituents were prepared by the cleavage of the corresponding diselenides. The compounds were characterized by means of spectroscopic and analytical methods. Se-77 NMR signals of the selenium atoms attached to the carbon atoms of the carborane cages are shifted downfield in comparison to those bonded only to the aromatic rings, indicating an electron withdrawing effect of the o-carboranyl substituent. Compounds 1-(2-R-1,2-dicarba-closo-carboranyl)naphthyl selenides (R = Me, 1; Ph, 2) were characterized by means of single crystal X-ray diffraction. The influence of the electronic nature of the substituents attached to the selenium atoms on the structural parameters and packing properties of naphthyl selenides are discussed. Theoretical calculations and cyclic voltammetry (CV) studies were carried out to compare the bonding nature of carboranyl and analogous aryl selenium compounds. Cyclic voltammetry studies of naphthyl carboranyl mono and diselenides have shown that the carboranyl fragment polarizes the Se lone pair making it less prone to generate a Se-Se bond.This work was supported by the Japan-Spain Research Cooperative Program, Joint Project, 2004JP0102 from Japan Society for the Promotion of Science (JSPS) and CSIC, CICYT (CTQ2010-16237) and the Generalitat de Catalunya, 2009/SGR/00279. Dr O. Guzyr is grateful to Ministerio Education, Cultura y Deporte for grant SAB2003-0122.Guzyr, O.; Viñas, C.; Wada, H.; Hayashi, S.; Nakanishi, W.; Teixidor, F.; Vaca Puga, A.... (2011). Synthesis, structural, spectroscopic and electrochemical studies of carborane substituted naphthyl selenides. Dalton Transactions. 40(13):3402-3411. https://doi.org/10.1039/c0dt01658fS34023411401

    Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H-2 from aqueous sulfide

    Get PDF
    Copper-doped titanium dioxide materials with anatase phase (Cu-TiO2, atomic Cu contents ranging from 0 to 3% relative to the sum of Cu and Ti), and particle sizes of 12-15 nm, were synthesised by a solvo-thermal method using ethanol as the solvent and small amounts of water to promote the hydrolysiscondensation processes. Diffuse reflectance UV-vis spectroscopy show that the edges of absorption of the titania materials are somewhat shifted to higher wavelengths due to the presence of Cu. X-ray photoelectron spectroscopy (XPS) indicate that Cu(II) is predominant. Photocatalytic CO2 reduction experiments were performed in aqueous Cu-TiO2 suspensions under UV-rich light and in the presence of different solutes. Sulfide was found to promote the efficient production of H-2 from water and formic acid from CO2. The effect of the Cu content on the photoactivity of Cu-TiO2 was also studied, showing that copper plays a role on the photocatalytic reduction of CO2.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) is gratefully acknowledged. F.G. and B.J.-L. are thankful for financial support from Spanish Government (AP2010-2748 PhD grant and MAT2011-27008 project) and Jaume I University (P1 1B2014-21 project). SCIC from Jaume I University and Servicio de Microscopia Electronica at Universitat Politecnica de Valencia are also acknowledged for instrumental facilities. A.V.P. is grateful to both the Consejo Superior de Investigaciones Cientifficas (CSIC) and the European Social Fund (ESF) for a JAE-Doc postdoctoral grant. Lichen Liu is gratefully acknowledged for assistance in recording HRTEM images.Gonell-Gómez, F.; Puga Vaca, A.; Julián López, B.; García Gómez, H.; Corma Canós, A. (2016). Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H-2 from aqueous sulfide. Applied Catalysis B: Environmental. 180:263-270. https://doi.org/10.1016/j.apcatb.2015.06.019S26327018

    Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures

    Full text link
    [EN] Carbon dioxide solubility in a set of carboxylate ionic liquids formulated with stoicheiometric amounts of water is found to be significantly higher than for other ionic liquids previously reported. This is due to synergistic chemical and physical absorption. The formulated ionic liquid/water mixtures show greatly enhanced carbon dioxide solubility relative to both anhydrous ionic liquids and aqueous ionic liquid solutions, and are competitive with commercial chemical absorbers, such as activated N-methyldiethanolamine or monoethanolamine.The authors would like to acknowledge PETRONAS for financial support of this research, and Cytec (especially Dr Al Robertson) for supplying some of the phosphonium ionic liquids used.Anderson, K.; Atkins, MP.; Estager, J.; Kuah, Y.; Ng, S.; Oliferenko, AA.; Plechkova, NV.... (2015). Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures. Green Chemistry. 17(8):4340-4354. https://doi.org/10.1039/c5gc00720hS43404354178Cenovus, http://www.cenovus.com/operations/technology/co2-enhanced-oil-recovery.htmlV. Alvarado and E.Manrique, Enhanced Oil Recovery: Field Planning and Development Strategies, Gulf Professional Publishing, Amsterdam, 2010British Petroleum , In Salah Gas, http://www.insalahco2.com/index.php?option=com_content&view=frontpage&Itemid=1&lang=enN. Stern , The Economics of Climate Change: The Stern Review, Cambridge University Press, Cambridge, 2007Alvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery: An Update Review. Energies, 3(9), 1529-1575. doi:10.3390/en3091529S. Rackley , Carbon Capture and Storage, Elsevier Science, Oxford, 2009H. Huppert , Carbon Capture and Storage in Europe EASAC Policy Report 20, German National Academy of Sciences, Leopoldina, 2013Organisation for the Prohibition of Chemical Weapons (OPCW) , The Chemical Weapons Convention, http://www.opcw.org/html/db/cwc/eng/cwc_frameset.htmlRubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38(5), 630-671. doi:10.1016/j.pecs.2012.03.003G. H. Koch , M. P. H.Brongers, N. G.Thompson, Y. P.Virmani and J. H.Payer, Corrosion Costs and Preventive Strategies in the United States FHWA-RD-01-156, CC Technologies Laboratories, Inc, NACE International, 2001Law Offices of Casper Meadows Schwartz & Cook, ‘$80 Million Recovery in Toxic Exposure Suit’, http://www.cmslaw.com/Verdicts-Settlements/80-Million-Recovery-in-Toxic-Exposure-Suit.shtmlL. Grunwald , U.S. EPA Cites UNOCAL for Spill Violations, Press Release, United States Environmental Protection Agency, 1995Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2008). Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Industrial & Engineering Chemistry Research, 47(21), 8048-8062. doi:10.1021/ie800795yDu, N., Park, H. B., Dal-Cin, M. M., & Guiver, M. D. (2012). Advances in high permeability polymeric membrane materials for CO2separations. Energy Environ. Sci., 5(6), 7306-7322. doi:10.1039/c1ee02668bM. Freemantle , An Introduction to Ionic Liquids, RSC Publications, Cambridge, UK, 2010Earle, M. J., Esperança, J. M. S. S., Gilea, M. A., Canongia Lopes, J. N., Rebelo, L. P. N., Magee, J. W., … Widegren, J. A. (2006). The distillation and volatility of ionic liquids. Nature, 439(7078), 831-834. doi:10.1038/nature04451Forsyth, M., Howlett, P. C., Tan, S. K., MacFarlane, D. R., & Birbilis, N. (2006). An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31. Electrochemical and Solid-State Letters, 9(11), B52. doi:10.1149/1.2344826Fraser, K. J., & MacFarlane, D. R. (2009). Phosphonium-Based Ionic Liquids: An Overview. Australian Journal of Chemistry, 62(4), 309. doi:10.1071/ch08558K. R. Seddon , Ionic liquids: Designer solvents?, in The International George Papatheodorou Symposium: Proceedings, ed. S. Boghosian, V. Dracopoulos, C. G. Kontoyannis and G. A. Voyiatzis, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, 1999, pp. 131–135M. Deetlefs , M.Fanselow and K. R.Seddon, RSC Adv.W. Freyland , Coulombic Fluids: Bulk and Interfaces, Springer, Heidelberg, 2011Electrodeposition from Ionic Liquids, ed. F. Endres, D. MacFarlane and A. Abbott, Wiley-VCH, Weinheim, 2008Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, New Jersey, 2005Ionic Liquids: From Knowledge to Application, ed. N. V. Plechkova, R. D. Rogers and K. R. Seddon, American Chemical Society, Washington D.C., 2009Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677jIonic Liquids UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2013Ionic Liquids Further UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2014Ionic Liquids Completely UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2015Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731), 28-29. doi:10.1038/19887C. Villagrán , C. E.Banks, M.Deetlefs, G.Driver, W. R.Pitner, R. G.Compton and C.Hardacre, Chloride Determination in Ionic Liquids, in Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities - Transformations and Processes, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser., Vol. 902, American Chemical Society, Washington D.C., 2005, vol. 902, pp. 244–258J. L. Anthony , E. J.Maginn and J. F.Brennecke, Gas Solubilities in 1-n-Butyl-3-methylimidazolium Hexafluorophosphate, in Ionic Liquids: Industrial Applications to Green Chemistry, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser, Vol. 818, American Chemical Society, Washington D.C., 2002, vol. 818, pp. 260–269J. H. Davis Jr. , Working Salts: Syntheses and Uses of Ionic Liquids Containing Functionalized Ions, in Ionic Liquids: Industrial Applications to Green Chemistry, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser, Vol. 818, American Chemical Society, Washington D.C., 2002, vol. 818, pp. 247–259Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2Capture by a Task-Specific Ionic Liquid. Journal of the American Chemical Society, 124(6), 926-927. doi:10.1021/ja017593dWang, C., Luo, X., Zhu, X., Cui, G., Jiang, D., Deng, D., … Dai, S. (2013). The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances, 3(36), 15518. doi:10.1039/c3ra42366bRamdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012). State-of-the-Art of CO2Capture with Ionic Liquids. Industrial & Engineering Chemistry Research, 51(24), 8149-8177. doi:10.1021/ie3003705Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S., & Huang, Y. (2012). Carbon capture with ionic liquids: overview and progress. Energy & Environmental Science, 5(5), 6668. doi:10.1039/c2ee21152aYokozeki, A., & Shiflett, M. B. (2009). Separation of Carbon Dioxide and Sulfur Dioxide Gases Using Room-Temperature Ionic Liquid [hmim][Tf2N]. Energy & Fuels, 23(9), 4701-4708. doi:10.1021/ef900649cCabaço, M. I., Besnard, M., Danten, Y., & Coutinho, J. A. P. (2012). Carbon Dioxide in 1-Butyl-3-methylimidazolium Acetate. I. Unusual Solubility Investigated by Raman Spectroscopy and DFT Calculations. The Journal of Physical Chemistry A, 116(6), 1605-1620. doi:10.1021/jp211211nCarvalho, P. J., Álvarez, V. H., Schröder, B., Gil, A. M., Marrucho, I. M., Aznar, M., … Coutinho, J. A. P. (2009). Specific Solvation Interactions of CO2on Acetate and Trifluoroacetate Imidazolium Based Ionic Liquids at High Pressures. The Journal of Physical Chemistry B, 113(19), 6803-6812. doi:10.1021/jp901275bGoodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Zadigian, D. J., Price, E. A., Huang, Y., & Brennecke, J. F. (2011). Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide. Industrial & Engineering Chemistry Research, 50(1), 111-118. doi:10.1021/ie101688aGoodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Lopez, Z. K., Price, E. A., Huang, Y., & Brennecke, J. F. (2011). Effect of Water and Temperature on Absorption of CO2by Amine-Functionalized Anion-Tethered Ionic Liquids. The Journal of Physical Chemistry B, 115(29), 9140-9150. doi:10.1021/jp2015534Ferguson, J. L., Holbrey, J. D., Ng, S., Plechkova, N. V., Seddon, K. R., Tomaszowska, A. A., & Wassell, D. F. (2011). A greener, halide-free approach to ionic liquid synthesis. Pure and Applied Chemistry, 84(3), 723-744. doi:10.1351/pac-con-11-07-21Shiflett, M. B., Kasprzak, D. J., Junk, C. P., & Yokozeki, A. (2008). Phase behavior of {carbon dioxide+[bmim][Ac]} mixtures. The Journal of Chemical Thermodynamics, 40(1), 25-31. doi:10.1016/j.jct.2007.06.003Shiflett, M. B., & Yokozeki, A. (2009). Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures. Journal of Chemical & Engineering Data, 54(1), 108-114. doi:10.1021/je800701jShiflett, M. B., Drew, D. W., Cantini, R. A., & Yokozeki, A. (2010). Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate. Energy & Fuels, 24(10), 5781-5789. doi:10.1021/ef100868aCabaço, M. I., Besnard, M., Danten, Y., & Coutinho, J. A. P. (2011). Solubility of CO2in 1-Butyl-3-methyl-imidazolium-trifluoro Acetate Ionic Liquid Studied by Raman Spectroscopy and DFT Investigations. The Journal of Physical Chemistry B, 115(13), 3538-3550. doi:10.1021/jp111453aGurau, G., Rodríguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., & Rogers, R. D. (2011). Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. Angewandte Chemie International Edition, 50(50), 12024-12026. doi:10.1002/anie.201105198Besnard, M., Cabaço, M. I., Vaca Chávez, F., Pinaud, N., Sebastião, P. J., Coutinho, J. A. P., … Danten, Y. (2012). CO2 in 1-Butyl-3-methylimidazolium Acetate. 2. NMR Investigation of Chemical Reactions. The Journal of Physical Chemistry A, 116(20), 4890-4901. doi:10.1021/jp211689zJaniczek, P., Kalb, R. S., Thonhauser, G., & Gamse, T. (2012). Carbon dioxide absorption in a technical-scale-plant utilizing an imidazolium based ionic liquid. Separation and Purification Technology, 97, 20-25. doi:10.1016/j.seppur.2012.03.003Ober, C. A., & Gupta, R. B. (2012). pH Control of Ionic Liquids with Carbon Dioxide and Water: 1-Ethyl-3-methylimidazolium Acetate. Industrial & Engineering Chemistry Research, 51(6), 2524-2530. doi:10.1021/ie201529dStevanovic, S., Podgoršek, A., Pádua, A. A. H., & Costa Gomes, M. F. (2012). Effect of Water on the Carbon Dioxide Absorption by 1-Alkyl-3-methylimidazolium Acetate Ionic Liquids. The Journal of Physical Chemistry B, 116(49), 14416-14425. doi:10.1021/jp3100377Stevanovic, S., Podgorsek, A., Moura, L., Santini, C. C., Padua, A. A. H., & Costa Gomes, M. F. (2013). Absorption of carbon dioxide by ionic liquids with carboxylate anions. International Journal of Greenhouse Gas Control, 17, 78-88. doi:10.1016/j.ijggc.2013.04.017Wang, G., Hou, W., Xiao, F., Geng, J., Wu, Y., & Zhang, Z. (2011). Low-Viscosity Triethylbutylammonium Acetate as a Task-Specific Ionic Liquid for Reversible CO2Absorption. Journal of Chemical & Engineering Data, 56(4), 1125-1133. doi:10.1021/je101014qWilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-pressure solubility of gases in liquid water. Chemical Reviews, 77(2), 219-262. doi:10.1021/cr60306a003Miyano, Y., & Fujihara, I. (2004). Henry’s constants of carbon dioxide in methanol at 250–500 K. Fluid Phase Equilibria, 221(1-2), 57-62. doi:10.1016/j.fluid.2004.04.017Fernandez, E. S., & Goetheer, E. L. V. (2011). DECAB: Process development of a phase change absorption process. Energy Procedia, 4, 868-875. doi:10.1016/j.egypro.2011.01.131Zhang, J., Zhang, S., Dong, K., Zhang, Y., Shen, Y., & Lv, X. (2006). Supported Absorption of CO2 by Tetrabutylphosphonium Amino Acid Ionic Liquids. Chemistry - A European Journal, 12(15), 4021-4026. doi:10.1002/chem.200501015Saravanamurugan, S., Kunov-Kruse, A. J., Fehrmann, R., & Riisager, A. (2014). Amine-Functionalized Amino Acid-based Ionic Liquids as Efficient and High-Capacity Absorbents for CO2. ChemSusChem, 7(3), 897-902. doi:10.1002/cssc.201300691J. Speight , Lange's Handbook of Chemistry, McGraw-Hill, New York, 16th edn, 2005, Section 1.18, pp. 1.310–1.314Cammarata, L., Kazarian, S. G., Salter, P. A., & Welton, T. (2001). Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Physical Chemistry Chemical Physics, 3(23), 5192-5200. doi:10.1039/b106900dNitta, I., Tomiie, Y., & Koo, C. H. (1952). The crystal structure of potassium bicarbonate, KHCO3. Acta Crystallographica, 5(2), 292-292. doi:10.1107/s0365110x52000848Sass, R. L., & Scheuerman, R. F. (1962). The crystal structure of sodium bicarbonate. Acta Crystallographica, 15(1), 77-81. doi:10.1107/s0365110x62000158Adamová, G., Gardas, R. L., Nieuwenhuyzen, M., Puga, A. V., Rebelo, L. P. N., Robertson, A. J., & Seddon, K. R. (2012). Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure. Dalton Transactions, 41(27), 8316. doi:10.1039/c1dt10466gGottlieb, H. E., Kotlyar, V., & Nudelman, A. (1997). NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. The Journal of Organic Chemistry, 62(21), 7512-7515. doi:10.1021/jo971176vSheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895Ramnial, T., Taylor, S. A., Bender, M. L., Gorodetsky, B., Lee, P. T. K., Dickie, D. A., … Clyburne, J. A. C. (2008). Carbon-Centered Strong Bases in Phosphonium Ionic Liquids. The Journal of Organic Chemistry, 73(3), 801-812. doi:10.1021/jo701289dDietzel, P. D. C., & Jansen, M. (2002). Tetramethylphosphonium hydrogen carbonate. Acta Crystallographica Section E Structure Reports Online, 58(9), o1003-o1004. doi:10.1107/s1600536802013168Li, H., Hou, Y., & Yang, Y. (2011). Tetraethylammonium bicarbonate trihydrate. Acta Crystallographica Section E Structure Reports Online, 67(8), o1991-o1991. doi:10.1107/s1600536811026080McMullan, R., & Jeffrey, G. A. (1959). Hydrates of the Tetran‐butyl and Tetrai‐amyl Quaternary Ammonium Salts. The Journal of Chemical Physics, 31(5), 1231-1234. doi:10.1063/1.1730574Smiglak, M., Hines, C. C., & Rogers, R. D. (2010). New hydrogen carbonate precursors for efficient and byproduct-free syntheses of ionic liquids based on 1,2,3-trimethylimidazolium and N,N-dimethylpyrrolidinium cores. Green Chemistry, 12(3), 491. doi:10.1039/b920003gMaton, C., Van Hecke, K., & Stevens, C. V. (2015). Peralkylated imidazolium carbonate ionic liquids: synthesis using dimethyl carbonate, reactivity and structure. New Journal of Chemistry, 39(1), 461-468. doi:10.1039/c4nj01301hBondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083hAdamová, G., Canongia Lopes, J. N., Rebelo, L. P. N., Santos, L. M. N. B., Seddon, K. R., & Shimizu, K. (2014). The alternation effect in ionic liquid homologous series. Phys. Chem. Chem. Phys., 16(9), 4033-4038. doi:10.1039/c3cp54584aAdamová, G., Gardas, R. L., Nieuwenhuyzen, M., Puga, A. V., Rebelo, L. P. N., Robertson, A. J., & Seddon, K. R. (2012). Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure. Dalton Transactions, 41(27), 8316. doi:10.1039/c1dt10466gM. B. Shiflett and A.Yokozeki, Phase Behaviour of Gases in Ionic Liquids, in Ionic Liquids UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2013, pp. 349–398Ibrahim, A. Y., Ashour, F. H., Ghallab, A. O., & Ali, M. (2014). Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyl diethanol amine. Journal of Natural Gas Science and Engineering, 21, 894-899. doi:10.1016/j.jngse.2014.10.011Anonymous , Piperazine – Why It's Used And How It Works, The Contractor (Optimized Gas Treating, Inc.), Houston, 2008, 2 [4], http://www.ogtrt.com/files/contactors/vol_2_issue_4.pd

    3-Methylpiperidinium ionic liquids

    Full text link
    [EN] A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEKs (R) A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rm beta pip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmm(beta)pip]X salts (X-= I-, [CF3CO2]-or [OTf](-); Tf = -SO2CF3), and [Rmm(beta)pip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2]-salts are liquids at room temperature. [Rmm(beta)pip]X (X-= I-, [CF3CO2]-or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 degrees C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)1- methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended.We would like to acknowledge the EPSRC NCS in Southampton for the single crystal X-ray diffraction data collection and INVISTA Intermediates for funding.Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Nockemann, P.; Vaca Puga, A.; Seddon, KR.... (2015). 3-Methylpiperidinium ionic liquids. Physical Chemistry Chemical Physics. 17(16):10398-10416. doi:10.1039/C4CP05936KS10398104161716C. Mikolajczak , M.Kahn, K.White and R. T.Long, Lithium-ion Batteries Hazard and Use Assessment, Springer, New York, 2012Choi, N.-S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y.-K., Amine, K., … Bruce, P. G. (2012). Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition, 51(40), 9994-10024. doi:10.1002/anie.201201429Xing, H., Liao, C., Yang, Q., Veith, G. M., Guo, B., Sun, X.-G., … Dai, S. (2014). Ambient Lithium-SO2Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie International Edition, 53(8), 2099-2103. doi:10.1002/anie.201309539Lithium Ion Rechargeable Batteries, ed. K. Ozawa, Wiley-VCH, Weinheim, 2009Advances in Lithium-Ion Batteries, ed. W. A. van Schalkwijk and B. Scrosati, Kluwer Academic/Plenum Publishers, New York, 2002J. B. Goodenough , H.Abruna and M.Buchanan, Basic Research Needs For Electrical Energy Storage: Report of the Basic Energy Sciences Workshop For Electrical Energy Storage, 2007Kar, M., Simons, T. J., Forsyth, M., & MacFarlane, D. R. (2014). Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys. Chem. Chem. Phys., 16(35), 18658-18674. doi:10.1039/c4cp02533dBalaish, M., Kraytsberg, A., & Ein-Eli, Y. (2014). A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics, 16(7), 2801. doi:10.1039/c3cp54165gElectrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, 2005Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686Endres, F., & Zein El Abedin, S. (2006). Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 8(18), 2101. doi:10.1039/b600519pArmand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448Lewandowski, A., & Świderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. Journal of Power Sources, 194(2), 601-609. doi:10.1016/j.jpowsour.2009.06.089Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017MacFarlane, D. R., & Seddon, K. R. (2007). Ionic Liquids—Progress on the Fundamental Issues. Australian Journal of Chemistry, 60(1), 3. doi:10.1071/ch06478Buzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in Molten Salts and Ionic Liquids: Never the Twain?, ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010, pp. 367–388Matsumoto, H., Sakaebe, H., & Tatsumi, K. (2005). Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. Journal of Power Sources, 146(1-2), 45-50. doi:10.1016/j.jpowsour.2005.03.103Rogers, E. I., Šljukić, B., Hardacre, C., & Compton, R. G. (2009). Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes. Journal of Chemical & Engineering Data, 54(7), 2049-2053. doi:10.1021/je800898zSun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159pPohlmann, S., Olyschläger, T., Goodrich, P., Vicente, J. A., Jacquemin, J., & Balducci, A. (2015). Mixtures of Azepanium Based Ionic Liquids and Propylene Carbonate as High Voltage Electrolytes for Supercapacitors. Electrochimica Acta, 153, 426-432. doi:10.1016/j.electacta.2014.11.189MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides:  A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145sJ. S. Wilkes and C. L.Hussey, Selection of Cations for Ambient Temperature Chloroaluminate Molten Salts Using MNDO Molecular Orbital Calculations, Frank J. Seiler Research Laboratory Technical Report 1982P. C. Trulove and R. A.Mantz, in Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008, pp. 141–174O’Mahony, A. M., Silvester, D. S., Aldous, L., Hardacre, C., & Compton, R. G. (2008). Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data, 53(12), 2884-2891. doi:10.1021/je800678eJin, J., Li, H. H., Wei, J. P., Bian, X. K., Zhou, Z., & Yan, J. (2009). Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochemistry Communications, 11(7), 1500-1503. doi:10.1016/j.elecom.2009.05.040Howlett, P. C., MacFarlane, D. R., & Hollenkamp, A. F. (2004). High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid. Electrochemical and Solid-State Letters, 7(5), A97. doi:10.1149/1.1664051Sakaebe, H., Matsumoto, H., & Tatsumi, K. (2007). Application of room temperature ionic liquids to Li batteries. Electrochimica Acta, 53(3), 1048-1054. doi:10.1016/j.electacta.2007.02.054Abdallah, T., Lemordant, D., & Claude-Montigny, B. (2012). Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances? Journal of Power Sources, 201, 353-359. doi:10.1016/j.jpowsour.2011.10.115Montanino, M., Moreno, M., Carewska, M., Maresca, G., Simonetti, E., Lo Presti, R., … Appetecchi, G. B. (2014). Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. Journal of Power Sources, 269, 608-615. doi:10.1016/j.jpowsour.2014.07.027Lu, Y., Korf, K., Kambe, Y., Tu, Z., & Archer, L. A. (2013). Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries. Angewandte Chemie International Edition, 53(2), 488-492. doi:10.1002/anie.201307137Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Puga, A. V., Seddon, K. R., … Whiston, K. (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chem., 13(1), 59-63. doi:10.1039/c0gc00534gINVISTA™, DYTEK®, http://dytek.invista.com/R. W. Alder , J. G. E.Phillips, L.Huang and X.Huang, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930Coles, S. J., & Gale, P. A. (2012). Changing and challenging times for service crystallography. Chem. Sci., 3(3), 683-689. doi:10.1039/c2sc00955bSheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica Section B Structural Science, 58(3), 380-388. doi:10.1107/s0108768102003890Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Nockemann, P., Puga, A. V., … Whiston, K. (2011). Azepanium ionic liquids. Green Chemistry, 13(11), 3137. doi:10.1039/c1gc15189dPandey, G., Devi Reddy, G., & Kumaraswamy, G. (1994). Photoinduced electron transfer (PET) promoted cyclisations of 1-[N-alkyl-N-(trimethylsilyl)methyl]amines tethered to proximate olefin: mechanistic and synthetic perspectives. Tetrahedron, 50(27), 8185-8194. doi:10.1016/s0040-4020(01)85300-xPandey, G., Kumaraswamy, G., & Bhalerao, U. . (1989). Photoinduced set generation of α-amineradicals : A practical method for the synthesis of pyrrolidines and piperidines. Tetrahedron Letters, 30(44), 6059-6062. doi:10.1016/s0040-4039(01)93854-7A. J. Carmichael , M.Deetlefs, M. J.Earle, U.Fröhlich and K. R.Seddon, in Ionic Liquids as Green Solvents: Progress and Prospects, ed. R. D. Rogers and K. R. Seddon, American Chemical Society, Washington, DC, 2003, pp. 14–31Fang, S., Zhang, Z., Jin, Y., Yang, L., Hirano, S., Tachibana, K., & Katayama, S. (2011). New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. Journal of Power Sources, 196(13), 5637-5644. doi:10.1016/j.jpowsour.2011.02.047Shirota, H., Funston, A. M., Wishart, J. F., & Castner, E. W. (2005). Ultrafast dynamics of pyrrolidinium cation ionic liquids. The Journal of Chemical Physics, 122(18), 184512. doi:10.1063/1.1893797Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Protti, S., Lazzaroni, S., … Albini, A. (2009). A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. Journal of Power Sources, 194(1), 45-50. doi:10.1016/j.jpowsour.2008.12.013Appetecchi, G. B., Scaccia, S., Tizzani, C., Alessandrini, F., & Passerini, S. (2006). Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. Journal of The Electrochemical Society, 153(9), A1685. doi:10.1149/1.2213420Morishima, I., Yoshikawa, K., & Okada, K. (1976). Studies on the proton and carbon-13 contact shifts for .sigma.-bonded molecules. Stereospecific electron spin transmission in cyclic and bicyclic amines. Journal of the American Chemical Society, 98(13), 3787-3793. doi:10.1021/ja00429a009Garbisch, E. W., & Griffith, M. G. (1968). Proton couplings in cyclohexane. Journal of the American Chemical Society, 90(23), 6543-6544. doi:10.1021/ja01025a069R. K. Harris , Nuclear Magnetic Resonance Spectroscopy, Pitman Books Limited, London, 1983E. L. Eliel , S. H.Wilen and M. P.Doyle, Basic Organic Stereochemistry, Wiley-Interscience, New York, 2001, pp. 436–491Glorius, F., Spielkamp, N., Holle, S., Goddard, R., & Lehmann, C. W. (2004). Efficient Asymmetric Hydrogenation of Pyridines. Angewandte Chemie International Edition, 43(21), 2850-2852. doi:10.1002/anie.200453942Matczak-Jon, E., Videnova-Adrabi?ska, V., Burzy?ska, A., Kafarski, P., & Lis, T. (2005). Solid-State Molecular Organization and Solution Behavior of Methane-1,1-Diphosphonic Acid Derivatives of Heterocyclic Amines: The Role of the Topochemical Ring Modification and the Intramolecular Hydrogen Bonds in Monosubstituted Piperid-1-ylmethane-1,1-diphosphonic Acids. Chemistry - A European Journal, 11(8), 2357-2372. doi:10.1002/chem.200400348Xu, Q. (2012). 3-Methylpiperidinium bromide. Acta Crystallographica Section E Structure Reports Online, 68(6), o1654-o1654. doi:10.1107/s160053681201971xXu, Q. (2012). Bis(3-methylpiperidinium) naphthalene-1,5-disulfonate. Acta Crystallographica Section E Structure Reports Online, 68(6), o1687-o1687. doi:10.1107/s160053681202003xBerg, R. W., Deetlefs, M., Seddon, K. R., Shim, I., & Thompson, J. M. (2005). Raman and ab Initio Studies of Simple and Binary 1-Alkyl-3-methylimidazolium Ionic Liquids. The Journal of Physical Chemistry B, 109(40), 19018-19025. doi:10.1021/jp050691rBondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083hHenderson, M. A., Luo, J., Oliver, A., & McIndoe, J. S. (2011). The Pauson-Khand Reaction: A Gas-Phase and Solution-Phase Examination Using Electrospray Ionization Mass Spectrometry. Organometallics, 30(20), 5471-5479. doi:10.1021/om200717rDean, P. M., Pringle, J. M., & MacFarlane, D. R. (2008). 1-Methyl-1-propylpyrrolidinium chloride. Acta Crystallographica Section E Structure Reports Online, 64(3), o637-o637. doi:10.1107/s1600536808005229Laus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H., & Nauer, G. (2008). Syntheses, crystal structures, and polymorphism of quaternary pyrrolidinium chlorides. CrystEngComm, 10(6), 748. doi:10.1039/b718917fDean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M., & MacFarlane, D. R. (2009). Structural Characterization of Novel Ionic Salts Incorporating Trihalide Anions. Australian Journal of Chemistry, 62(4), 334. doi:10.1071/ch08456Fei, Z., Zhao, D., Scopelliti, R., & Dyson, P. J. (2004). Organometallic Complexes Derived from Alkyne-Functionalized Imidazolium Salts. Organometallics, 23(7), 1622-1628. doi:10.1021/om034248jLaus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., … Schottenberger, H. (2008). Synthesis and Crystal Structures of 1-Alkoxy-3-alkylimidazolium Salts Including Ionic Liquids, 1-Alkylimidazole 3-oxides and 1-Alkylimidazole Perhydrates. Zeitschrift für Naturforschung B, 63(4), 447-464. doi:10.1515/znb-2008-0411Murray, S. M., O’Brien, R. A., Mattson, K. M., Ceccarelli, C., Sykora, R. E., West, K. N., & Davis, J. H. (2010). The Fluid-Mosaic Model, Homeoviscous Adaptation, and Ionic Liquids: Dramatic Lowering of the Melting Point by Side-Chain Unsaturation. Angewandte Chemie International Edition, 49(15), 2755-2758. doi:10.1002/anie.200906169Dupont, J., Suarez, P. A. Z., De Souza, R. F., Burrow, R. A., & Kintzinger, J.-P. (2000). C-H-π Interactions in 1-n-Butyl-3-methylimidazolium Tetraphenylborate Molten Salt: Solid and Solution Structures. Chemistry - A European Journal, 6(13), 2377-2381. doi:10.1002/1521-3765(20000703)6:133.0.co;2-lStenzel, O., Raubenheimer, H. G., & Esterhuysen, C. (2002). Biphasic hydroformylation in new molten salts—analogies and differences to organic solvents. Journal of the Chemical Society, Dalton Transactions, (6), 1132. doi:10.1039/b107720aNiehues, M., Kehr, G., Erker, G., Wibbeling, B., Fröhlich, R., Blacque, O., & Berke, H. (2002). Structural characterization of Group 4 transition metal halide bis-Arduengo carbene complexes MCl4L2: Journal of Organometallic Chemistry, 663(1-2), 192-203. doi:10.1016/s0022-328x(02)01731-xArduengo, A. J., Dias, H. V. R., Harlow, R. L., & Kline, M. (1992). Electronic stabilization of nucleophilic carbenes. Journal of the American Chemical Society, 114(14), 5530-5534. doi:10.1021/ja00040a007S. Parsons , D.Sanders, A.Mount, A.Parsons and R.Johnstone, private communication to the CSDG. J. Reiss , private communication to the CSDSaha, S., Hayashi, S., Kobayashi, A., & Hamaguchi, H. (2003). Crystal Structure of 1-Butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure. Chemistry Letters, 32(8), 740-741. doi:10.1246/cl.2003.740Kärkkäinen, J., Asikkala, J., Laitinen, R. S., & Lajunen, M. K. (2004). Effect of Temperature on the Purity of Product in the Preparation of 1-Butyl-3-methylimidazolium-Based Ionic Liquids. Zeitschrift für Naturforschung B, 59(7), 763-770. doi:10.1515/znb-2004-0704Holbrey, J. D., Reichert, W. M., Nieuwenhuyzen, M., Johnson, S., Seddon, K. R., & Rogers, R. D. (2003). Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallizationElectronic supplementary information (ESI) available: packing diagrams for I and II; table of closest contacts for I, I-Br and II. See http://www.rsc.org/suppdata/cc/b3/b304543a/. Chemical Communications, (14), 1636. doi:10.1039/b304543aVygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., Lyssenko, K. A., Antipin, M. Y., & Urman, Y. G. (2004). Implementation of ionic liquids as activating media for polycondensation processes. Polymer, 45(15), 5031-5045. doi:10.1016/j.polymer.2004.05.025Golovanov, D. G., Lyssenko, K. A., Vygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., & Antipin, M. Y. (2006). Crystal structure of 1,3-dialkyldiazolium bromides. Russian Chemical Bulletin, 55(11), 1989-1999. doi:10.1007/s11172-006-0541-3Kawahata, M., Endo, T., Seki, H., Nishikawa, K., & Yamaguchi, K. (2009). Polymorphic Properties of Ionic Liquid of 1-Isopropyl-3-methylimidazolium Bromide. Chemistry Letters, 38(12), 1136-1137. doi:10.1246/cl.2009.1136Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., & Hamaguchi, H. (2003). Rotational Isomerism and Structure of the 1-Butyl-3-methylimidazolium Cation in the Ionic Liquid State. Chemistry Letters, 32(10), 948-949. doi:10.1246/cl.2003.948Elaiwi, A., Hitchcock, P. B., Seddon, K. R., Srinivasan, N., Tan, Y.-M., Welton, T., & Zora, J. A. (1995). Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. Journal of the Chemical Society, Dalton Transactions, (21), 3467. doi:10.1039/dt9950003467Wu, T.-Y., Su, S.-G., Lin, K.-F., Lin, Y.-C., Wang, H. P., Lin, M.-W., … Sun, I.-W. (2011). Voltammetric and physicochemical characterization of hydroxyl- and ether-functionalized onium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochimica Acta, 56(21), 7278-7287. doi:10.1016/j.electacta.2011.06.051Bazito, F. F. C., Kawano, Y., & Torresi, R. M. (2007). Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochimica Acta, 52(23), 6427-6437. doi:10.1016/j.electacta.2007.04.064McFarlane, D. ., Sun, J., Golding, J., Meakin, P., & Forsyth, M. (2000). High conductivity molten salts based on the imide ion. Electrochimica Acta, 45(8-9), 1271-1278. doi:10.1016/s0013-4686(99)00331-xTokuda, H., Tsuzuki, S., Susan, M. A. B. H., Hayamizu, K., & Watanabe, M. (2006). How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. The Journal of Physical Chemistry B, 110(39), 19593-19600. doi:10.1021/jp064159vSalminen, J., Papaiconomou, N., Kumar, R. A., Lee, J.-M., Kerr, J., Newman, J., & Prausnitz, J. M. (2007). Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibria, 261(1-2), 421-426. doi:10.1016/j.fluid.2007.06.031Furlani, M., Albinsson, I., Mellander, B.-E., Appetecchi, G. B., & Passerini, S. (2011). Annealing protocols for pyrrolidinium bis(trifluoromethylsulfonyl)imide type ionic liquids. Electrochimica Acta, 57, 220-227. doi:10.1016/j.electacta.2011.08.056Jin, H., O’Hare, B., Dong, J., Arzhantsev, S., Baker, G. A., Wishart, J. F., … Maroncelli, M. (2008). Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations. The Journal of Physical Chemistry B, 112(1), 81-92. doi:10.1021/jp076462hHeym, F., Etzold, B. J. M., Kern, C., & Jess, A. (2010). An improved method to measure the rate of vaporisation and thermal decomposition of high boiling organic and ionic liquids by thermogravimetrical analysis. Physical Chemistry Chemical Physics, 12(38

    Production of H2 by Ethanol Photoreforming on Au/TiO2

    Full text link
    A deposition-precipitation method is used to prepare Au/TiO 2 solids (0.45–1.7 wt% Au). These materials, consisting of gold nanoparticles (diameter range = 1.5–6.5 nm) supported on the surface of TiO 2 , are used as photocatalysts for the ethanol photoreforming reaction under either UV-rich or simulated solar light. The main products of such reactions are H 2 in the gas phase and acetaldehyde in the liquid phase according to the reaction CH 3 CH 2 OH → CH 3 CHO + H 2 . Among the gaseous products, H 2 amounts to around or above 99% in all cases; other minor products found in the gas phase are, in decreasing order of molar production: CH 4 > CO > C 2 H 4 > CO 2 > C 2 H 6 > C 3 H 8 . The photoactivity is lower under CO 2 atmosphere, as compared to analogous reactions performed under Ar. The H 2 production yields are very high (up to a maximum 30 mmol g cat−1 h −1 ) under UV irradiation, and increase with increasing gold loading. The reactions under simulated solar light also yield signifi cant amounts of H 2 (5–6 mmol g cat−1 h −1 ) as the main gaseous product.This work has been supported by the JAE-Doc program, co-funded by the Consejo Superior de Investigaciones Cientificas (CSIC) and the European Social Fund (ESF). A.V.P. is grateful to CSIC for a JAE-Doc post-doctoral grant. Financial support by the Generalitat Valenciana (Prometeo 20/2/014) is gratefully acknowledged.Vaca Puga, A.; Forneli Rubio, MA.; García Gómez, H.; Corma Canós, A. (2014). Production of H2 by Ethanol Photoreforming on Au/TiO2. Advanced Functional Materials. 24(2):241-248. doi:10.1002/adfm.201301907S24124824

    Production of polyetheretherketone in ionic liquid media

    Full text link
    [EN] Polyetheretherketones were successfully synthesised in an ionic liquid, namely 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, by polycondensation reactions of hydroquinone with 4,4'-dihalobenzophenones in the presence of potassium carbonate at elevated temperatures (up to 320 degrees C). The materials thus produced were similar to polymers prepared in the solvent usually employed in commercial processes, i.e. diphenyl sulfone, as suggested by spectroscopic techniques and X-ray crystallography. By replacing volatile diphenyl sulfone with the effectively involatile ionic liquid, the separation efficiency was significantly improved but the molecular weights were lower.We acknowledge Dr S.R. Holding and T.S. Forsyth at Smithers Rapra Technology Limited for the gel permeation chromatographic analyses, and INVISTA Intermediates for funding.Gunaratne, HQN.; Langrick, CR.; Vaca Puga, A.; Seddon, KR.; Whiston, K. (2013). Production of polyetheretherketone in ionic liquid media. Green Chemistry. 15(5):1166-1172. doi:10.1039/C3GC36754AS1166117215

    Conference report: Lake Constance turns green

    Full text link
    Adamova, G.; Ferguson, J.; Ng, S.; Puga Vaca, A.; Rodriguez, H.; Rountree, S.; Seddon, K.... (2009). Conference report: Lake Constance turns green. Green Chemistry. 11(5):604-608. doi:10.1039/b822925mS60460811

    New ionic liquids from azepane and 3-methylpiperidine exhibiting wide

    No full text
    New ionic liquids based on azepanium and 3-methylpiperidinium cations have been synthesised; they exhibit moderate viscosities and remarkably wide electrochemical windows, thereby showing promise, inter alia, as electrolytes and battery materials, and as synthetic media.Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Vaca Puga, A.; Seddon, KR.; Srinivasan, G.... (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chemistry. 13(1):59-63. doi:10.1039/c0gc00534gS5963131Wilkes, J. S., Levisky, J. A., Wilson, R. A., & Hussey, C. L. (1982). Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 21(3), 1263-1264. doi:10.1021/ic00133a078Wilkes, J. S. (2002). A short history of ionic liquids—from molten salts to neoteric solvents. Green Chemistry, 4(2), 73-80. doi:10.1039/b110838gHurley, F. H., & WIer, T. P. (1951). Electrodeposition of Metals from Fused Quaternary Ammonium Salts. Journal of The Electrochemical Society, 98(5), 203. doi:10.1149/1.2778132Hurley, F. H., & WIer, T. P. (1951). The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. Journal of The Electrochemical Society, 98(5), 207. doi:10.1149/1.2778133H. Ohno (ed.), ‘Ionic Liquids: The Front and Future of Material Development’, CMC Press, Tokyo, 2003H. Ohno (ed.), ‘Electrochemical Aspects of Ionic Liquids’, Wiley-Interscience, Hoboken, 2005Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567-5580. doi:10.1016/j.electacta.2006.03.016Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448MacFarlane, D. R., Huang, J., & Forsyth, M. (1999). Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature, 402(6763), 792-794. doi:10.1038/45514Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017F. Endres, D. MacFarlane and A. Abbott (ed.), ‘Electrodeposition from Ionic Liquids’, Wiley-VCH, Weinheim, 2008D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in ‘Molten salts and ionic liquids: never the Twain?’ ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., & Grätzel, M. (1996). Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts†. Inorganic Chemistry, 35(5), 1168-1178. doi:10.1021/ic951325xBuzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides:  A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145sSun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159pSakaebe, H., & Matsumoto, H. (2003). N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochemistry Communications, 5(7), 594-598. doi:10.1016/s1388-2481(03)00137-1Alunni, S., & Tijskens, P. (1995). Study on the Effect of the Structure of the Leaving Group in the E1cb Mechanism of Base-Promoted .beta.-Elimination Reactions from N-[2-(p-Nitrophenyl)ethyl]alkylammonium Ions. The Journal of Organic Chemistry, 60(26), 8371-8374. doi:10.1021/jo00131a011Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083hBondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001G. R. Desiraju , ‘Crystal Engineering. The Design of Organic Solids’, Elsevier, Amsterdam, 1989Aakeröy, C. B., & Seddon, K. R. (1993). The hydrogen bond and crystal engineering. Chem. Soc. Rev., 22(6), 397-407. doi:10.1039/cs9932200397Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686Xiao, L., & Johnson, K. E. (2003). Electrochemistry of 1-Butyl-3-methyl-1H-imidazolium Tetrafluoroborate Ionic Liquid. Journal of The Electrochemical Society, 150(6), E307. doi:10.1149/1.1568740Zheng, J. P., Pettit, C. M., Goonetilleke, P. C., Zenger, G. M., & Roy, D. (2009). D.C. voltammetry of ionic liquid-based capacitors: Effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4. Talanta, 78(3), 1056-1062. doi:10.1016/j.talanta.2009.01.014MacFarlane, D. R., Pringle, J. M., Howlett, P. C., & Forsyth, M. (2010). Ionic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 12(8), 1659. doi:10.1039/b923053jHowlett, P. C., Izgorodina, E. I., Forsyth, M., & MacFarlane, D. R. (2006). Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1483-1498. doi:10.1524/zpch.2006.220.10.1483Carmichael, A. J., Earle, M. J., Holbrey, J. D., McCormac, P. B., & Seddon, K. R. (1999). The Heck Reaction in Ionic Liquids:  A Multiphasic Catalyst System. Organic Letters, 1(7), 997-1000. doi:10.1021/ol9907771Forsyth, S. A., Gunaratne, H. Q. N., Hardacre, C., McKeown, A., Rooney, D. W., & Seddon, K. R. (2005). Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-Valley fragrance {β-Lilial®; 3-(4-t-butylphenyl)-2-methylpropanal}. Journal of Molecular Catalysis A: Chemical, 231(1-2), 61-66. doi:10.1016/j.molcata.2004.12.022Forsyth, S. A., MacFarlane, D. R., Thomson, R. J., & von Itzstein, M. (2002). Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chemical Communications, (7), 714-715. doi:10.1039/b200306
    corecore