199 research outputs found

    RNA structure drives interaction with proteins

    Get PDF
    The combination of high-throughput sequencing and in vivo crosslinking approaches leads to the progressive uncovering of the complex interdependence between cellular transcriptome and proteome. Yet, the molecular determinants governing interactions in protein-RNA networks are not well understood. Here we investigated the relationship between the structure of an RNA and its ability to interact with proteins. Analysing in silico, in vitro and in vivo experiments, we find that the amount of double-stranded regions in an RNA correlates with the number of protein contacts. This relationship —which we call structure-driven protein interactivity— allows classification of RNA types, plays a role in gene regulation and could have implications for the formation of phase-separated ribonucleoprotein assemblies. We validate our hypothesis by showing that a highly structured RNA can rearrange the composition of a protein aggregate. We report that the tendency of proteins to phase-separate is reduced by interactions with specific RNAs

    RNA-binding and prion domains: the Yin and Yang of phase separation

    Get PDF
    Proteins and RNAs assemble in membrane-less organelles that organize intracellular spaces and regulate biochemical reactions. The ability of proteins and RNAs to form condensates is encoded in their sequences, yet it is unknown which domains drive the phase separation (PS) process and what are their specific roles. Here, we systematically investigated the human and yeast proteomes to find regions promoting condensation. Using advanced computational methods to predict the PS propensity of proteins, we designed a set of experiments to investigate the contributions of Prion-Like Domains (PrLDs) and RNA-binding domains (RBDs). We found that one PrLD is sufficient to drive PS, whereas multiple RBDs are needed to modulate the dynamics of the assemblies. In the case of stress granule protein Pub1 we show that the PrLD promotes sequestration of protein partners and the RBD confers liquid-like behaviour to the condensate. Our work sheds light on the fine interplay between RBDs and PrLD to regulate formation of membrane-less organelles, opening up the avenue for their manipulation

    Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions

    Get PDF
    Protein aggregation is linked with neurodegeneration and numerous other diseases by mechanisms that are not well understood. Here, we have analyzed the gain-of-function toxicity of artificial β sheet proteins that were designed to form amyloid-like fibrils. Using quantitative proteomics, we found that the toxicity of these proteins in human cells correlates with the capacity of their aggregates to promote aberrant protein interactions and to deregulate the cytosolic stress response. The endogenous proteins that are sequestered by the aggregates share distinct physicochemical properties: They are relatively large in size and significantly enriched in predicted unstructured regions, features that are strongly linked with multifunctionality. Many of the interacting proteins occupy essential hub positions in cellular protein networks, with key roles in chromatin organization, transcription, translation, maintenance of cell architecture and protein quality control. We suggest that amyloidogenic aggregation targets a metastable subproteome, thereby causing multifactorial toxicity and, eventually, the collapse of essential cellular functions. PaperFlick: © 2011 Elsevier Inc

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    The Role of Toll-Like Receptor 2 in Inflammation and Fibrosis during Progressive Renal Injury

    Get PDF
    Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2) is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not yet been elucidated. Therefore, we studied TLR2 expression in human and murine progressive renal diseases and explored its role by inducing obstructive nephropathy in TLR2−/− or TLR2+/+ mice. We found that TLR2 is markedly upregulated on tubular and tubulointerstitial cells in patients with chronic renal injury. In mice with obstructive nephropathy, renal injury was associated with a marked upregulation and change in distribution of TLR2 and upregulation of murine TLR2 danger ligands Gp96, biglycan, and HMGB1. Notably, TLR2 enhanced inflammation as reflected by a significantly reduced influx of neutrophils and production of chemokines and TGF-β in kidneys of TLR2−/− mice compared with TLR2+/+ animals. Although, the obstructed kidneys of TLR2−/− mice had less interstitial myofibroblasts in the later phase of obstructive nephropathy, tubular injury and renal matrix accumulation was similar in both mouse strains. Together, these data demonstrate that TLR2 can initiate renal inflammation during progressive renal injury and that the absence of TLR2 does not affect the development of chronic renal injury and fibrosis

    Endogenous antigen processing drives the primary CD4+ T cell response to influenza.

    Get PDF
    By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and γ-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses

    Toll-Like Receptors 2 and 4 Regulate the Frequency of IFNγ-Producing CD4+ T-Cells during Pulmonary Infection with Chlamydia pneumoniae

    Get PDF
    TLR2 and TLR4 are crucial for recognition of Chlamydia pneumoniae in vivo, since infected TLR2/4 double-deficient mice are unable to control the infection as evidenced by severe loss of body weight and progressive lethal pneumonia. Unexpectedly, these mice display higher pulmonary levels of the protective cytokine IFNγ than wild type mice. We show here, that antigen-specific CD4+ T-cells are responsible for the observed IFNγ-secretion in vivo and their frequency is higher in TLR2/4 double-deficient than in wild type mice. The capacity of TLR2/4 double-deficient dendritic cells to re-stimulate CD4+ T-cells did not differ from wild type dendritic cells. However, the frequency of CD4+CD25+Foxp3+ T-cells was considerably higher in wild type compared to TLR2/4 double-deficient mice and was inversely related to the number of IFNγ-secreting CD4+ effector T-cells. Despite increased IFNγ-levels, at least one IFNγ-mediated response, protective NO-secretion, could not be induced in the absence of TLR2 and 4. In summary, CD4+CD25+Foxp3+ regulatory T-cells fail to expand in the absence of TLR2 and TLR4 during pulmonary infection with C. pneumoniae, which in turn enhances the frequency of CD4+IFNγ+ effector T-cells. Failure of IFNγ to induce NO in TLR2/4 double-deficient cells represents one possible mechanism why TLR2/4 double-deficient mice are unable to control pneumonia caused by C. pneumoniae and succumb to the infection

    Expression of the 60 kDa and 71 kDa heat shock proteins and presence of antibodies against the 71 kDa heat shock protein in pediatric patients with immune thrombocytopenic purpura

    Get PDF
    BACKGROUND: Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by platelet destruction resulting from autoantibodies against platelet proteins, particularly platelet glycoprotein IIb/IIIa. Heat shock proteins (Hsp) have been shown to be major antigenic determinants in some autoimmune diseases. Antibodies to Hsps have also been reported to be associated with a number of pathological states. METHODS: Using western blot, we measured the levels of the 60 kDa heat shock protein (Hsp60) and of the inducible 71 kDa member of the Hsp70 family (Hsp71) in lymphocytes and the presence of antibodies against these hsps in plasma of 29 pediatric patients with ITP before the treatment and in 6 other patients before and after treatment. RESULTS: Interestingly only one out of 29 patients showed detectable Hsp60 in lymphocytes while this heat shock protein was detected in the 30 control children. Hsp71 levels were slightly lower in lymphocytes of patients with ITP than in controls (1567.8 ± 753.2 via 1763.2 ± 641.8 integrated optical density (IOD) units). There was a small increase of Hsp71 after recovery from ITP. The titers of plasma antibodies against Hsp60 and Hsp71 were also examined. Antibodies against Hsp71 were more common in ITP patients (15/29) than in control children (5/30). The titer of anti-Hsp71 was also higher in children patients with ITP. The prevalence of ITP children with antibodies against Hsp71 (51.7%) was as high as those with antibodies against platelet membrane glycoproteins (58.3%). CONCLUSIONS: In summary, pediatric patients with ITP showed no detectable expression of Hsp60 in lymphocytes and a high prevalence of antibody against Hsp71 in plasma. These changes add to our understanding of the pathogenesis of ITP and may be important for the diagnosis, prognosis and treatment of ITP

    Expression of Toll-like receptor 2 is up-regulated in monocytes from patients with chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterised by pulmonary and systemic inflammation which flare-up during episodes of acute exacerbation (AECOPD). Given the role of Toll-like receptors (TLRs) in the induction of inflammatory responses we investigated the involvement of TLRs in COPD pathogenesis. METHODS: The expression of TLR-2, TLR-4 and CD14 in monocytes was analyzed by flow cytometry. To study the functional responses of these receptors, monocytes were stimulated with peptidoglycan or lipopolysaccharide and the amounts of TNFα and IL-6 secreted were determined by ELISA. RESULTS: We found that the expression of TLR-2 was up-regulated in peripheral blood monocytes from COPD patients, either clinically stable or during AECOPD, as compared to never smokers or smokers with normal lung function. Upon stimulation with TLR-2 ligand monocytes from COPD patients secreted increased amounts of cytokines than similarly stimulated monocytes from never smokers and smokers. In contrast, the expressions of TLR-4 and CD14 were not significantly different between groups, and the response to lipopolysaccharide (a TLR-4 ligand) stimulation was not significantly different either. At discharge from hospital TLR-2 expression was down-regulated in peripheral blood monocytes from AECOPD patients. This could be due to the treatment with systemic steroids because, in vitro, steroids down-regulated TLR-2 expression in a dose-dependent manner. Finally, we demonstrated that IL-6, whose plasma levels are elevated in patients, up-regulated in vitro TLR-2 expression in monocytes from never smokers. CONCLUSION: Our results reveal abnormalities in TLRs expression in COPD patients and highlight its potential relationship with systemic inflammation in these patients
    corecore