47 research outputs found

    The effect of cavity-filling mutations on the thermostability of Bacillus stearothermophilus neutral protease

    Get PDF
    Cavities in the hydrophobic core of the neutral protease of Bacillus stearothermophilus were analyzed using a three-dimensional model that was inferred from the crystal structure of thermolysin, the highly homologous neutral protease of B.thermoproteolyticus (85% sequence identity). Site-directed mutagenesis was used to fill some of these cavities, thereby improving hydrophobic packing in the protein interior. The mutations had small effects on the thermostability, even after drastic changes, such as Leu284 --> Trp and Met168 --> Trp. The effects on T50, the temperature at which 50% of the enzyme is irreversibly inactivated in 30 min, ranged from 0.0 to +0.4-degrees-C. These results can be explained by assuming that the mutations have positive and negative structural effects of approximately the same magnitude. Alternatively, it could be envisaged that the local unfolding steps, which render the enzyme susceptible towards autolysis and which are rate limiting in the process of thermal inactivation, are only slightly affected by alterations in the hydrophobic core

    Creating a specialist protein resource network:a meeting report for the protein bioinformatics and community resources retreat

    Get PDF
    During 11–12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue

    and NucleaRDB information systems

    No full text
    The amount of genomic and proteomic data that is entered each day into databases and the experimental literature is outstripping the ability of experimental scientists to keep pace. While generic databases derived from automated curation efforts are useful, most biological scientists tend to focus on a class or family of molecules and their biological impact. Consequently, there is a need for molecular classspecific or other specialized databases. Such databases collect and organize data around a single topic or class of molecules. If curated well, such systems are extremely useful as they allow experimental scientists to obtain a large portion of the available data most relevant to their needs from a single source. We are involved in the development of two such databases with substantial pharmacological relevance. These are the GPCRDB and NucleaRDB information systems, which collect and disseminate data related to G protein-coupled receptors and intranuclear hormone receptors, respectively. The GPCRDB was a pilot project aimed at building a generic molecular class-specific database capable of dealing with highly heterogeneous data. A first version of the GPCRDB project has been completed and it is routinely used by thousands of scientists. The NucleaRDB was started recently as an application of the concept for the generalization of this technology. The GPCRDB is available via the WWW at http:// www.gpcr.org/7tm/ and the NucleaRDB at http:// www.receptors.org/NR/

    Collecting and harvesting biological data: the GPCRDB and NucleaRDB information systems

    No full text
    The amount of genomic and proteomic data that is entered each day into databases and the experimental literature is outstripping the ability of experimental scientists to keep pace. While generic databases derived from automated curation efforts are useful, most biological scientists tend to focus on a class or family of molecules and their biological impact. Consequently, there is a need for molecular class-specific or other specialized databases. Such databases collect and organize data around a single topic or class of molecules. If curated well, such systems are extremely useful as they allow experimental scientists to obtain a large portion of the available data most relevant to their needs from a single source. We are involved in the development of two such databases with substantial pharmacological relevance. These are the GPCRDB and NucleaRDB information systems, which collect and disseminate data related to G protein-coupled receptors and intra-nuclear hormone receptors, respectively. The GPCRDB was a pilot project aimed at building a generic molecular class-specific database capable of dealing with highly heterogeneous data. A first version of the GPCRDB project has been completed and it is routinely used by thousands of scientists. The NucleaRDB was started recently as an application of the concept for the generalization of this technology. The GPCRDB is available via the WWW at http://www.gpcr.org/7tm/ and the NucleaRDB at http://www.receptors.org/NR/

    A low resolution model for the interaction of G proteins with G protein-coupled receptors

    No full text
    A model is presented for the interaction between G proteins and G protein-coupled receptors, the model is based on the fact that this interaction shows Little specificity and thus conserved parts of the G proteins have to interact with conserved parts of the receptors. These parts are a conserved negative residue in the G protein, a fully conserved arginine in the receptor and a series of residues that are not conserved but always hydrophobic like the hydrophobic side of the C-terminal helix of the G protein and the hydrophobic side of a helix in the C-terminal domain of the receptor. Other, mainly cytosolic, factors determine the specificity and regulation of this interaction. the relation between binding and activation will be shown. ii large body of experimental evidence supports this model. Despite the fact that the model does not provide atomic resolution, it can be used, to explain some experimental data that would otherwise seem inexplicable, and it suggests experiments for its falsification or verification.European Mol Biol Lab, D-69117 Heidelberg, GermanyUNIFESP, Escola Paulista Med, São Paulo, BrazilUNIFESP, Escola Paulista Med, São Paulo, BrazilWeb of Scienc

    A common motif in G-protein-coupled seven transmembrane helix receptors

    No full text
    G-protein-coupled receptors all share the seven transmembrane helix motif similar to bacteriorhodopsin. This similarity was exploited to build models for these receptors. From an analysis of a multi-sequence alignment of 225 G-protein-coupled receptors belonging to the rhodopsin-like superfamily, conclusions could be drawn about functional residues. Seven residues in the transmembrane regions are conserved throughout all aligned receptors. These residues cluster at the cytosolic side of the transmembrane helices and are for all rhodopsin-like G-protein-coupled receptors implied in signal transduction. An analysis of correlated mutations reveals a number of residues, both in the helices and in the cytosolic loops, that might be important in the signal transduction pathway in subfamilies of this receptor family.ESCOLA PAULISTA MED,DEPT BIOFIS,BR-04034 São Paulo,SP,BRAZILEMBL,D-69117 HEIDELBERG,GERMANYESCOLA PAULISTA MED,DEPT BIOFIS,BR-04034 São Paulo,SP,BRAZILWeb of Scienc

    The determinants of α-amylase pH–activity profiles

    No full text
    corecore