10,142 research outputs found

    Probing the evolving massive star population in Orion with kinematic and radioactive tracers

    Get PDF
    We assemble a census of the most massive stars in Orion, then use stellar isochrones to estimate their masses and ages, and use these results to establish the stellar content of Orion's individual OB associations. From this, our new population synthesis code is utilized to derive the history of the emission of UV radiation and kinetic energy of the material ejected by the massive stars, and also follow the ejection of the long-lived radioactive isotopes 26Al and 60Fe. In order to estimate the precision of our method, we compare and contrast three distinct representations of the massive stars. We compare the expected outputs with observations of 26Al gamma-ray signal and the extent of the Eridanus cavity. We find an integrated kinetic energy emitted by the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent with the energy thought to be required to create the Eridanus superbubble. We also find good agreement between our model and the observed 26Al signal, estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion region. Our population synthesis approach is demonstrated for the Orion region to reproduce three different kinds of observable outputs from massive stars in a consistent manner: Kinetic energy as manifested in ISM excavation, ionization as manifested in free-free emission, and nucleosynthesis ejecta as manifested in radioactivity gamma-rays. The good match between our model and the observables does not argue for considerable modifications of mass loss. If clumping effects turn out to be strong, other processes would need to be identified to compensate for their impact on massive-star outputs. Our population synthesis analysis jointly treats kinematic output and the return of radioactive isotopes, which proves a powerful extension of the methodology that constrains feedback from massive stars.Comment: Accepted for publication in A&A, 10 page

    Universal Behavior of the Resistance Noise across the Metal-Insulator Transition in Silicon Inversion Layers

    Full text link
    Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional (2D) electron system in the vicinity of the metal-insulator transition occurs in all Si inversion layers. The size of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility samples. The behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: revtex4; 4+ pages, 5 figure

    A feasibility study: California Department of Forestry and Fire Protection utilization of infrared technologies for wildland fire suppression and management

    Get PDF
    NASA's JPL has completed a feasibility study using infrared technologies for wildland fire suppression and management. The study surveyed user needs, examined available technologies, matched the user needs with technologies, and defined an integrated infrared wildland fire mapping concept system configuration. System component trade-offs were presented for evaluation in the concept system configuration. The economic benefits of using infrared technologies in fire suppression and management were examined. Follow-on concept system configuration development and implementation were proposed

    Population synthesis of classical low-mass X-ray binaries in the Galactic Bulge

    Get PDF
    Aims. We model the present-day population of 'classical' low-mass X-ray binaries (LMXBs) with neutron star accretors, which have hydrogen-rich donor stars. Their population is compared with that of hydrogen-deficient LMXBs, known as ultracompact X-ray binaries (UCXBs). We model the observable LMXB population and compare it to observations. Methods. We combine the binary population synthesis code SeBa with detailed LMXB evolutionary tracks to model the size and properties of the present-day LMXB population in the Galactic Bulge. Whether sources are persistent or transient, and what their instantaneous X-ray luminosities are, is predicted using the thermal-viscous disk instability model. Results. We find a population of ~2.1 x 10^3 LMXBs with neutron star accretors. Of these about 15 - 40 are expected to be persistent (depending on model assumptions), with luminosities higher than 10^35 erg s^-1. About 7 - 20 transient sources are expected to be in outburst at any given time. Within a factor of two these numbers are consistent with the observed population of bright LMXBs in the Bulge. This gives credence to our prediction of the existence of a population of ~1.6 x 10^3 LMXBs with low donor masses that have gone through the period minimum, and have present-day mass transfer rates below 10^-11 Msun yr^-1. Conclusions. Even though the observed population of hydrogen-rich LMXBs in the Bulge is larger than the observed population of (hydrogen-deficient) UCXBs, the latter have a higher formation rate. While UCXBs may dominate the total LMXB population at the present, the majority would be very faint, or may have become detached and produced millisecond radio pulsars. In that case UCXBs would contribute significantly more to the formation of millisecond radio pulsars than hydrogen-rich LMXBs. [abridged]Comment: 8 pages, 10 figures. Accepted for publication in Astronomy and Astrophysics. v2: minor language correction

    Parameter Mismatches and Perfect Anticipating Synchronization in bi-directionally coupled external cavity laser diodes

    Full text link
    We study perfect chaos synchronization between two bi-directionally coupled external cavity semiconductor lasers and demonstrate for the first time that mismatches in laser photon decay rates can explain the experimentally observed anticipating time in synchronization.Comment: Latex 4 page

    Competition between Two Kinds of Correlations in Literary Texts

    Full text link
    A theory of additive Markov chains with long-range memory is used for description of correlation properties of coarse-grained literary texts. The complex structure of the correlations in texts is revealed. Antipersistent correlations at small distances, L 300 define this nontrivial structure. For some concrete examples of literary texts, the memory functions are obtained and their power-law behavior at long distances is disclosed. This property is shown to be a cause of self-similarity of texts with respect to the decimation procedure.Comment: 7 pages, 7 figures, Submitted to Physica

    Inverse Anticipating Synchronization

    Full text link
    We report a new type of chaos synchronization:inverse anticipating synchronization, where a time delay chaotic system can drive another system in such a way that the driven system anticipates the driver by synchronizing with its inverse future state. We extend the concept of inverse anticipating chaos synchronization to cascaded systems. We propose means for the experimental observation of inverse anticipating chaos synchronization in external cavity lasers.Comment: LaTex 6 pages, resubmitted to PR

    Discontinuities in self-affine functions lead to multiaffinity

    Full text link

    Publishing in face of the COVID-19 pandemic

    Get PDF
    Doctors around the world are desperately looking for guidance to enable them to better manage their COVID-19 patients..
    • …
    corecore