1,849 research outputs found
Infrared diagnosis using liquid crystal detectors
The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed
The potential of Antheraea pernyi silk for spinal cord repair
This work was supported by the Institute of Medical Sciences of the University of Aberdeen, Scottish Rugby Union and RS McDonald Charitable Trust. We are grateful to Mr Nicholas Hawkins from Oxford University and Ms Annette Raffan from the University of Aberdeen for assistance with tensile testing. We thank Ms Michelle Gniβ for her help with the microglial response experiments. We also thank Mr Gianluca Limodio for assisting with the MATLAB script for automation of tensile testing’s data analysis.Peer reviewedPublisher PD
Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by Cyclopropyl to Thermoresponsive properties
The synthesis and microwave-assisted living cationic ring-opening polymerization of 2-cyclopropyl-2-oxazoline is reported revealing the fastest polymerization for an aliphatic substituted 2-oxazoline to date, which is ascribed to the electron withdrawing effect of the cyclopropyl group. The poly(2-cyclopropyl-2-oxazoline) (pCPropOx) represents an alternative thermo-responsive poly(2-oxazoline) with a reversible critical temperature close to body temperature. The cloud point (CP) of the obtained pCPropOx in aqueous solution was evaluated in detail by turbidimetry, dynamic light scattering (DLS) and viscosity measurements. pCPropOx is amorphous with a significantly higher glass transition temperature (T(g) similar to 80 degrees C) compared to the amorphous poly(2-n-propyl-2-oxazoline) (pnPropOx) (T(g) similar to 40 degrees C), while poly(2-isopropyl-2-oxazoline) piPropOx is semicrystalline. In addition, a pCPropOx comb polymer was prepared by methacrylic acid end-capping of the living cationic species followed by RAFT polymerization of the macromonomer. The polymer architecture does not influence the concentration dependence of the CP, however, both the CP and T(g) of the comb polymer are lower due to the increased number of hydrophobic end groups
Hierarchical Chain Model of Spider Capture Silk Elasticity
Spider capture silk is a biomaterial with both high strength and high
elasticity, but the structural design principle underlying these remarkable
properties is still unknown. It was revealed recently by atomic force
microscopy that, an exponential force--extension relationship holds both for
capture silk mesostructures and for intact capture silk fibers [N. Becker et
al., Nature Materials 2, 278 (2003)]. In this Letter a simple hierarchical
chain model was proposed to understand and reproduce this striking observation.
In the hierarchical chain model, a polymer is composed of many structural
motifs which organize into structural modules and supra-modules in a
hierarchical manner. Each module in this hierarchy has its own characteristic
force. The repetitive patterns in the amino acid sequence of the major
flagelliform protein of spider capture silk is in support of this model.Comment: 4 pages, 3 figures. Will be formally published in PR
- …