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Abstract. Within a density-matrix formalism based on the
Bardeen–Cooper–Schrieffer (BCS) model and the Bogoliubov–de Gennes
equations we provide a description of the dynamics of the non-equilibrium
superconducting pairing induced by a terahertz (THz) laser pulse in bulk and
quasi-one-dimensional (1D) samples of conventional (BCS-type) superconduc-
tors. A cross-over from an adiabatic to a non-adiabatic regime takes place for
short and intense THz pulses. In the non-adiabatic regime, the order parameter
performs a damped oscillation. We discuss how the parameters of the THz pulse
influence the amplitude and the mean value of the oscillation in bulk samples. It
is demonstrated that for high intensities the non-adiabatic regime can be reached
even for pulses longer than the oscillation period. For the 1D samples we find
that the oscillation may attenuate with a different power law. This is analysed by
comparing the THz-induced dynamics with the dynamics induced by a sudden
switching of the pairing strength, which exhibits essentially the same behaviour.
The numerical calculations show that the exponent of the power law depends
critically on the density of states in the Debye window and therefore changes
in an oscillatory way with the confinement strength. Irregularities in the decay
of the oscillation are predicted when the 1D quantum wire is cut short to an
elongated zero-dimensional quantum dot structure.
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1. Introduction

The behaviour of superconducting systems far from equilibrium can provide detailed
information on carrier relaxation and pairing interaction dynamics and hence has the potential
to give new insights into the origin of superconductivity. This has propelled a wealth of
experimental and theoretical works in this area starting from the late 1960s [1–9]. In order
to prepare a non-equilibrium state, many techniques have been used for a long time like, e.g.
tunnel injection and optical irradiation. Nowadays, new state-of-the-art experimental probes
have been developed, such as scanning tunneling microscopy, ultrafast lasers, spin-polarized
tunneling injection and terahertz (THz) spectroscopy.

Of particular interest are time-resolved studies of the dynamics which provide more
powerful means to obtain detailed information on the interactions responsible for electron
pairing than static spectral characteristics [10–16]. In a typical experiment, high-energy
quasiparticles are quickly excited out of equilibrium by an intense femtosecond optical laser
pulse and then relax by carrier–carrier and carrier–phonon scattering, eventually creating an
excess population of low-energy quasiparticles and phonons. The resulting changes of the
reflectivity and/or the transmittivity are detected by a probe beam. A major driving force for
a renewed interest in this subject is the recent progress in developing new powerful sources
for intense ultrashort THz pulses [17–21]. These sources give access to the so far unexplored
regime of coherent dynamics of superconducting correlations by generating pulses both shorter
than the intrinsic time for superconductor dynamics τ1∼h̄/ |1|, where 1 is the pairing gap,
and with central frequencies of the order of the superconducting gap. It thus became possible to
study the low energy electromagnetic response of conventional superconductors by monitoring
the resonant excitation dynamics of quasiparticles in the vicinity of the superconducting gap
without heating the phonon bath. Recently an experimental study of the non-equilibrium
Bardeen–Cooper–Schrieffer (BCS) state dynamics by intense THz pulses with pulse duration
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of 90 fs in a superconducting NbN film with 24 nm thickness has been reported [22] which tests
the dynamics in the coherent regime.

Understanding the dynamics of superconductors in the coherent regime also provides a
challenge for the theory. The most widely used theoretical approaches for the non-equilibrium
dynamics of superconducting systems are based either on the time-dependent Ginzburg–Landau
theory (TDGL) [23, 24], which is a phenomenological description based on a single variable,
the order parameter1(t), or on the Boltzmann equation [25, 26], which describes the dynamics
in terms of a kinetic equation for the quasiparticle distribution coupled to a self-consistent
equation for 1(t). The TDGL procedure is applicable when the quasiparticles are able to reach
a local equilibrium compatible with the instantaneous value of 1(t) on a time scale τε (the
quasiparticle energy relaxation time at temperature T , τε ∼ h̄EF/max

(
12, k2

BT 2
)

with EF being
the Fermi energy) much shorter than the typical dynamical time scale of the superconducting
order parameter τ1∼h̄/ |1|, i.e. τε �τ1. This requirement restricts the validity of the TDGL
to situations where mechanisms destroying Cooper pairs are effective, for example gapless
superconductors. In the opposite limit, τ1 � t0 � τε with t0 being the duration of the external
pulse, the Boltzmann kinetic approach goes beyond the TDGL by keeping all quasiparticle
distributions as dynamical variables, but coherences are left out. It usually also involves a
gradient expansion for the spatial and momentum dependences of the distribution functions
and is, thus, applicable only when the latter variations are slow. Theoretical attempts to model
experiments have, on the one hand, used quasi-equilibrium models, like the model in [6, 7],
which uses an equilibrium distribution function at an effective electron temperature relative to
the bath temperature, originally proposed by Kaganov and co-workers [27, 28]; and the model
proposed by Owen and Scalapino [5], where the system is described in terms of a new chemical
potential for the excited quasiparticles. So in the latter case the thermal equilibrium is assumed
although chemical equilibrium is not reached for the paired and unpaired electrons. On the
other hand, rate equation approaches based on the phenomenological Rothwarf–Taylor (RT)
model [2] have been used to describe the recovery dynamics of the superconducting state. In this
model, a pair of rate equations describes a system of superconducting quasiparticles coupled to
phonons. In the RT phenomenology the excited state is characterized by number densities rather
than non-equilibrium energy distribution functions, which drastically simplifies the calculations
compared with the approach based on the Boltzmann equations. It is assumed that quasiparticles
rapidly thermalize to a narrow range of energy just above the gap and the dynamics are governed
by the creation of high-energy phonons due to Cooper-pair recombination and subsequent
phonon decay.

In the experiments of [22] the limit t0 � τ1 � τε has been reached, where the quasiparticle
spectrum loses its physical meaning and the system evolves non-adiabatically. In this case, the
evolution of the system is collisionless in the time interval t < τε and the above-mentioned
methods are not applicable. Instead, the dynamics have to be calculated using the BCS model
directly. For a fermionic condensate, also described by the BCS model, this leads to the
prediction of different regimes of oscillatory behaviour of the pairing potential after a sudden
perturbation [29–31]. Very similar behaviour has been observed in simulations of a bulk
superconductor after short THz excitation [32, 33, 35].

In the present work we investigate the collisionless dynamics of the BCS paired state
induced by an ultrashort THz pulse. Our aim is two-fold: firstly, we examine the conditions
necessary to reach the oscillatory regime in bulk superconductors; and secondly, we investigate
the effects of spatial confinement present in a nanoscale wire. The nanoscale system is modelled
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by the Bogoliubov–de Gennes (BdG) equation, which provides a direct extension of the
BCS model to spatially non-homogeneous systems [36, 37]. Recent technological advances
resulted in the fabrication of high-quality superconducting nanoscale systems, such as single-
crystalline Pb and In nanofilms with thicknesses down to a few monolayers [38–41], Sn and
Al nanowires (both single-crystalline and made of strongly coupled grains) with diameters
down to 8–10 nm [42–44]. Structural imperfections were minimized so that such nanowires
and nanofilms did not show signatures of suppression of superconductivity due to disorder [39].
The interplay between superconductivity and quantum confinement has been under significant
attention for the last decade due to the discovery of several novel phenomena in nanoscale
samples [45–51] like an increase of the critical temperature in nanowires which originates from
quantum-size oscillations of superconducting properties with thickness [52]. It can be expected
that the confinement influences the coherent dynamics as well.

2. Theory

The theory is presented for the general case of spatially inhomogeneous systems. More details
about the special case of bulk systems can be found in [32].

2.1. BCS model and the Bogoliubov–de Gennes equation

We consider a system described by the usual BCS–Hamiltonian

H =

∫
dr

∑
α

ψ†
α (r) Heψα (r)− g

∫
dr ψ†

↑
(r) ψ†

↓
(r) ψ↓ (r) ψ↑ (r) , (1)

where ψ†
α(r) and ψα(r) are the field operators for an electron with spin α. He is the single-

particle electron Hamiltonian, which also includes the confinement potential. A point-like
form of the electron–electron interaction characterized by the coefficient g is assumed, and
an appropriate momentum cut-off confining the interaction to a narrow layer near the Fermi
surface (Debye window) is implied.

In the mean field description one obtains the Hartree–Fock–Bogoliubov (HFB)
Hamiltonian

HHFB =

∫
dr

[ ∑
α

ψ†
α (r) Heψα (r)+1(r, t) ψ†

↑
(r) ψ†

↓
(r)+1∗ (r, t) ψ↓ (r) ψ↑ (r)

]
(2)

with the order parameter 1(r, t)= g
〈
ψ↑ (r) ψ↓ (r)

〉
.

This Hamiltonian can be diagonalized with the help of the canonical Bogoliubov
transformation, which expresses the electron field operators in terms of new Fermi operators
γp↑↓, γ †

p↑↓

ψ↑ (r, t) =

∑
p

γp↑(t)u p (r)− γ
†
p↓
(t)v∗

p (r) ,

(3)
ψ↓ (r, t) =

∑
p

γp↓(t)u p (r)+ γ †
p↑
(t)v∗

p (r) .

The amplitudes u p (r), vp (r) satisfy at the initial (equilibrium) time the BdG equations(
He 1(0) (r)

1(0)∗ (r) −H ∗

e

) (
u p (r)
vp (r)

)
= E p

(
u p (r)
vp (r)

)
. (4)
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As long as the current value of 1(r) is equal to its initial value 1(0)(r) (i.e. strictly speaking
only in the ground state), the mean-field Hamiltonian is reduced to the diagonal form

HHFB = Eg +
∑
p,σ

E pγ
†
p,σγp,σ , (5)

where the constant Eg is the ground state energy of the superconductor and E p can be
understood as the excitation energy of one bogolon.

In this work we make use of Anderson’s approximate solution to the BdG equation, i.e.
we assume that u p (r)= u pϕp (r), vp (r)= vpϕp (r), where ϕp (r) are the single-electron wave
functions with energy ξp. In this approximation the equilibrium state of the superconductor is

characterized by the relations u2
p − v2

p = ξp/E p and 2u pvp =1(0)
p,p/E p, where E p =

√
ξ 2

p +1(0)2
p,p

and 1(0)
p,q =

∫
drϕ∗

p(r)1
(0)(r)ϕq(r).

A detailed discussion of the range of validity of the Anderson approximation in equilibrium
can be found in [53], and we will here only argue that it can be extended to the non-
equilibrium calculations. The approximation implies that the relation 1p,q(t)'1p (t) δp,q

needs to be fulfilled approximately, which becomes exact when the order parameter is spatially
homogeneous. Therefore, if it is valid in equilibrium, it should also hold in the driven system
provided that the external field does not introduce inhomogeneities that significantly modify
those already present due to the confinement. We shall assume in the following that the
spatial variation of the external field is sufficiently weak in order to justify the approximation
1p,q(t)=1p(t)δp,q for all times.

Laser driving influences the order parameter and therefore the actual Hamiltonian will in
general not be diagonal in the initial bogolon basis. If the order parameter 1(r, t) is not equal
to the initial value 1(0)(r), the Hamiltonian is given by

HHFB =

∑
p,σ

Rpγ
†
p,σγp,σ +

∑
p

[
C pγp↑γp↓ + C∗

pγ
†
p↓
γ

†
p↑

]
, (6)

where we have used the Anderson approximation and omitted the constant term. An index with
a bar indicates a time-reversed state, i.e. 〈r|p〉 = 〈p|r〉. Rp and C p depend on the current value
of the order parameter and are defined as

Rp =
ξ 2

p +1(0)
p Re

[
1p (t)

]
E p

, (7)

C p =
ξp

E p

{
Re

[
1p (t)

]
−1(0)

p

}
+ i Im

[
1p (t)

]
. (8)

The order parameter itself is given in the bogolon basis by

1p = g
∑
q,kq

Vq,p

{
u2

q

〈
γq↑γq↓

〉
− v∗2

q

〈
γ

†
q↓
γ

†
q↑

〉
− uqv

∗

q

[〈
γ

†
q↑
γq↑

〉
+

〈
γ

†
q↓
γq↓

〉]
+ uqv

∗

q

}
(9)

with the interaction matrix element

Vq,p =

∫
dr |ϕq(r)|2 |ϕp(r)|2. (10)

New Journal of Physics 15 (2013) 055016 (http://www.njp.org/)

http://www.njp.org/


6

2.2. Coupling to the external THz laser field

The Hamiltonian HHFB describes a superconductor without external perturbations. In order to
model the driving by a THz laser we have to add the coupling to an external electromagnetic
field. The latter shall be represented by a vector potential A (r, t), where we adopt the Coulomb
gauge ∇A (r, t)= 0. We consider a single Gaussian pulse with full-width at half-maximum
(FWHM) of 2

√
ln 2τ such that the corresponding vector potential reads

A (r, t)= A0e−( t
τ )

2[
ei(Qz−ωt) + e−i(Qz−ωt)

]
, (11)

where ω is the central frequency of the pulse and Q = ω/c the wave vector. Here, we have
neglected the finite spread of wave vectors that is necessarily present in a pulse of finite width.
In the case of the quantum wire we assume for simplicity that the laser field propagates along
the wire, i.e. in z-direction. The amplitude A0 is perpendicular to the propagation direction.

The Hamiltonian for the interaction with the electromagnetic field can be written as

HEM =
e

me

∫
dr A (r, t) ·

∑
α

ψ†
α (r) p ψα (r)+

∫
dr

∑
α

ψ†
α (r)

{
e2A2 (r, t)

2me

}
ψα (r) . (12)

Substituting the Bogoliubov transformation equation (3) we can write HEM = HA + HAA, where

HA =
h̄e

ime

∫
dr A (r, t) ·

( ∑
p,q

{ [
u∗

p(r)∇uq(r)− vq(r)∇v∗

p(r)
]
γ

†
p↑
γq↑

+
[
u∗

p(r)∇v
∗

q(r)+ u∗

q(r)∇v
∗

p(r)
]
γ

†
p↓
γ

†
q↑

+
[
vp(r)∇uq(r)+ vq(r)∇u p(r)

]
γp↑γq↓

+
[
u∗

p(r)∇uq(r)− vq(r)∇v∗

p(r)
]
γ

†
p↓
γq↓

}
+ 2

∑
p

vp(r)∇v∗

p(r)
)
, (13)

HAA =
e2

2me

∫
dr A2 (r, t)

( ∑
p,q

{ [
u∗

p (r) uq (r)− vq (r) v∗

p (r)
]
γ

†
p↑
γq↑

+
[
u∗

p (r) v
∗

q (r)+ u∗

q (r) v
∗

p (r)
]
γ

†
p↓
γ

†
q↑

+
[
vp (r) uq (r)+ vq (r) u p (r)

]
γp↑γq↓

+
[
u∗

p (r) uq (r)− vq (r) v∗

p (r)
]
γ

†
p↓
γq↓

}
+ 2

∑
p

∣∣vp (r)
∣∣2

)
. (14)

Altogether, the full Hamiltonian of our model is then given by

H = HHFB + HA + HAA. (15)

2.3. Equations of motion

The goal of the present paper is the analysis of the pairing dynamics of a superconductor
as manifested in the time evolution of the order parameter 1(r, t), or, equivalently, 1p(t).
According to equation (9), its dynamics are determined by the four expectations values
(correlators) 〈γp↑(t)γq↓(t)〉, 〈γ

†
q↑
(t)γp↑(t)〉, 〈γ

†
p↓
(t)γq↓(t)〉 and 〈γ

†
p↓
(t) γ †

q↑
(t)〉.

The equations of motion for these dynamical variables are set up via the Heisenberg
equation. For the special case of a quantum wire, the quantum number p = ( j,m, k) consists
of the radial quantum number j , orbital angular momentum number m and the continuous
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Figure 1. Time dependence of the order parameter under excitation with pump
pulses of two different pulse widths. The dotted lines are a fit of the 1/

√
t decay

to the solid line.

wave vector k for the free motion along the wire. The numerically necessitated cut-off is
performed similarly to the bulk case [32]. Dynamical variables whose pair of indices ( j,m, k)
and ( j ′,m ′, k ′) are too far apart (| j − j ′

|> n j , etc) are neglected. We chose n j = 0, nm = 2
and nk = 4Q, where Q is the photon wave vector. Because only states with j = 0 lie within the
Debye window of the thin wire under consideration, setting n j to zero only excludes correlations
between states of which at least one lies outside of the Debye window.

We assume that before the arrival of the laser pulse the system is in its ground state,
which in our case is the quasiparticle vacuum. This means that all four correlators are zero
and the dynamics starts with 1p =1(0)

p . With these initial values the subsequent dynamics is
then determined by numerically solving our equations of motion.

Most of the results presented in the following sections have been obtained by using
material parameters for Pb. Calculations using material parameters for Al [34] as well as
for Sn (see section 4) show that the general dynamical behaviour does not qualitatively
depend on the choice of material parameters. Pb parameters lead to a considerably smaller
number of states in the Debye window than, e.g. Sn parameters, which considerably shortens
the very time-consuming numerical calculations in particular in the case of laser excitation.
Therefore, despite the known deficiencies of the mean-field theory in quantitatively reproducing
the static properties of Pb, we have chosen Pb parameters as a representative example for
the laser driven dynamics predicted on the mean-field level. Comparisons in section 4 with
a few simulations that we have carried out with Sn parameters confirm that within the
mean-field theory the qualitative aspects of the dynamics are insensitive to the choice of
parameters.

3. Results: bulk system

3.1. Adiabatic and non-adiabatic regime

The energy gap of superconducting lead at zero temperature is 210 = 2.7 meV. Starting from
this equilibrium value, figure 1 shows how laser pulses with two different pulse widths influence
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the order parameter 1(t). Both pulses have the same time-integrated intensity and a photon
energy of h̄ω = 2.96 meV slightly above the gap. The pulses can therefore create quasiparticles,
which leads to a reduction of the modulus of the order parameter or, equivalently, of the energy
gap. While |1| is constant after the longer pulse with FWHM 10 ps, a fast oscillation occurs
after excitation by the shorter pulse with FWHM 1 ps. The oscillation decays proportional to
1/

√
t as is demonstrated by the dotted lines. This result is general within the BCS formalism

and does not depend on the material [34]. In the quasiparticle picture the behaviour of the
order parameter can be understood as follows: both pulses excite quasiparticle occupations
〈γ †γ 〉 and coherences 〈γ γ 〉, which lowers the value of the order parameter. In the case of
the longer pulse, the generation of the quasiparticles occurs adiabatically; when the pulse has
subsided, the coherences vanish in the basis that belongs to the instantaneous value of 1(t),
and a stationary state is reached. The shorter pulse, on the other hand, affects the system
so fast that it can no longer adiabatically follow and coherences remain after the pulse. The
result is a non-stationary state far from equilibrium which exhibits oscillations of the order
parameter.

The time dependence of the oscillation closely follows the equation

|1(t)| =1∞ + a
cos (21∞t/h̄ +φ)

√
t − t0

(16)

which has been derived in [30] for a BCS system without external driving for a certain set
of non-equilibrium initial states. 1∞ is the long-time value of |1| to which the oscillation
eventually decays and a defines the amplitude of the oscillation. The parameters φ and t0 allow
for a shift of the phase of the oscillation and of the origin of the time scale. Obviously the
oscillation frequency is connected to the mean value. This leads to the interesting consequence
that the oscillation cannot be observed in probe spectra due to the trade-off between temporal
resolution and energy resolution. In order to energetically resolve the energy gap, a time
interval larger than h̄/1∞ would be required, but during this interval the oscillation averages
out [32]. Further simulations suggest that the oscillation should become observable in a two-
pulse experiment [33].

3.2. Influence of pulse intensity and pulse width

We have seen that a sufficiently short THz pulse can put a superconductor into the non-adiabatic
regime where the order parameter oscillates. We will now analyse how width and intensity of
the pulse influence the amplitude of this oscillation.

Figure 2(a) shows the influence of the time-integrated intensity on the oscillation for
three different pulse widths. I0 denotes the same intensity as has been applied in figure 1.
The amplitude a (shown in the main part) and the long-time value 21∞ (shown in the inset)
have been obtained by fitting equation (16) to the numerically calculated data |1(t)| for times
after the pump pulse. The amplitude of the oscillation rises monotonically with increasing
intensity. The increase is almost linear for the shortest pulse, whereas for the longer pulses
it starts with a slope close to zero which increases at higher intensities. This is due to the fact
that the shortest pulse is shorter than the oscillation period of |1(t)|, which is about 1.5 ps.
Therefore this pulse always initiates non-adiabatic dynamics. The other pulses are longer than
the oscillation period and do not create oscillations in the linear regime. Interestingly, we find,
however, that by increasing the intensity we can again excite an oscillation, even though the
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Figure 2. Amplitude of the |1|-oscillation (a) versus integrated pulse intensity
for several pulse widths and (b) versus pulse width for two different intensities.
The insets show the mean value around which the oscillation takes place; the
dotted line indicates the equilibrium value of 1 at zero temperature.

regime of ultrafast excitation with pulses shorter than the typical time scale of the coherent
evolution of the superconductor has not been reached. At these higher intensities we have indeed
entered the regime of nonlinear driving, as can also be seen in the intensity dependence of the
long-time value shown in the inset. For the longer pulses, the curves start linearly and then
flatten at higher intensities. This is due to Pauli blocking and consequently is more pronounced
for longer pulses. The flattening occurs in the same intensity range where the oscillations start
to appear. For the shortest pulse, the intensity dependence of the long-time value has a quadratic
component visible at small intensities. This is because for short pulses the peak intensity is
higher and the lowering of the gap does no longer depend linearly on the intensity but gains a
quadratic component. The curve for the amplitude in the case of the shortest pulse shows a kink
at high intensities. At this point, as can be seen in the inset, |1| is substantially decreased to a
very low value and equation (16) no longer fits the numerical results very well.

The influence of the pulse width is detailed in figure 2(b) for two values of the time-
integrated intensity I . The main part again shows the amplitude a and the inset the long-time
value of the gap, 21∞. For both intensities we see that the amplitude of the oscillation tends
to zero for long pulse widths and rises steeply with decreasing widths below a value of about
1.5 ps, which roughly coincides with the oscillation period of the order parameter. This is in
agreement with our previous findings that pulses shorter than the oscillation period always
lead to non-adiabatic dynamics. While the curve for the lower intensity exhibits a monotonic
decrease with increasing pulse width, a flattening in the curve for I = 2I0 can be seen around
2 ps and the amplitude vanishes only for considerably longer pulses. This means that pulses
with a sufficiently high intensity may initiate a non-adiabatic behaviour even if their width is
longer than the oscillation period. The mean value plotted in the inset also shows a change of
the behaviour around 2 ps. The reason is that for pulses shorter than this value an increasing
part of the spectrum falls into the energy gap leading to a reduced generation of quasiparticles
and thus to a reduced shrinkage of the gap. For very short pulse widths the mean value1∞ falls
again. As already discussed, this is because of the very high peak intensity of the short pulses
and the resulting importance of quadratic contributions.
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4. Results: nanowire

As was shown in [54], the superconducting gap in ultrathin slabs and wires exhibits thickness-
dependent oscillations accompanied by pronounced resonant enhancements (see section 4.2).
The physics behind such oscillations can be outlined as follows. Due to the transverse
quantization of the electron motion, the conduction band in nanowires and nanofilms splits up
into a series of subbands, and superconductivity is supported by a set of quantum channels. Such
single-electron subbands move in energy while changing the nanowire/nanofilm thickness.
When the bottom of a subband passes through the Fermi surface, we have an abrupt increase
in the density of single-electron states at the Fermi level and, in turn, an enhancement of the
superconducting correlations, resulting in an enlargement of the order parameter and other basic
superconducting characteristics. This results in quantum-size oscillations of superconducting
properties with thickness. It is of high interest to investigate the influence of such resonance
effects on the dynamics of the pairing correlations.

4.1. Laser induced perturbations

We will first consider a very thin lead cylindrical nanowire with D = 1.18 nm. For the
calculations presented here, we have used the following set of parameters which is typical
for Pb: gN (0)= 0.39 (N (0) is the bulk energy density of states for one spin projection at
the Fermi surface), and Debye temperature TD = h̄ωD/kB = 96 K. Here only subbands with
j = 0, m = 0,±1 have states within the Debye window. The gap equilibrium values are
1 j=0,m=0 = 1.521 meV and10,±1 = 1.464 meV. The laser energy is set to h̄ω = 3.0 meV, which
lies between the subband gaps 2101 and 2100. Because the k-discretization is chosen to match
the photon wave vector, the periodic boundary conditions correspond to a wire with length
L = 412µm.

Figure 3 shows the dynamics of |100(t)| and |101 (t)| after excitation with a very short THz
pulse with FWHM 0.4 ps. The pulse lowers the subband gaps and excites a decaying oscillation
very similar to the one we have seen in the bulk case. This is the non-adiabatic regime in a
confined superconductor. Just like in the bulk case, long pulses also lower the gap, but after that
1p is constant (not shown).

For comparison, figure 3 also shows the dynamics induced by an instantaneous change
of the coupling constant g from its initial values gi to a value gf. This kind of excitation is
computationally much easier to simulate, because the field-dependent terms are responsible for
the bulk of the computing time. We obtain a behaviour that is close to the case of field-driven
excitation. This will allow us to explore the non-adiabatic regime in confined superconductors
in more detail.

For fermionic alkali gases, which are also described by the BCS model, this method of
excitation is experimentally accessible [55–57]. Of course, an instantaneous change of g is not
feasible in an experiment with a conventional superconductor. Our simulations presented in
figure 3 nevertheless reveal that it can serve as a reliable approximation to the non-equilibrium
state that a THz pulse in the non-adiabatic regime induces in the system. This can be rationalized
by recalling that a major effect of the excitation is the generation of quasiparticles which in turn
leads to an effective reduction of the coupling g. When the system state right after the pulse
is described to a good approximation by calculating the effect of a sudden change of g then
also the subsequent dynamics should be the same because after the pulse has vanished the
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Figure 3. Time evolution of the subband order parameters |100| (left panel) and
|101| (right panel) after a short THz pulse (3.0 meV, FWHM 0.4 ps) and after a
sudden change of the coupling strength (initial value problem, IVP).

system performs a free undriven dynamics as in the model based on the sudden switching. This
expectation is indeed confirmed by the results shown in figure 3.

4.2. Quench dynamics

The change in g means that what has formerly been the ground state of the system now becomes
an excited state, and because this change happens instantaneously, the non-adiabatic regime
with its oscillating order parameter is reached. The influence of the perturbation strength on the
dynamics of the spatially averaged order parameter 1(t) is shown in figure 4. Here we have
introduced the spatially averaged order parameter as

1(t)=
2

R2

∫ R

0
dρ ρ 1 (ρ, t) . (17)

1(t) behaves very similarly to its subband-dependent parts.
One can see that a stronger perturbation, characterized in this particular case by the ratio

between the final and the initial value of the coupling strength, gf/gi, results (i) in a smaller
stationary value of the order parameter for long times, and (ii) in a reduction of the frequency
of the order parameter oscillations. Moreover, after a certain threshold value of the perturbation
strength the superconducting correlations are completely destroyed and the dynamics becomes
overdamped. This is in accordance with the results of [31]. A more detailed analysis of the
influence of the quantum confinement on the threshold value of the pairing strength change will
be given elsewhere.

As mentioned before, the exact thickness of the quantum wire has a profound impact
on the equilibrium properties; as an example, figure 5 shows the spatial average of the order
parameter as a function of the diameter for Pb (left panel) and Sn (right panel) quantum wires.
The confinement is also reflected in the dynamical behaviour, as can be seen in figure 6, which
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Figure 4. The time evolution of the spatially averaged order parameter1(t) after
a sudden perturbation with different strengths, characterized by a different ratio
between final and initial value of the coupling strength. gi is kept fixed to the
value for lead.

Figure 5. The spatially averaged equilibrium value of the order parameter for
different sizes of the wire: Pb (left panel), Sn (right panel).

displays the time evolution of the spatially averaged order parameter 1̄ for Pb nanowires (left
panel) of two different diameters, D = 6.810 and 6.556 nm and for Sn nanowires (right panel)
with D = 5.18 and 5.33 nm (at T = 0). These diameters correspond to a thickness far away
from the resonance and a resonant wire thickness, as shown in figure 5. One can see that Landau
damped oscillations of the order parameter occur with different frequencies and with different
asymptotic values 1∞. In the non-resonant cases of D = 6.810 nm (Pb) and D = 5.33 nm
(Sn), at large t the oscillation decays approximately as t−1/2, which is the same as in bulk
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Figure 6. The time dependence of the spatially averaged order parameter
for Pb (left panel): off-resonant (D = 6.810 nm) and resonant (D = 6.556 nm)
thicknesses and for Sn (right panel): off-resonant (D = 5.33 nm) and resonant
(D = 5.184 nm) thicknesses.

(cf equation (16)) [30]. However, in the resonant cases of D = 6.556 nm (Pb) and D = 5.184 nm
(Sn) the oscillation decays much faster, with approximately t−3/4. The decay exponent therefore
strongly depends on the resonance conditions. For wires with a resonant thickness, when the
resonant subband gives the largest (main) contribution to the superconducting properties, the
decay exponent is found to be close to the value α = 3/4; in the opposite case α = 1/2 is
obtained, which coincides with the value found analytically for bulk samples. While making
a wire thicker the contribution of the resonant subband becomes less and less important, and
the evolution of the pairing condensate exhibits damped oscillations with a power exponent
approaching from above its bulk value. In the opposite case of extremely narrow nanowires,
when there are only few, but more than one, subbands in the Debye window, and the contribution
of the resonant subbands to the superconducting characteristics is dominant, the damping is not
a simple power law ∼t−α anymore. Instead the damping is irregular and oscillations can exhibit
beating pattern, for example. Nevertheless, even in such cases we can say that the damping of
the oscillation occurs faster for resonant wire thicknesses than that for off-resonant thicknesses.

4.3. Quantization effects in a finite-length quantum wire

So far we have considered wires with large lengths. We will now show that the energy
quantization introduced by a finite length of the quantum wire also changes the coherent non-
adiabatic dynamics. Figure 7 illustrates the dynamics of the spatially averaged order parameter
after a sudden change of the coupling constant with gf/gi = 0.978 for two different lengths
of the quantum wire (in this case, parameters for tin have been used). When comparing these
plots with those for long wire lengths one can see several differences and similarities. First the
time evolution for short wires can be separated into two regions. The evolution during earlier
times is characterized by only one main frequency of oscillation like in the case of long wires.
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Figure 7. Time dependence of the spatially averaged order parameter for
D = 5.900 nm and two wire lengths. The calculations were performed for the
set of parameters typical for Sn: gN (0)= 0.25, and Debye temperature TD =

h̄ωD/kB = 195 K.

The evolution for large times reveals significant differences to the earlier evolution. After
a period of decreasing oscillations the evolution starts to exhibit an irregular behaviour of
undamped oscillations with many frequencies. Figure 7 shows that the transition time tc

increases with increasing L . Up to approximately 18 ps (the tc of the shorter wire) both curves
are almost identical, after that the oscillation in the shorter wire becomes irregular. At about
50 ps similar irregularities occur for the longer wire. Since the length is related to the k-
discretization via 1k =

2π
L , one can expect that the finite discretization is responsible for the

effect. In the bulk case the oscillatory behaviour of the pairing correlations is due to the
superposition of many continuous band frequencies [30], which cannot come into phase again
in finite time. It is understandable that even with such large L the discreteness of the k-values
becomes important: the Debye window is very narrow so that even with relatively closely spaced
energy states corresponding to rather long wires, there are not many relevant states within the
Debye window.

The transition time tc between these two regimes of evolution can be estimated as follows.
The evolution obviously consists of a sum of oscillating terms, each term oscillating at a
particular frequency 2Rp. If two neighbouring terms in the sum are oscillating π out of
phase with each other we can expect at least an approximate cancellation of these terms.
The transition time should be determined by the energy difference between two neighbouring
Rp. If two oscillating terms with frequency difference 1E/h̄ are in phase at the beginning,
they are out of phase after the time tc =

π h̄
1E . The energy difference 1E = R jmk − R j,m,k−1k

of two neighbouring terms depends on the subband indices j,m as well as the k-value. 1E
is determined by the wire length L , which governs two neighbouring k-values. Since tc is the
earliest time, at which one can observe deviations from the single frequency at the beginning,
one must find the indices ( j,m, k), for which 1E is maximal. The subband with the largest
energy difference of terms ξ jmk − ξ j,m,k−1k is in the lowest one with j = m = 0. Within this
subband, the energies for k and k −1k discretized mesh points have the largest difference at the
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upper border of the Debye window. If the subband gaps1 jm for all subbands are approximately
the same, the same conclusion is true for the R jmk , i.e. 1E is maximal at j = m = 0 and the
largest k for which ξ0,0,k is still within the Debye window, denoted as kmax. In general, the E jmk

and time averaged R jmk are different. For the off-resonant thicknesses (if 1 jm(t) and 1(0)
jm are

not too different from each other) we can write E jmk − E j,m,k−1k ∼ R jmk − R j,m,k−1k . Thus

tc =
π h̄

1E
=

π h̄

R0,0,kmax − R0,0,kmax−1k
≈

π h̄

E0,0,kmax − E0,0,kmax−1k
. (18)

This estimate gives tc ≈ 11 ps for the shorter wire and tc ≈ 43 ps for the longer wire, which
approximately matches the values observed in the numerical calculations.

5. Conclusions

In this work we have discussed the non-adiabatic dynamics induced by ultrashort THz
pulses in bulk and in nanowire superconductors, calculated within in the mean-field BCS
(Bogoliubov–Hartree–Fock) approach. The bulk simulations show that the non-adiabatic regime
is generally reached when the THz pulse is shorter than the oscillation period h/(21)
corresponding to the order parameter 1; but nonlinear processes induced by a higher-intensity
pulse can allow the pulse length to be increased to more than twice that value. A very similar
non-adiabatic behaviour is found in quantum wires excited by a short THz pulse or by a sudden
change of the coupling constant. The main difference to the bulk case lies in the exponent of the
power law that governs the decay of the non-adiabatic oscillation: the oscillation decays faster
when the size of the quantum wire is at a resonant point, i.e. when a bottom of a subband falls
into the Debye window, in the vicinity of the Fermi surface, and thereby supplies a much larger
number of electronic states. The power law changes from t−1/2 in the bulk and non-resonant
case to t−3/4 in the resonant case. For a finite-length quantum wire, the decay of the oscillation
is perturbed after a time determined by the length of the wire. Due to the smallness of the Debye
window, this effect occurs for relatively large lengths of several tens of micrometres.
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