140 research outputs found

    Embryonic Tbx3+ cardiomyocytes form the mature cardiac conduction system by progressive fate restriction

    Get PDF
    A small network of spontaneously active Tbx3+ cardiomyocytes forms the cardiac conduction system (CCS) of the heart. Understanding the origin and mechanism of development of the CCS network are important steps towards disease modeling and biological pacemaker development to treat arrhythmias. We found that Tbx3 expression already in the embryo associated with automaticity. Genetic inducible fate mapping revealed that Tbx3+ cells in the early heart tube are fated to form the definitive CCS components, except the Purkinje fiber network. At mid-fetal stages contribution of Tbx3+ cells was restricted to the definitive CCS. We identified a Tbx3+ population in the outflow tract of the early heart tube that formed the atrioventricular bundle. While Tbx3+ cardiomyocytes also contributed to the adjacent Gja5+ atrial and ventricular chamber myocardium, embryonic Gja5+ chamber cardiomyocytes did not contribute to the Tbx3+ sinus node or atrioventricular ring bundles. In conclusion, the CCS is established by progressive fate-restriction of a Tbx3+ cell population in the early developing heart, and implicates Tbx3 as a useful tool to develop strategies to study and treat CCS diseases

    Higher spatial resolution improves the interpretation of the extent of ventricular trabeculation.

    Get PDF
    The ventricular walls of the human heart comprise an outer compact layer and an inner trabecular layer. In the context of an increased pre-test probability, diagnosis left ventricular noncompaction cardiomyopathy is given when the left ventricle is excessively trabeculated in volume (trabecular vol >25% of total LV wall volume) or thickness (trabecular/compact (T/C) >2.3). Here, we investigated whether higher spatial resolution affects the detection of trabeculation and thus the assessment of normal and excessively trabeculated wall morphology. First, we screened left ventricles in 1112 post-natal autopsy hearts. We identified five excessively trabeculated hearts and this low prevalence of excessive trabeculation is in agreement with pathology reports but contrasts the prevalence of approximately 10% of the population found by in vivo non-invasive imaging. Using macroscopy, histology and low- and high-resolution MRI, the five excessively trabeculated hearts were compared with six normal hearts and seven abnormally trabeculated and excessive trabeculation-negative hearts. Some abnormally trabeculated hearts could be considered excessively trabeculated macroscopically because of a trabecular outflow or an excessive number of trabeculations, but they were excessive trabeculation-negative when assessed with MRI-based measurements (T/C <2.3 and vol <25%). The number of detected trabeculations and T/C ratio were positively correlated with higher spatial resolution. Using measurements on high resolution MRI and with histological validation, we could not replicate the correlation between trabeculations of the left and right ventricle that has been previously reported. In conclusion, higher spatial resolution may affect the sensitivity of diagnostic measurements and in addition could allow for novel measurements such as counting of trabeculations

    Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation

    Get PDF
    A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development

    Concepts of Cardiac Development in Retrospect

    Get PDF
    Recent research, enabled by powerful molecular techniques, has revolutionized our concepts of cardiac development. It was firmly established that the early heart tube gives rise to the left ventricle only, and that the remainder of the myocardium is recruited from surrounding mesoderm during subsequent development. Also, the cardiac chambers were shown not to be derived from the entire looping heart tube, but only from the myocardium at its outer curvatures. Intriguingly, many years ago, classic experimental embryological studies reached very similar conclusions. However, with the current scientific emphasis on molecular mechanisms, old morphological insights became underexposed. Since cardiac development occurs in an architecturally complex and dynamic fashion, molecular insights can only fully be exploited when placed in a proper morphological context. In this communication we present excerpts of important embryological studies of the pioneers of experimental cardiac embryology of the previous century, to relate insights from the past to current observations

    Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43

    Get PDF
    Tbx3, a T-box transcription factor, regulates key steps in development of the heart and other organ systems. Here, we identify Sox4 as an interacting partner of Tbx3. Pull-down and nuclear retention assays verify this interaction and in situ hybridization reveals Tbx3 and Sox4 to co-localize extensively in the embryo including the atrioventricular and outflow tract cushion mesenchyme and a small area of interventricular myocardium. Tbx3, SOX4, and SOX2 ChIP data, identify a region in intron 1 of Gja1 bound by all tree proteins and subsequent ChIP experiments verify that this sequence is bound, in vivo, in the developing heart. In a luciferase reporter assay, this element displays a synergistic antagonistic response to co-transfection of Tbx3 and Sox4 and in vivo, in zebrafish, drives expression of a reporter in the heart, confirming its function as a cardiac enhancer. Mechanistically, we postulate that Sox4 is a mediator of Tbx3 transcriptional activity

    Deletion of Exon 20 of the Familial Dysautonomia Gene Ikbkap in Mice Causes Developmental Delay, Cardiovascular Defects, and Early Embryonic Lethality

    Get PDF
    Familial Dysautonomia (FD) is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP - the protein encoded by Ikbkap - remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function

    Transcriptional Regulation of N-Acetylglutamate Synthase

    Get PDF
    The urea cycle converts toxic ammonia to urea within the liver of mammals. At least 6 enzymes are required for ureagenesis, which correlates with dietary protein intake. The transcription of urea cycle genes is, at least in part, regulated by glucocorticoid and glucagon hormone signaling pathways. N-acetylglutamate synthase (NAGS) produces a unique cofactor, N-acetylglutamate (NAG), that is essential for the catalytic function of the first and rate-limiting enzyme of ureagenesis, carbamyl phosphate synthetase 1 (CPS1). However, despite the important role of NAGS in ammonia removal, little is known about the mechanisms of its regulation. We identified two regions of high conservation upstream of the translation start of the NAGS gene. Reporter assays confirmed that these regions represent promoter and enhancer and that the enhancer is tissue specific. Within the promoter, we identified multiple transcription start sites that differed between liver and small intestine. Several transcription factor binding motifs were conserved within the promoter and enhancer regions while a TATA-box motif was absent. DNA-protein pull-down assays and chromatin immunoprecipitation confirmed binding of Sp1 and CREB, but not C/EBP in the promoter and HNF-1 and NF-Y, but not SMAD3 or AP-2 in the enhancer. The functional importance of these motifs was demonstrated by decreased transcription of reporter constructs following mutagenesis of each motif. The presented data strongly suggest that Sp1, CREB, HNF-1, and NF-Y, that are known to be responsive to hormones and diet, regulate NAGS transcription. This provides molecular mechanism of regulation of ureagenesis in response to hormonal and dietary changes

    Development of the Pulmonary Vein and the Systemic Venous Sinus: An Interactive 3D Overview

    Get PDF
    Knowledge of the normal formation of the heart is crucial for the understanding of cardiac pathologies and congenital malformations. The understanding of early cardiac development, however, is complicated because it is inseparably associated with other developmental processes such as embryonic folding, formation of the coelomic cavity, and vascular development. Because of this, it is necessary to integrate morphological and experimental analyses. Morphological insights, however, are limited by the difficulty in communication of complex 3D-processes. Most controversies, in consequence, result from differences in interpretation, rather than observation. An example of such a continuing debate is the development of the pulmonary vein and the systemic venous sinus, or “sinus venosus”. To facilitate understanding, we present a 3D study of the developing venous pole in the chicken embryo, showing our results in a novel interactive fashion, which permits the reader to form an independent opinion. We clarify how the pulmonary vein separates from a greater vascular plexus within the splanchnic mesoderm. The systemic venous sinus, in contrast, develops at the junction between the splanchnic and somatic mesoderm. We discuss our model with respect to normal formation of the heart, congenital cardiac malformations, and the phylogeny of the venous tributaries

    Mab21l2 Is Essential for Embryonic Heart and Liver Development

    Get PDF
    During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which α4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation

    Targeted Inactivation of Cerberus Like-2 Leads to Left Ventricular Cardiac Hyperplasia and Systolic Dysfunction in the Mouse

    Get PDF
    Previous analysis of the Cerberus like 2 knockout (Cerl2(-/-)) mouse revealed a significant mortality during the first day after birth, mostly due to cardiac defects apparently associated with randomization of the left-right axis. We have however, identified Cerl2-associated cardiac defects, particularly a large increase in the left ventricular myocardial wall in neonates that cannot be explained by laterality abnormalities. Therefore, in order to access the endogenous role of Cerl2 in cardiogenesis, we analyzed the embryonic and neonatal hearts of Cerl2 null mutants that did not display a laterality phenotype. Neonatal mutants obtained from the compound mouse line Cer2(-/-)Fundacao para a Ciencia e Tecnologia (FCT); IBB/CBME [PEst-OE/EQB/LA0023/2011]; FCT [SFRH/BD/62081/2009]info:eu-repo/semantics/publishedVersio
    corecore