1,098 research outputs found

    Can we monitor heart attack in the troponin era: evidence from a population-based cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Troponins (highly sensitive biomarkers of myocardial damage) increase counts of myocardial infarction (MI) in clinical practice, but their impact on trends in admission rates for MI in National statistics is uncertain.</p> <p>Methods</p> <p>Cases coded as MI or other cardiac diagnoses in the Hospital Morbidity Data Collection (MI-HMDC) in Western Australia in 1998 and 2003 were classified using revised criteria for MI developed by an International panel convened by the American Heart Association (AHA criteria) using information on symptoms, ECGs and cardiac biomarkers abstracted from samples of medical notes. Age-sex standardized rates of MI-HMDC were compared with rates of MI based on AHA criteria including troponins (MI-AHA) or traditional biomarkers only (MI-AHAck).</p> <p>Results</p> <p>Between 1998 and 2003, rates of MI-HMDC decreased by 3.5% whereas rates of MI-AHA increased by 17%, a difference largely due to increased false-negative cases in the HMDC associated with marked increased use of troponin tests in cardiac admissions generally, and progressively lower test thresholds. In contrast, rates of MI-AHA<sub>ck </sub>declined by 18%.</p> <p>Conclusions</p> <p>Increasing misclassification of MI-AHA by the HMDC may be due to reluctance by clinicians to diagnose MI based on relatively small increases in troponin levels. These influences are likely to continue. Monitoring MI using AHA criteria will require calibration of commercially available troponin tests and agreement on lower diagnostic thresholds for epidemiological studies. Declining rates of MI-AHA<sub>ck </sub>are consistent with long-standing trends in MI in Western Australia, suggesting that neither MI-HMDC nor MI-AHA reflect the true underlying population trends in MI.</p

    Population assessment of future trajectories in coronary heart disease mortality.

    Get PDF
    Background: Coronary heart disease (CHD) mortality rates have been decreasing in Iceland since the 1980s, largely reflecting improvements in cardiovascular risk factors. The purpose of this study was to predict future CHD mortality in Iceland based on potential risk factor trends. Methods and findings: The previously validated IMPACT model was used to predict changes in CHD mortality between 2010 and 2040 among the projected population of Iceland aged 25–74. Calculations were based on combining: i) data on population numbers and projections (Statistics Iceland), ii) population risk factor levels and projections (Refine Reykjavik study), and iii) effectiveness of specific risk factor reductions (published meta-analyses). Projections for three contrasting scenarios were compared: 1) If the historical risk factor trends of past 30 years were to continue, the declining death rates of past decades would level off, reflecting population ageing. 2) If recent trends in risk factors (past 5 years) continue, this would result in a death rate increasing from 49 to 70 per 100,000. This would reflect a recent plateau in previously falling cholesterol levels and recent rapid increases in obesity and diabetes prevalence. 3) Assuming that in 2040 the entire population enjoys optimal risk factor levels observed in low risk cohorts, this would prevent almost all premature CHD deaths before 2040. Conclusions: The potential increase in CHD deaths with recent trends in risk factor levels is alarming both for Iceland and probably for comparable Western populations. However, our results show considerable room for reducing CHD mortality. Achieving the best case scenario could eradicate premature CHD deaths by 2040. Public health policy interventions based on these predictions may provide a cost effective means of reducing CHD mortality in the future

    Are Trp53 rescue of Brca1 embryonic lethality and Trp53/Brca1 breast cancer association related?

    Get PDF
    Brca1 is involved in multiple biological pathways including DNA damage repair, transcriptional regulation, and cell-cycle progression. A complex pattern of interactions of Brca1 with Trp53 has also emerged. Xu and coworkers found that haploid loss of Trp53 significantly reduces the embryonic lethality observed in mice with a homozygous in-frame deletion of Brca1 exon 11. They report that widespread apoptosis correlates with the embryonic lethality resulting from this homozygous Δ11 Brca1 mutation. A mechanism responsible for Brca1-associated carcinogenesis is proposed. These experiments extend our knowledge of a complex Brca1/Trp53 relationship. However, the precise mechanisms through which Brca1 interacts with Trp53 to suppress mammary tumor formation have yet to be elucidated

    Are coronary event rates declining slower in women than in men – evidence from two population-based myocardial infarction registers in Finland?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have suggested that the prevention and treatment of coronary heart disease may not have been as effective in women as in men. Therefore, we aimed to examine whether the incidence, attack rate and mortality of myocardial infarction (MI) events have declined less in women than in men.</p> <p>Methods</p> <p>Two large population-based MI registers, the FINAMI register and the Finnish Cardiovascular Disease Register (CVDR) were used for comparing the event rates among men and women aged ≄35 years in two time periods, 1994–1996 and 2000–2002.</p> <p>Results</p> <p>In the FINAMI register a total of 5,252 events were recorded in men and 4,898 in women. Corresponding numbers in the CVDR were 78,709 and 70,464. Both FINAMI and CVDR data suggested smaller declines in incidence and attack rate of MI events in women than in men. In CVDR data the decline in mortality was also smaller in women than in men, while in FINAMI data this difference did not reach statistical significance. In the large CVDR data set, negative binomial regression models revealed smaller declines in incidence (p = 0.006), attack rate (p = 0.008) and mortality (p = 0.04) in women than in men aged <55 years. In persons ≄55 years no difference was observed between women and men.</p> <p>Conclusion</p> <p>The incidence and attack rate of MI events have declined less in women aged <55 than in men of similar age. In older persons no significant differences were observed. Further studies are warranted to find out the reasons why the development has been less favourable for young women than for men.</p

    Stroke genetics: prospects for personalized medicine.

    Get PDF
    Epidemiologic evidence supports a genetic predisposition to stroke. Recent advances, primarily using the genome-wide association study approach, are transforming what we know about the genetics of multifactorial stroke, and are identifying novel stroke genes. The current findings are consistent with different stroke subtypes having different genetic architecture. These discoveries may identify novel pathways involved in stroke pathogenesis, and suggest new treatment approaches. However, the already identified genetic variants explain only a small proportion of overall stroke risk, and therefore are not currently useful in predicting risk for the individual patient. Such risk prediction may become a reality as identification of a greater number of stroke risk variants that explain the majority of genetic risk proceeds, and perhaps when information on rare variants, identified by whole-genome sequencing, is also incorporated into risk algorithms. Pharmacogenomics may offer the potential for earlier implementation of 'personalized genetic' medicine. Genetic variants affecting clopidogrel and warfarin metabolism may identify non-responders and reduce side-effects, but these approaches have not yet been widely adopted in clinical practice

    Statistical methods to correct for verification bias in diagnostic studies are inadequate when there are few false negatives: a simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A common feature of diagnostic research is that results for a diagnostic gold standard are available primarily for patients who are positive for the test under investigation. Data from such studies are subject to what has been termed "verification bias". We evaluated statistical methods for verification bias correction when there are few false negatives.</p> <p>Methods</p> <p>A simulation study was conducted of a screening study subject to verification bias. We compared estimates of the area-under-the-curve (AUC) corrected for verification bias varying both the rate and mechanism of verification.</p> <p>Results</p> <p>In a single simulated data set, varying false negatives from 0 to 4 led to verification bias corrected AUCs ranging from 0.550 to 0.852. Excess variation associated with low numbers of false negatives was confirmed in simulation studies and by analyses of published studies that incorporated verification bias correction. The 2.5<sup>th </sup>– 97.5<sup>th </sup>centile range constituted as much as 60% of the possible range of AUCs for some simulations.</p> <p>Conclusion</p> <p>Screening programs are designed such that there are few false negatives. Standard statistical methods for verification bias correction are inadequate in this circumstance.</p

    Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission

    Full text link
    "Diffuse" gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived "average" spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S. Cheng and G. E. Romero. More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm

    Meta-Analysis of the Association between Transforming Growth Factor-Beta Polymorphisms and Complications of Coronary Heart Disease

    Get PDF
    Objective: To investigate the association between common transforming growth factor beta (TGF-ÎČ) single nucleotide polymorphisms (SNP) and significant complications of coronary heart disease (CHD).\ud \ud Method: We performed a meta-analysis of published case-control studies assessing the association of TGF-ÎČ SNPs with a range of CHD complications. A random effects model was used to calculate odds ratios and confidence intervals. Analyses were conducted for additive, dominant and recessive modes of inheritance.\ud \ud Results: Six studies involving 5535 cases and 2970 controls examining the association of common SNPs in TGF-ÎČ1 with CHD were identified. Applying a dominant model of inheritance, three TGF-ÎČ1 SNPs were significantly associated with CHD complications: The T alleles of rs1800469 (OR = 1.125, 95% CI 1.016–1.247, p = 0.031) and rs1800470 (OR = 1.146, 95% CI 1.026–1.279, p = 0.021); and the C allele of rs1800471 (OR = 1.207, 95% CI 1.037–1.406, p = 0.021).\ud \ud Conclusion: This meta-analysis suggests that common genetic polymorphisms in TGF-ÎČ1 are associated with complications of CHD
    • 

    corecore