283 research outputs found

    Uniform Approximation Is More Appropriate for Wilcoxon Rank-Sum Test in Gene Set Analysis

    Get PDF
    Gene set analysis is widely used to facilitate biological interpretations in the analyses of differential expression from high throughput profiling data. Wilcoxon Rank-Sum (WRS) test is one of the commonly used methods in gene set enrichment analysis. It compares the ranks of genes in a gene set against those of genes outside the gene set. This method is easy to implement and it eliminates the dichotomization of genes into significant and non-significant in a competitive hypothesis testing. Due to the large number of genes being examined, it is impractical to calculate the exact null distribution for the WRS test. Therefore, the normal distribution is commonly used as an approximation. However, as we demonstrate in this paper, the normal approximation is problematic when a gene set with relative small number of genes is tested against the large number of genes in the complementary set. In this situation, a uniform approximation is substantially more powerful, more accurate, and less intensive in computation. We demonstrate the advantage of the uniform approximations in Gene Ontology (GO) term analysis using simulations and real data sets

    An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer

    Get PDF
    Background: Urinary biomarkers are needed to improve the care and reduce the cost of managing bladder cancer. Current biomarkers struggle to identify both high and low-grade cancers due to differing molecular pathways. Changes in microRNA (miR) expression are seen in urothelial carcinogenesis in a phenotype-specific manner. We hypothesised that urinary miRs reflecting low- and high-grade pathways could detect bladder cancers and overcome differences in genetic events seen within the disease. Methods: We investigated urinary samples (n ¼ 121) from patients with bladder cancer (n ¼ 68) and age-matched controls (n ¼ 53). Fifteen miRs were quantified using real-time PCR. Results: We found that miR is stable within urinary cells despite adverse handling and detected differential expression of 10 miRs from patients with cancer and controls (miRs 15a/15b/24-1/27b/100/135b/203/212/328/1224, ANOVA Po0.05). Individually, miR-1224-3p had the best individual performance with specificity, positive and negative predictive values and concordance of 83%, 83%, 75% and 77%, respectively. The combination of miRs-135b/15b/1224-3p detected bladder cancer with a high sensitivity (94.1%), sufficient specificity (51%) and was correct in 86% of patients (concordance). Conclusion: The use of this panel in patients with haematuria would have found 94% of urothelial cell carcinoma, while reducing cystoscopy rates by 26%. However, two invasive cancers (3%) would have been missed

    ‘Multi-Epitope-Targeted’ Immune-Specific Therapy for a Multiple Sclerosis-Like Disease via Engineered Multi-Epitope Protein Is Superior to Peptides

    Get PDF
    Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope-targeting” strategy is required for effective immune-specific therapy of organ-specific autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further demonstrate that the “multi-epitope-targeting” approach to therapy is optimized through specifically designed multi-epitope-proteins, rather than myelin peptide cocktails, as “multi-epitope-targeting” agents. Such artificial multi-epitope proteins can be tailored to other organ-specific autoimmune diseases

    Effect of a Participatory Multisectoral Maternal and Newborn Intervention on Maternal Health Service Utilization and Newborn Care Practices: A Quasi-Experimental Study in Three Rural Ugandan Districts

    Get PDF
    Background: The MANIFEST study in eastern Uganda employed a participatory multisectoral approach to reduce barriers to access to maternal and newborn care services. Objectives: This study analyses the effect of the intervention on the utilization of maternal and newborn services and care practices. Methods: The quasi-experimental pre- and post-comparison design had two main components: community mobilization and empowerment, and health provider capacity building. The primary outcomes were utilization of antenatal care (ANC), delivery and postnatal care, and newborn care practices. Baseline (n = 2237) and endline (n = 1946) data were collected from women of reproductive age. The data was analysed using difference in differences (DiD) analysis and logistic regression. Results: The DiD results revealed an 8% difference in early ANC attendance (p < 0.01) and facility delivery (p < 0.01). Facility delivery increased from 66% to 73% in the intervention area, but remained unchanged in the comparison area (64% vs 63%, p < 0.01). The DiD results also demonstrated a 20% difference in clean cord care (p < 0.001) and an 8% difference in delayed bathing (p < 0.001). The intervention elements that predicted facility delivery were attending ANC four times [adjusted odds ratio (aOR) 1.42, 95% confidence interval (CI) 1.17–1.74] and saving for maternal health (aOR 2.11, 95% CI 1.39–3.21). Facility delivery and village health team (VHT) home visits were key predictors for clean cord care and skin-to-skin care. Conclusions: The multisectoral approach had positive effects on early ANC attendance, facility deliveries and newborn care practices. Community resources such as VHTs and savings are crucial to maternal and newborn outcomes and should be supported. VHT-led health education should incorporate practical measures that enable families to save and access transport services to enhance adequate preparation for birth.DFI

    Repetitive Pertussis Toxin Promotes Development of Regulatory T Cells and Prevents Central Nervous System Autoimmune Disease

    Get PDF
    Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS). Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE) can be enhanced by concomitant administration of pertussis toxin (PTx), the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS). In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4+CD25+FoxP3+ regulatory T cells (Treg). Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4+CD25+FoxP3+ Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation

    How contemporary bioclimatic and human controls change global fire regimes

    Get PDF
    Anthropogenically driven declines in tropical savannah burnt area have recently received attention due to their effect on trends in global burnt area. Large-scale trends in ecosystems where vegetation has adapted to infrequent fire, especially in cooler and wetter forested areas, are less well understood. Here, small changes in fire regimes can have a substantial impact on local biogeochemistry. To investigate trends in fire across a wide range of ecosystems, we used Bayesian inference to quantify four primary controls on burnt area: fuel continuity, fuel moisture, ignitions and anthropogenic suppression. We found that fuel continuity and moisture are the dominant limiting factors of burnt area globally. Suppression is most important in cropland areas, whereas savannahs and boreal forests are most sensitive to ignitions. We quantify fire regime shifts in areas with more than one, and often counteracting, trends in these controls. Forests are of particular concern, where we show average shifts in controls of 2.3–2.6% of their potential maximum per year, mainly driven by trends in fuel continuity and moisture. This study gives added importance to understanding long-term future changes in the controls on fire and the effect of fire trends on ecosystem function

    Biosynthesis of HLA-C heavy chains in melanoma cells with multiple defects in the expression of HLA-A, -B, -C molecules

    Get PDF
    Recent investigations have shown that malignant transformation may down-regulate the expression of class I HLA molecules, beta(2)-microglobulin (beta(2)m) and members of the antigen-processing machinery. In the present study, we HLA-genotyped and identified at a biochemical level the three (HLA-A25, -B8, -Cw7) class I alleles expressed by the previously described [D'Urso CM et al (1992) J Clin Invest 87: 284-292] beta(2)m-defective human melanoma FO-1 cell line and tested their ability to interact with calnexin, calreticulin and the TAP (transporter associated with antigen processing) complex. Ail these alleles were found to bind calnexin, but not calreticulin or the poorly expressed TAP complex, both in parental and beta(2)m-transfected FO-1 cells, demonstrating a complex defect of class I expression in FO-1 cells. In these conditions, Cw7 heavy chains interacted with calnexin more strongly than A25 and B8, and preferentially accumulated in the endoplasmic reticulum, in both a calnexin-associated and a calnexin-free form. In addition, they could be transported to the cell surface at low levels even in the absence of beta(2)m, without undergoing terminal glycosylation. These results establish a parallel between HLA-C and the murine D-b and L-d molecules which have been found to be surface expressed and functional in beta(2)m-defective cells. They also demonstrate distinctive features of HLA-C molecules. We propose that the accumulation of several assembly intermediates of HLA-C might favour the binding of peptide antigens not readily bound by HLA-A and -B molecules in neoplastic cells with suboptimal class I expression

    Effects of an Early Handling-Like Procedure and Individual Housing on Anxiety-Like Behavior in Adult C57BL/6J and DBA/2J Mice

    Get PDF
    Manipulations of rearing conditions have been used to examine the effects of early experience on adult behavior with varying results. Evidence suggests that postnatal days (PND) 15–21 are a time of particular susceptibility to environmental influences on anxiety-like behavior in mice. To examine this, we subjected C57BL/6J and DBA/2J mice to an early handling-like procedure. Pups were separated from dams from PND 12–20 for 30 minutes daily or received standard care. On PND 21, pups were weaned and either individually- or group- housed. On PND 60, anxiety-like behavior was examined on the elevated zero-maze. Although individually- housed animals took longer to enter an open quadrant of the maze, they spent more time in the open than group-housed animals. Additionally, we observed a trend of reduced anxiety-like behavior in C57BL/6J, but not DBA/2J mice that underwent the handling-like procedure

    Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils

    Get PDF
    Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e −e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ∼ 1024 Wcm−2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 1022−23 Wcm−2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ∼ 1025 photons/s/mm2 /mrad2 /0.1%BW at 15 MeV and intensity of 5×1023 Wcm−2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5×1022 cm−3 and flux of 1.6×1010/shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities

    New Insights into Alzheimer's Disease Progression: A Combined TMS and Structural MRI Study

    Get PDF
    BACKGROUND: Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas. METHODOLOGY AND PRINCIPAL FINDINGS: To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness. CONCLUSIONS: In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD
    corecore