24 research outputs found

    Determining Possible Shared Genetic Architecture Between Myopia and Primary Open-Angle Glaucoma

    Get PDF
    PURPOSE: To determine genetic correlations between common myopia and primary open-angle glaucoma (POAG). // METHODS: We tested the association of myopia polygenic risk scores (PRSs) with POAG and POAG endophenotypes using two studies: the Australian & New Zealand Registry of Advanced Glaucoma (ANZRAG) study comprising 798 POAG cases with 1992 controls, and the Rotterdam Study (RS), a population-based study with 11,097 participants, in which intraocular pressure (IOP) and optic disc parameter measurements were catalogued. PRSs were derived from genome-wide association study meta-analyses conducted by the Consortium for Refractive Error and Myopia (CREAM) and 23andMe. In total, 12 PRSs were constructed and tested. Further, we explored the genetic correlation between myopia, POAG, and POAG endophenotypes by using the linkage disequilibrium score regression (LDSC) method. // RESULTS: We did not find significant evidence for an association between PRS of myopia with POAG (P = 0.81), IOP (P = 0.07), vertical cup-disc ratio (P = 0.42), or cup area (P = 0.25). We observed a nominal association with retinal nerve fiber layer (P = 7.7 × 10-3) and a significant association between PRS for myopia and disc area (P = 1.59 × 10-9). Using the LDSC method, we found a genetic correlation only between myopia and disc area (genetic correlation [RhoG] = -0.12, P = 1.8 × 10-3), supporting the findings of the PRS approach. // CONCLUSIONS: Using two complementary approaches we found no evidence to support a genetic overlap between myopia and POAG; our results suggest that the comorbidity of these diseases is not influenced by common variants. The association between myopia and optic disc size is well known and validates this methodology

    Childhood febrile illness and the risk of myopia in UK Biobank participants

    Get PDF
    Purpose Historical reports suggest febrile illness during childhood is a risk factor for myopia. The establishment of the UK Biobank provided a unique opportunity to investigate this relationship. Patients and methods We studied a sample of UK Biobank participants of White ethnicity aged 40–69 years old who underwent autorefraction (N=91 592) and were classified as myopic (≤−0.75 Dioptres (D)), highly myopic (≤−6.00 D), or non-myopic (>−0.75 D). Self-reported age at diagnosis of past medical conditions was ascertained during an interview with a nurse at a Biobank assessment centre. Logistic regression analysis was used to calculate the odds ratio (OR) for myopia or high myopia associated with a diagnosis before age 17 years of each of nine febrile illnesses, after adjusting for potential confounders (age, sex, highest educational qualification, and birth order). Results Rubella, mumps, and pertussis were associated with myopia: rubella, OR=1.38, 95% CI: 1.03–1.85, P=0.030; mumps, OR=1.32, 95% CI: 1.07–1.64, P=0.010; and pertussis, OR=1.39, 95% CI 1.03–1.87, P=0.029. Measles, rubella, and pertussis were associated with high myopia: measles, OR=1.48, 95% CI: 1.07–2.07, P=0.019; rubella, OR=1.94, 95% CI: 1.12–3.35, P=0.017; and pertussis, OR=2.15, 95% CI: 1.24–3.71, P=0.006. The evidence did not support an interaction between education and febrile illness in explaining the above risks. Conclusion A history of childhood measles, rubella, or pertussis was associated with high myopia, whereas a history of childhood rubella, mumps, or pertussis was associated with any myopia. The reasons for these associations are unclear

    A genome-wide association study of corneal astigmatism: The CREAM Consortium

    Get PDF
    PURPOSE: To identify genes and genetic markers associated with corneal astigmatism. METHODS: A meta-analysis of genome-wide association studies (GWASs) of corneal astigmatism undertaken for 14 European ancestry (n=22,250) and 8 Asian ancestry (n=9,120) cohorts was performed by the Consortium for Refractive Error and Myopia. Cases were defined as having >0.75 diopters of corneal astigmatism. Subsequent gene-based and gene-set analyses of the meta-analyzed results of European ancestry cohorts were performed using VEGAS2 and MAGMA software. Additionally, estimates of single nucleotide polymorphism (SNP)-based heritability for corneal and refractive astigmatism and the spherical equivalent were calculated for Europeans using LD score regression. RESULTS: The meta-analysis of all cohorts identified a genome-wide significant locus near the platelet-derived growth factor receptor alpha (PDGFRA) gene: top SNP: rs7673984, odds ratio=1.12 (95% CI:1.08–1.16), p=5.55×10−9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified three novel candidate genes for corneal astigmatism in Europeans—claudin-7 (CLDN7), acid phosphatase 2, lysosomal (ACP2), and TNF alpha-induced protein 8 like 3 (TNFAIP8L3). CONCLUSIONS: In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified three novel candidate genes, CLDN7, ACP2, and TNFAIP8L3, that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating an association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors in the development of astigmatism

    A genome-wide association study for corneal astigmatism: The CREAM Consortium

    Get PDF
    Purpose: To identify genes and genetic markers associated with corneal astigmatism. Methods: A meta-analysis was performed of genome-wide association studies (GWAS) of corneal astigmatism undertaken for 14 European ancestry (N = 22,250) and 8 Asian ancestry (N = 9,120) cohorts by the CREAM Consortium. Cases were defined as having >0.75 D of corneal astigmatism. For the meta-analysed results of European ancestry cohorts, subsequent gene-based and gene-set analyses were performed using VEGAS2 and MAGMA software. Additionally, estimates of SNP-based heritability for corneal and refractive astigmatism and spherical equivalent were calculated for Europeans using LD score regression. Results: Meta-analysis of all cohorts identified a genome-wide significant locus near the gene PDGFRA (platelet derived growth factor receptor alpha): top SNP: rs7673984, odds ratio = 1.12 (95% CI: 1.08-1.16), P = 5.55 x 10-9. No other genome-wide significant loci were identified in the combined analysis or European/Asian ancestry-specific analyses. Gene-based analysis identified 3 novel candidate genes for corneal astigmatism in Europeans: CLDN7 (claudin-7), ACP2 (acid phosphatase 2, lysosomal) and TNFAIP8L3 (TNF alpha induced protein 8 like 3). Conclusions: In addition to replicating a previously identified genome-wide significant locus for corneal astigmatism near the PDGFRA gene, gene-based analysis identified 3 novel candidate genes CLDN7, ACP2 and TNFAIP8L3 that warrant further investigation to understand their role in the pathogenesis of corneal astigmatism. The much lower number of genetic variants and genes demonstrating association with corneal astigmatism compared to published spherical equivalent GWAS analyses suggest a greater influence of rare genetic variants, non-additive genetic effects, or environmental factors to the development of astigmatism

    The Decreasing Prevalence of Nonrefractive Visual Impairment in Older Europeans: A Meta-analysis of Published and Unpublished Data

    Get PDF
    TOPIC: To estimate the prevalence of nonrefractive visual impairment and blindness in European persons 55 years of age and older. CLINICAL RELEVANCE: Few visual impairment and blindness prevalence estimates are available for the European population. In addition, many of the data collected in European population-based studies currently are unpublished and have not been included in previous estimates. METHODS: Fourteen European population-based studies participating in the European Eye Epidemiology Consortium (n = 70 723) were included. Each study provided nonrefractive visual impairment and blindness prevalence estimates stratified by age (10-year strata) and gender. Nonrefractive visual impairment and blindness were defined as best-corrected visual acuity worse than 20/60 and 20/400 in the better eye, respectively. Using random effects meta-analysis, prevalence rates were estimated according to age, gender, geographical area, and period (1991-2006 and 2007-2012). Because no data were available for Central and Eastern Europe, population projections for numbers of affected people were estimated using Eurostat population estimates for European high-income countries in 2000 and 2010. RESULTS: The age-standardized prevalence of nonrefractive visual impairment in people 55 years of age or older decreased from 2.22% (95% confidence interval [CI], 1.34-3.10) from 1991 through 2006 to 0.92% (95% CI, 0.42-1.42) from 2007 through 2012. It strongly increased with age in both periods (up to 15.69% and 4.39% in participants 85 years of age or older from 1991 through 2006 and from 2007 through 2012, respectively). Age-standardized prevalence of visual impairment tended to be higher in women than men from 1991 through 2006 (2.67% vs. 1.88%), but not from 2007 through 2012 (0.87% vs. 0.88%). No differences were observed between northern, western, and southern regions of Europe. The projected numbers of affected older inhabitants in European high-income countries decreased from 2.5 million affected individuals in 2000 to 1.2 million in 2010. Of those, 584 000 were blind in 2000, in comparison with 170 000 who were blind in 2010. CONCLUSIONS: Despite the increase in the European older population, our study indicated that the number of visually impaired people has decreased in European high-income countries in the last 20 years. This may be the result of major improvements in eye care and prevention, the decreasing prevalence of eye diseases, or both

    IMI - Myopia Genetics Report

    Get PDF
    The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth

    The genetics of myopia

    Get PDF
    Myopia is the most common eye condition worldwide and its prevalence is increasing. While changes in environment, such as time spent outdoors, have driven myopia rates, within populations myopia is highly heritable. Genes are estimated to explain up to 80% of the variance in refractive error. Initial attempts to identify myopia genes relied on family studies using linkage analysis or candidate gene approaches with limited progress. More genome-wide association study (GWAS) approaches have taken over, ultimately resulting in the identification of hundreds of genes for refractive error and myopia, providing new insights into its molecular machinery. These studies showed myopia is a complex trait, with many genetic variants of small effect influencing retinal signaling, eye growth and the normal process of emmetropization. The genetic architecture and its molecular mechanisms are still to be clarified and while genetic risk score prediction models are improving, this knowledge must be expanded to have impact on clinical practice

    Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis

    Get PDF
    Introduction: Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are two groups of inherited retinal diseases (IRDs) where the rod photoreceptors degenerate followed by the cone photoreceptors of the retina. A genetic diagnosis for IRDs is challenging since >280 genes are associated with these conditions. While whole exome sequencing (WES) is commonly used by diagnostic facilities, the costs and required infrastructure prevent its global applicability. Previous studies have shown the cost-effectiveness of sequence analysis using single molecule Molecular Inversion Probes (smMIPs) in a cohort of patients diagnosed with Stargardt disease and other maculopathies. Methods: Here, we introduce a smMIPs panel that targets the exons and splice sites of all currently known genes associated with RP and LCA, the entire RPE65 gene, known causative deep-intronic variants leading to pseudo-exons, and part of the RP17 region associated with autosomal dominant RP, by using a total of 16,812 smMIPs. The RP-LCA smMIPs panel was used to screen 1,192 probands from an international cohort of predominantly RP and LCA cases. Results and discussion: After genetic analysis, a diagnostic yield of 56% was obtained which is on par with results from WES analysis. The effectiveness and the reduced costs compared to WES renders the RP-LCA smMIPs panel a competitive approach to provide IRD patients with a genetic diagnosis, especially in countries with restricted access to genetic testing

    IMI - Myopia Genetics Report

    Get PDF
    The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed.We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes.To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression.The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth

    The Rotterdam Study: 2016 objectives and design update

    Full text link
    corecore