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Key Points

* While the recent global rise of myopia prevalence is primarily attributable
to environmental changes, within populations inherited factors play a large
role in explaining why some individuals are affected by myopia while oth-
ers are not.

» Early efforts to identify the specific genes underlying the heritability of
refractive error used linkage and candidate gene designs to identify up to
50 loci and genes, although most remain unconfirmed.
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* As the sample size in genome-wide association studies (GWAS) has
increased, the number of implicated loci has risen steadily, with 161 vari-
ants reported in the latest meta-analysis.

 Interrogation of loci uncovered by GWAS offers insight into the molecular
basis of myopia—for example, pathway analysis implicates the light
induced retina-to-sclera signaling pathway in myopia development.

* Although many loci have been uncovered by GWAS, statistical modelling
shows there are many more genes to find—identifying these will further
illuminate the molecular pathways leading to myopia and open up new
avenues for intervention.

5.1 Introduction

This chapter addresses the scientific exploration of the genetic architecture of myo-
pia. Myopia is the most common eye condition worldwide and its prevalence is
increasing. Changes in environmental conditions where time spent outdoors has
reduced relative to previous generations are the main hypothesized culprit. Despite
these environmental trends, within populations, myopia is highly heritable; genes
explain up to 80% of the variance in refractive error. Initial attempts to identify
myopia genes relied on family studies using linkage analysis or candidate gene
approaches with limited progress. For the last decade, genome-wide association
study (GWAS) approaches have predominated, ultimately resulting in the identifi-
cation of hundreds of genes for refractive error and myopia, providing new insights
into its molecular machinery. Thanks to these studies, it was revealed that myopia is
a complex trait, with many genetic variants of small effect influencing retinal sig-
naling, eye growth and the normal process of emmetropization. However, the
genetic architecture and its molecular mechanisms are still to be clarified and while
genetic risk score prediction models are improving, this knowledge must be
expanded to have impact on clinical practice.

Some sections of this report follow the framework described in a recent
International Myopia Institute Genetics report by Tedja et al. [1]

5.2  Heritability

The tendency for myopia to run in families has long been noted, suggesting genetic fac-
tors play a role in determining risk [2]. While family studies show familial aggregation,
twin studies are required to reliably separate the effects of genes and familial environ-
ment [3-6]. Benchmarking of the relative contribution of genetics and environment is
done by computation of heritability, the proportion of the total trait variance (here,
spherical equivalent) due to additive genetic factors. Since the contributions of genes
and environment can vary across human populations, heritabilities are population and
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even time specific [7, 8]. The influence of environmental variance is well illustrated in
the case of the heritability study in Alaskan Eskimos, where the rapid introduction of the
American school system dramatically increased the contribution of the environment. As
a result heritability estimates, computed based on families where the parents are less
educated relative to their offspring, were very low at this time (10%) [7].

Across most human populations, environment is fairly constant and the estimates
of spherical equivalent heritability are usually high (~80%) [9-11]. Although the
aggregate contribution of genetic factors to variation in refractive error is high, ini-
tial studies were unable to determine the genetic architecture of myopia—that is, is
myopia caused by rare mutations of large effect? Or is most variation driven by
common variants, each with individually small effect on risk? With the advent of
genotyping arrays, it became possible to estimate the aggregate effect of all com-
mon variants, with “array heritability” estimates of 35% from the ALSPAC study.
Such estimates place a lower bound on the proportion of the heritability that is
attributable to genetic variants which are common in the population. The remaining
45% (80%—-35%) is likely attributable to rare genetic variants, to variants not cov-
ered by genotyping arrays or to non-additive genetic effects.

5.3  Syndromic Myopia

Syndromic myopia is generally monogenic and can occur within a wide spectrum
of clinical presentations. This type of myopia is usually accompanied by other sys-
temic or ocular disorders. Table 5.1 summarizes all syndromic and ocular condi-
tions that present with myopia [12]. We are able to learn about myopia development
by investigating these syndromes. For instance, several types of heritable syndromes
result in extreme axial elongation, due to abnormalities in the development of con-
nective tissue (i.e. Marfan syndrome, OMIM #154700; Stickler syndrome, OMIM
#,108300 #604841, #614134, #614284 and Ehlers—Danlos syndrome, OMIM
#225400, #601776). Similarly, inherited retinal dystrophies lead to myopia due to
defects in photoreceptors, for instance, in X-linked retinitis pigmentosa (mutations
in RPGR-gene) and congenital stationary night blindness [13].

Interestingly, several syndromic myopia genes were found in association to other
ocular traits, such as CCT (ADAMTS2, COL4A3, COL5A1, FBN1) [14], and Fuchs’s
dystrophy (TCF4) [15]. However, the majority of the genes causing syndromic
myopia have not been linked to common forms of myopia, except for COL2A1 [16,
17] and FBN1 [18, 19]. Nevertheless, a recent study found an overrepresentation for
syndromic myopia genes in GWAS studies on refractive error and myopia [20],
implying their important role in myopia development.

5.4 Linkage Studies

Linkage studies have been successfully applied for many Mendelian disorders,
although the success has been much more limited in complex traits. The linkage
approach searches for cosegregation of genetic markers with the trait of interest in
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Table 5.1 Overview of syndromic forms of myopia

Syndrome

Gene and inheritance
pattern

Ocular phenotype other than myopia

(A) Syndromes associated with myopia and associated ocular phenotype

Acromelic frontonasal
dysostosis

ZSWIM6 (AD)

Telecanthus, ptosis (some patients), corneal
dermoid cyst (rare), glaucoma (rare),
segmental optic nerve hypoplasia (rare),
persistent primary vitreous (rare)

Alagille syndrome

JAGI (AD)

Deep-set eyes, hypertelorism, upslanting
palpebral fissures, posterior embryotoxon,
anterior chamber anomalies, eccentric or
ectopic pupils, chorioretinal atrophy, band
keratopathy, cataracts, retinal pigment
clumping, Axenfeld anomaly, microcornea,
choroidal folds, strabismus, anomalous
optic disc

Alport syndrome

COLA4A5 (XLD);
COLA4A3 (AR/AD)

Anterior lenticonus, lens opacities,
cataracts, pigmentary changes (“flecks”) in
the perimacular region, corneal endothelial
vesicles, corneal erosions

Angelman syndrome

UBE3A (IP); CH

Strabismus (most frequently exotropia),
ocular hypopigmentation, refractive errors
(astigmatism, hyperopia, myopia)

Bardet-Biedl syndrome

ARLG; BBS1; BBS2,
BBS4; BBS5;, BBS7,
BBS9;, BBS10;
BBS12; CEP290;
LZTFLI; MKKS;,
MKS1; SDCCAGS;
TMEMG67; TRIM32;
TTCS8; WDPCP (AR)

Rod-cone dystrophy onset by end of 2nd
decade, retinitis pigmentosa, retinal
degeneration, strabismus, cataracts

Beals syndrome FBN2 (AD) Ectopia lentis

Beaulieu—Boycott-Innes | THOC6 (AR) Deep-set eyes, short palpebral fissures,

syndrome upslanting palpebral fissures

Bohring—Opitz syndrome | ASXLI (AD) Prominent eyes, hypoplastic orbital ridges,
hypertelorism, upslanting palpebral
fissures, strabismus, retinal abnormalities,
optic nerve abnormalities

Bone fragility and PLOD3 (AR) Shallow orbits, cataracts

contractures; arterial
rupture and deafness

Branchiooculofacial
syndrome

TFAP2A (AD)

Lacrimal sac fistula, orbital dermoid cyst,
iris pigment epithelial cyst, combined
hamartoma of the retina and retinal
pigment epithelium, upslanting palpebral
fissures, telecanthus, hypertelorism, ptosis,
lacrimal duct obstruction, iris coloboma,
retinal coloboma, microphthalmia,
anophthalmia, cataract, strabismus
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Table 5.1 (continued)

Gene and inheritance

Syndrome pattern Ocular phenotype other than myopia
Cardiofaciocutaneous MAP2K2 (AD) Ptosis, nystagmus, strabismus,
syndrome downslanting palpebral fissures,

hypertelorism, exophthalmos, epicanthal
folds, optic nerve dysplasia, oculomotor
apraxia, loss of visual acuity, absence of
eyebrows, absence of eyelashes

Cohen syndrome VPS13B (AR) Downslanting palpebral fissures, almond-
shaped eyes, chorioretinal dystrophy,
decreased visual acuity, optic atrophy

Cornelia de Lange NIPBL (AD); Synophrys, long curly eyelashes, ptosis

syndrome HDACS (XLD)

Cowden syndrome PTEN (AD) Cataract, angioid streaks

Cranioectodermal
dysplasia

IFTI22 (AR)

Telecanthus, hypotelorism, epicanthal
folds, myopia (1 patient), nystagmus (1
patient), retinal dystrophy (1 patient)

Cutis laxa

ATP6VOA2;
ALDHISAI (AR)

Downslanting palpebral fissures,
strabismus

Danon disease

LAMP2 (XLD)

Moderate central loss of visual acuity in
males, normal to near-normal visual acuity
in carrier females, fine lamellar white
opacities on slit lamp exam in carrier
females, near complete loss of peripheral
retinal pigment in males, peppered
pigmentary mottling of peripheral retinal
pigment in carrier females, nonspecific
changes on electroretinogram in carrier
females

Deafness and myopia

SLITRKG (AR)

High myopia

Desanto—Shinawi
syndrome

WAC (AD)

Hypertelorism, downslanting palpebral
issues, synophrys, deep-set eyes,
astigmatism, strabismus

Desbuquois dysplasia

CANTI (AR)

Prominent eyes, bulging eyes, congenital
glaucoma

Donnai-Barrow
syndrome

LRP2 (AR)

Hypertelorism, high myopia, loss of vision,
iris coloboma, iris hypoplasia, cataract,
enlarged globes, downslanting palpebral
fissures, underorbital skin creases, retinal
detachment, retinal dystrophy, prominent
eyes

DOORS

TBCID24 (AR)

Optic atrophy, blindness, high myopia,
cataracts

Ehlers—Danlos syndrome

COLS5AT (AD);
PLODI (AR);
CHSTI4 (AR);
ADAMTS?2 (AR);
B3GALT6 (AR):
FKBPI4 (AR)

Blue sclerae, ectopia lentis, epicanthal
folds

(continued)
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Table 5.1 (continued)

Syndrome

Gene and inheritance
pattern

Ocular phenotype other than myopia

Emanuel syndrome

CH

Hooded eyelids, deep-set eyes, upslanting
palpebral fissures, strabismus

Fibrochondrogenesis COLIIAI (AR) -

Gyrate atrophy of OAT (AR) Progressive chorioretinal degeneration,

choroid and retina with/ night blindness (onset in first decade,

without ornithinemia progressive loss of peripheral vision,
blindness (onset in fourth or fifth decade),
posterior subcapsular cataracts (onset in
second or third decade)

Hamamy syndrome IRX5 (AR) Severe hypertelorism, laterally sparse
eyebrows, myopia (progressive severe)

Homocystinuria CBS (AR) Ectopia lentis, glaucoma

Joint laxity; short stature; | GZFI (AR) Exophthalmos, severe myopia, retinal

myopia detachment (some patients), iris coloboma
(some patients), chorioretinal coloboma
(some patients), glaucoma (1 patient)

Kaufman UBE3B (AR) Blepharophimosis, ptosis, upward-slanting

oculocerebrofacial palpebral fissures, telecanthus,

syndrome hypertelorism, astigmatism, strabismus,

mild

Kenny—Caffey syndrome

FAMI11A (AD)

Hyperopia (not myopia), microphthalmia,
papilledema, corneal and retinal
calcification, congenital cataracts (rare)

Kniest dysplasia

COL2AI (AD)

Retinal detachment, cataracts, prominent
eyes

Knobloch syndrome

COLISAI (AR)

High myopia, vitreoretinal degeneration,
retinal detachment (childhood), congenital
cataract, syneresis, vitreous attachment at
the disc, persistent foetal hyaloid
vasculature, peripapillary atrophy, phthisis
bulbi, band keratopathy, macular
hypoplasia, irregular white dots at the
vitreoretinal interface, visual loss,
nystagmus

Lamb-Shaffer syndrome | SOX5 (AD) Downslanting palpebral fissures, epicanthal
folds, strabismus
Lethal congenital ERBB3 (AR) High myopia, degenerative

contracture syndrome

vitreoretinopathy

Leukodystrophy

POLRIC; POLR3A;
POLR3B; GJC2
(AR)

Linear skin defects with
multiple congenital
anomalies

NDUFBI11; COX7B
(XLD)

Lacrimal duct atresia, nystagmus,
strabismus

Loeys—Dietz syndrome

TGFBRI; TGFBR2
(AD)

Hypertelorism, exotropia, blue sclerae,
proptosis
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Table 5.1 (continued)

Gene and inheritance

Syndrome pattern Ocular phenotype other than myopia
Macrocephaly/ TBCID7 (AR) Astigmatism

megalencephaly

syndrome

Marfan syndrome FBNI (AD) Enophthalmos, ectopia lentis increased

axial globe length, corneal flatness, retinal
detachment, iris hypoplasia, early
glaucoma, early cataracts, downslanting
palpebral fissures, trabeculodysgenesis,
primary (some patients), strabismus (some
patients), exotropia (some patients),
esotropia (rare), hypertropia (rare)

Marshall syndrome

COLIIAI (AD)

congenital cataracts, esotropia, retinal
detachment, glaucoma, lens dislocation,
vitreoretinal degeneration, hypertelorism,
epicanthal folds

Microcephaly with/ KIF11 (AD) Upslanting palpebral fissures, downslanting

without palpebral fissures (some patients),

chorioretinopathy; epicanthal folds (some patients),

lymphedema; and/or nystagmus, reduced visual acuity,

mental retardation hypermetropia, myopic astigmatism,
hypermetropic astigmatism, corneal
opacity, microcornea, microphthalmia,
cataract, retrolenticular fibrotic mass,
chorioretinopathy, retinal folds, falciform
retinal folds, retinal detachment, temporal
dragging of optic disc, retinal pigment
changes (some patients), optic atrophy
(uncommon)

Mohr-Tranebjaerg TIMMSA (XLR) Photophobia, cortical blindness, decreased

syndrome visual acuity, constricted visual fields,
abnormal electroretinogram

Mucolipidosis GNPTAG (AR) Fine corneal opacities

Muscular dystrophy TRAPPCI1; POMT; |Cataracts, strabismus, alacrima (some

POMTI; POMT2;
POMGNTI;
B3GALNT?; FKRP;
DAGI; FKTN(AR)

patients)

Nephrotic syndrome

LAMB?2 (AR)

Nystagmus, strabismus, microcoria,
aplasia/atrophy of the dilatator pupillae
muscle, hypoplasia of the iris and ciliary
body, lenticonus posterior, blindness,
decreased or absent laminin beta-2
immunoreactivity in tissues of the anterior
eye

(continued)
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Table 5.1 (continued)

Syndrome

Gene and inheritance
pattern

Ocular phenotype other than myopia

Noonan syndrome

A2MLI; BRAF;,
CBL; HRAS; KRAS;
MAP2K1; MAP2K2,
NRAS; PTPNI1I;
RAFI; RITI; SOS1,
SHOC?2; SPREDI
(AD)

Ptosis, hypertelorism, downslanting
palpebral fissures, epicanthal folds,
blue-green irides

Oculocutaneous albinism

TYR (AR)

Absent pigment in iris and retina,
translucent iris, pink irides (childhood),
blue-gray irides (adult), choroidal vessels
visible, foveal hypoplasia, decreased visual
acuity, strabismus, nystagmus,
photophobia, high refractive errors
(hyperopia, myopia, with-the-rule
astigmatism), albinotic optic disc,
misrouting of the optic nerves at the
chiasm, absent stereopsis due to anomalous
decussation at the optic chiasm, positive
angle kappa (appearance of exotropia but
no shift on cover test), asymmetric visual
evoked potentials

Oculodentodigital
dysplasia

GJAI (AR)

Hypoplastic eyebrows, sparse eyelashes,
telecanthus, short palpebral fissures,
downslanting palpebral fissures,
microphthalmia, microcornea, cataract,
persistent pupillary membrane

Pallister—Killian
syndrome

CH

Sparse eyebrows, sparse eyelashes,
upslanting palpebral fissures,
hypertelorism, ptosis, strabismus,
epicanthal folds, cataracts, exophthalmos

Papillorenal syndrome

PAX2 (AD)

Retinal coloboma, optic nerve anomalies
(coloboma, gliosis, absent optic nerve
head), optic disc anomalies (dysplasia,
excavation, hyperplasia, morning glory
optic disc, hypoplasia), orbital cysts,
microphthalmia, abnormal retinal pigment
epithelium, abnormal retinal vessels,
chorioretinal degeneration, retinal
detachment (rare). retinal staphyloma
(rare), retinal edema (rare), macular
degeneration (rare), papillomacular
detachment (rare), hyperpigmentation of
the macula (rare), cystic degeneration of
the macula (rare), posterior lens luxation
(rare), lens opacity (rare)
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Table 5.1 (continued)

Syndrome

Gene and inheritance
pattern

Ocular phenotype other than myopia

Peters-plus syndrome

B3GLCT (AR)

Hypertelorism, Peter’s anomaly, anterior
chamber cleavage disorder, nystagmus,
ptosis, glaucoma, upslanting palpebral
fissures, cataract, iris coloboma, retinal
coloboma

Pitt—Hopkins syndrome

TCF4 (AD)

Deep-set eyes, strabismus, astigmatism,
upslanting palpebral fissures

Pontocerebellar
hypoplasia

CHMPIA (AR)

Astigmatism, esotropia, strabismus,
hyperopia, nystagmus (some patients),
cortical visual impairment (some patients),
poor visual tracking (some patients)

Poretti—-Boltshauser
syndrome

LAMAT (AR)

Strabismus, amblyopia, oculomotor
apraxia, nystagmus, retinal atrophy, retinal
dystrophy, retinal dysfunction, macular
heterotopia

Prader—Willi syndrome

NDN (PC); SNRPN
(IP); CH

Almond-shaped eyes, strabismus,
upslanting palpebral fissures, hyperopia

Pseudoxanthoma
elasticum

ABCC6 (AR)

Peau d’orange retinal changes (yellow-
mottled retinal hyperpigmentation), angioid
streaks of the retina (85% of patients),
macular degeneration, visual impairment
(50-70% of patients), central vision loss,
colloid bodies, retinal haemorrhage,
choroidal neovascularization, optic head
drusen (yellowish-white irregularities of
optic disc), owl’s eyes (paired

hyperpigmented spots)
Renal hypomagnesemia | CLDNI16; CLDN19 | Strabismus, nystagmus, hyperopia,
(AR) astigmatism
SADDAN FGFR3 (AD) High myopia, exotropia

Schaaf-Yang syndrome

MAGEL2 (AD)

Esotropia, strabismus, almond-shaped eyes,
short palpebral fissures, bushy eyebrows

Schimke immunoosseous
dysplasia

SMARCALI (AR)

Corneal opacities, astigmatism

Schuurs—Hoeijmakers PACSI (AD) Full, arched eyebrows, long eyelashes,

syndrome hypertelorism, downslanting palpebral
fissures, ptosis, nystagmus, strabismus

Schwartz—Jampel HSPG2 (AR) Narrow palpebral fissures,

syndrome blepharophimosis, cataract, microcornea,
long eyelashes in irregular rows, ptosis

Sengers syndrome AGK (AR) Cataracts (infantile), strabismus, glaucoma

Short stature; hearing EXOSC2 (AR) Deep-set eyes, short palpebral fissures,

loss; retinitis pigmentosa
and distinctive facies

upslanting palpebral fissures, retinitis
pigmentosa (2 patients), corneal dystrophy
(2 patients, young-adult onset), glaucoma
(1 patient), nystagmus (1 patient),
strabismus (1 patient)

(continued)
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Table 5.1 (continued)

Syndrome

Gene and inheritance
pattern

Ocular phenotype other than myopia

Short stature; optic nerve
atrophy; and Pelger—Huet
anomaly

NBAS (AR)

Thick and bush eyebrows, small orbits,
bilateral exophthalmos, epicanthus,
bilateral optic nerve atrophy, non-
progressive decreased visual acuity, (in)
complete achromatopsia, strabismus (some
patients), hypertelorism (some patients),
hypermetropia (rare), pigmented nevus
(rare)

SHORT syndrome

PIK3RI (AD)

Deep-set eyes, Rieger anomaly,
telecanthus, glaucoma, megalocornea,
cataracts

Short-rib thoracic WDR19 (AR) Cataracts, attenuated arteries, macular

dysplasia with/without anomalies

polydactyly

Shprintzen—Goldberg SKI (AD) Telecanthus, hypertelorism, proptosis,

syndrome strabismus, downslanting palpebral
fissures, ptosis, shallow orbits

Singleton—Merten IFIHI (AD) Glaucoma

syndrome

Small vessel brain COLA4AI (AD) Retinal arteriolar tortuosity,

disease with/without hypopigmentation of the fundus, episodic

ocular anomalies scotomas, episodic blurred vision,
amblyopia (1 family), strabismus (1
family), high intraocular pressure (1
family). Reported in some patients:
astigmatism, hyperopia, congenital
cataracts, prominent or irregular Schwalbe
line, iridocorneal synechiae, Axenfeld—
Rieger anomalies, corneal opacities,
microphthalmia, microcornea, iris
hypoplasia, corectopia. Rare: decreased
visual acuity, glaucoma, corneal
neovascularization, polycoria,
iridogoniodysgenesis, macular
haemorrhage and Fuchs spots, peripapillary
atrophy, choroidal atrophy

Smith—Magenis RAII (AD) -

syndrome

Spastic paraplegia and HACEI (AR) Strabismus, retinal dystrophy (some

psychomotor retardation patients)

with or without seizures

Split hand/foot CH

malformation

Stickler syndrome

COL2A1 (AD);
COLIIAT (AD);
COL9AT (AR);
COL9A2 (AR)

Retinal detachment, blindness, occasional
cataracts, glaucoma, membranous (type I)
vitreous phenotype
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Table 5.1 (continued)

Gene and inheritance

Syndrome pattern Ocular phenotype other than myopia
Syndromic mental SETDS5 (AD); MBD5 | Synophrys, eyebrow abnormalities,
retardation (AD); USP9X upslanting and short palpebral fissures,
(XLD); NONO epicanthal folds, mild hypertelorism,
(XLR); RPLI10 strabismus, cataracts, hypermetropia,
(XLR); SMS (XLR); | astigmatism, poor vision
ELOVLA (AR);
KDM5C (XLR)
Syndromic OTX2; BMP4 (AD) Uni- or bilateral microphthalmia, uni- or
microphthalmia bilateral anophthalmia, coloboma,

microcornea, cataract, retinal dystrophy,
optic nerve hypoplasia or agenesis

Temtamy syndrome

CI20rf57 (AR)

Hypertelorism. “key-hole” iris, retina and
choroid coloboma, dislocated lens
(upward), downslanting palpebral fissures,
arched eyebrows

‘White—Sutton syndrome

POGZ (AD)

Visual abnormalities, strabismus,
astigmatism, hyperopia, optic atrophy,
rod-cone dystrophy, cortical blindness

Zimmermann-Laband
syndrome

KCNHI (AD)

Thick eyebrows, synophrys, cataracts

AD autosomal dominant, AR autosomal recessive, XLR X linked recessive, XLD X linked domi-
nant, CH chromosomal, /P imprinting defect

Table 5.1A Ocular conditions associated with myopia

Ocular condition

Gene and inheritance pattern

Achromatopsia CNGB3 (AR)
Aland Island eye disease GPRI143 (XLR)
Anterior segment dysgenesis PITX3 (AD)

Bietti crystalline corneoretinal dystrophy

CYP4V2 (AD)

Blue cone monochromacy

OPNILW; OPNIMW (XLR)

Brittle cornea syndrome

ZNF469; PRDM5 (AR)

Cataract BFSP2; CRYBA2; EPHA?2 (AD)
Colobomatous macrophthalmia with CH

microcornea

Cone dystrophy KCNV2 (AD)

Cone rod dystrophy C80rf37 (AR); RAB28 (AR); RPGR (XLR);

CACNAIF (XLR)

Congenital microcoria

CH

Congenital stationary night blindness

NYX (XLR); CACNAIF (XLR); GRM6 (AR);
SLC24A1 (AR); LRIT3 (AR); GNB3 (AR);
GPRI179 (AR)

Ectopia lentis et pupillae

ADAMTSLA (AR)

(continued)
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Ocular condition Gene and inheritance pattern

High myopia with cataract and vitreoretinal P3H2 (AR)

degeneration

Keratoconus VSX1 (AD)

Leber congenital amaurosis TULPI (AR)

Microcornea, myopic chorioretinal atrophy, ADAMTSI18 (AR)

and telecanthus

Microspherophakia and/or megalocornea, LTBP2 (AR)

with ectopia lentis and/or secondary

glaucoma

Ocular albinism OCA2 (AR)

Primary open angle glaucoma MYOC; OPTN (AD)

Retinal cone dystrophy KCNV2 (AR)

Retinal dystrophy C2lorf2 (AR); TUB (AR)

Retinitis pigmentosa RP1 (AD); RP2 (XLR); RPGR (XLR); TTC8
(AR)

Sveinsson chorioretinal atrophy TEADI (AD)

Vitreoretinopathy ZNF408 (AD)

Wagner vitreoretinopathy VCAN (AD)

Weill-Marchesani syndrome ADAMTSI10 (AR); FBN1(AD); LTBP2 (AR);
ADAMTSI17 (AR)

AD autosomal dominant, AR autosomal recessive, XLR X linked recessive, CH chromosomal

pedigrees [21]. Families with genetic variants which show an autosomal dominant
inheritance pattern were also most successful for myopia linkage studies. Up to
now, 20 MYP loci [22-25] and several other loci [26-31] are identified for (high)
myopia. Fine mapping led to candidate genes, such as the IGF1 gene located in the
MYP3 locus [32]. Linkage using a complex inheritance design found five additional
loci [33-37].

Validation of candidate genes often resulted in no association, but other variants
appeared associated with the non-Mendelian, common form of myopia. This hints
towards a genetic overlap between Mendelian and common myopia [38]. As the
GWAS era progressed, linkage studies fell by the wayside. Nevertheless, segrega-
tion analyses combined with linkage and next generation sequencing (i.e. whole
exome sequencing) of regions in pedigrees with high myopia are, in theory, expected
to facilitate the discovery of rare variants with large effects; an aspect which cannot
be distilled from GWAS.

5.5 Candidate Gene Studies

In candidate gene studies the focus is on a gene with suspected biological, physiologi-
cal or functional relevance to myopia, in particular high myopia. Although sometimes
effective, candidate gene studies are limited by their reliance on this existing knowl-
edge. Table 5.2 summarizes candidate gene studies on (high) myopia. Particularly
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notable are genes encoding extracellular matrix-related proteins (COLIAI, COL2A1
[16, 17] and MMP1, MMP2, MMP3, MMP9, MMP10 [59, 60]). For candidates such
as PAX6 and TGFBI, the results were replicated in multiple independent extreme/high
myopia studies and validated in a large GWAS meta-analysis in 2018, respectively
[18, 76]. However in most other cases, the results were not independently validated:
LUM and IGF1 failed to confirm an association [77, 78]. Interestingly, in a few cases
the candidates were subsequently implicated in GWAS of other ocular traits: TGFf2
and LUM for central corneal thickness (CCT), a glaucoma and keratoconus endophe-
notype [14], PAX6 with optic disc area [79] and HGF [80].

5.6 Genome-Wide Association Studies

Generally, linkage studies are limited to identification of genetic variants with a large
effect on myopia [81]. Given the limited number of genes identified by linkage, it
became apparent in the 2000s that identifying large numbers of additional myopia
genes was more practical with genome-wide association studies (GWASes), since it
has dramatically higher statistical power. GWASes have greatly enhanced our knowl-
edge of the genetic architecture of (complex) diseases [82]. Most of the variants found
via GWAS reside in non-exonic regions and their effect sizes are typically small [82,
83]. For GWAS, 200 k—500 k genetic markers are usually genotyped and a further >10
million “imputed”, taking advantage of the correlation structure of the genome. This
approach is most effective for common variants (allele frequencies >0.01 in the popula-
tion, although with larger reference panels, rarer alleles can also be detected).

Initially, GWASes for myopia were performed as a dichotomous outcome (i.e.
case-control, Table 5.3). Since myopia constitutes a dichotomization of the quantita-
tive trait spherical equivalent, considering the quantitative trait should be more infor-
mative for gene mapping. The first GWASes for spherical equivalent were conducted
in 2010 [96, 97], with ~4000 individuals required to identify the first loci. The first
loci to reach the genome-wide significance threshold (P < 5 x 1078, the threshold
reflecting the large number of statistical tests conducted genome-wide) were markers
near the RASGFRI gene on 15¢q25.1 (P = 2.70 x 10~°) and markers near GJ/D2 on
15q14 (P =2.21 x 107'%). A subsequent analysis combining five cohorts (N = 7000)
identified another locus at the RBFOX1 gene on chromosome 16 (P =3.9 x 107~?) [98].

These early efforts made it clear that individual groups would have difficulty in map-
ping many genes for spherical equivalent, motivating the formation of the Consortium
for Refractive Error and Myopia (CREAM) in 2010, which included researchers and
cohorts from the USA, Europe, Asia and Australia. They replicated SNPs in the 15q14
loci [99], which was further affirmed by other studies on both spherical equivalent and
axial length alongside with the replication of the 15g25 locus [100, 101].

In 2013, two major GWAS meta-analyses on refractive error traits (spherical
equivalent and age of spectacle wear) identified 37 novel loci (Table 5.4), with
robust replication of GJ/D2, RFBOX1 and RASGFRI in both meta-analyses. The
first was the collaborative work of CREAM based on a GWAS meta-analysis on
spherical equivalent, comprising 35 individual cohorts (Ngyopean = 37,382;
Nsoutheastasian = 12,332) [108]. 23andMe, a direct-to-consumer genetic testing com-
pany, performed the second major GWAS, replicating 8 of the novel loci found by
CREAM and identifying another 11 novel loci based on a GWAS survival analysis
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of age of spectacle wear in 55,177 participants of European ancestry. To the surprise
of some in the field, the effect sizes and direction of the effects of the loci found by
these two groups were concordant despite the difference in phenotype definition and
in scale: dioptres for CREAM and hazard ratios for 23andMe [109]. Subsequently,
replication studies provided validation for the associated loci and highlighted two
other suggestive associations. At this point, the implicated loci explained 3% of the
phenotypic variance in refractive error [108, 110].

The CREAM and 23andMe studies represented a large increase in sample size
over the initial GWASs. Their meta-analysis approach was very effective in discov-
ering new loci. This motivated joined efforts of CREAM and 23andMe, which
resulted in a GWAS meta-analysis including 160,420 participants. Moreover, a
denser imputation reference set was used (1000G phase 1 version 3), enabling bet-
ter characterization of genetic variations. Although CREAM and 23andMe used
different phenotypes (spherical equivalent and age at first spectacle wear, respec-
tively) again the results were concordant and the new findings were replicated in an
independent cohort with refractive error available (UK biobank, comprising 95,505
participants). Overall, this GWAS increased the number of risk loci to 161, explain-
ing 7.8% of the phenotypic variance in refractive error. Very large sample sizes
(millions) will be required to identify all of the loci contributing to myopia risk.

The genetic correlation was estimated to be 0.78 between European and Asian
ancestry, suggesting that despite (1) large differences in the rate of myopia between
these groups and (2) differences in the genetic ancestry of these groups, most of the
genetic variation is in common. Figure 5.1 provides the chronological discovery of
all associated loci and Fig. 5.2 shows the effect sizes of the established 161 loci.

Several “endophenotypes” have been considered for myopia: spherical equivalent,
axial length, corneal curvature and age of diagnosis of myopia. Axial length is a well-
studied “endophenotype’ which correlates strongly with refractive error. The first GWAS
of axial length considered 4944 Asian ancestry individuals and identified a locus at 1g41.
A subsequent meta-analysis combining data on 12,531 European and 8216 Asian ances-
try individuals uncovered a further eight genome-wide significant loci at RSPOI,
C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, ALPPL2, as well as confirming the 1q41
locus. Five of the axial length loci were also associated loci for refractive error. GWASs
performed for corneal curvature [104, 111-114] identified the loci FRAPI, CMPKI,
RBP3 and PDGFRA; in the case of PDGFRA, associations have also been found with eye
size. A study in 9804 Japanese individuals and replication in Chinese and European
ancestry cohorts analysed three myopia-related traits (refractive error, axial length and
corneal curvature). They replicated the association of GJ/D2 and refractive error as well
as the association of SNPs in WNT7B for axial length and corneal curvature [114, 115]

5.7 Pathway Analysis Approaches

GWAS approaches improve our understanding of the molecular basis of traits by map-
ping individual loci. However, it is possible to place such loci into a broader context by
applying pathway analysis approaches. In myopia, a retina-to-sclera signaling cascade
has been postulated, but the specific molecular components were unclear. Recent
GWASs have uncovered genes which lie along this pathway [108, 110, 116]—genetic
changes at individual loci only make small changes to phenotype but collectively these
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Fig. 5.1 Historic overview of myopia gene finding. Overview of myopia gene finding in historic
perspective. Genes identified using whole exome sequencing are marked as purple. Other loci
(linkage studies, GWAS) are marked as red

s
BOIS400 LAMAT
aia
3 : IWATE SNORAS1,CAB KeHos
oo  HATI METAPID + BT et PABRCIFE B
=, . -, tn e . L e
5 . . wes o8 s * e *t0N, o ooty
§o'n R
= Vemw W, Lt Y=, LLELR AL 3]
e e e G el s AN
am . DCZPCCA A
. KCNMAT WComs2
. MYDIDTMEMSS CAOIZZEMPS  LOCIO0S08035,POATA i RASGRFY POENA Lrrziim
LRFNS. LRACAC TP SERMAREXY PRSSSE GRIA SHSAE
TeFLE BICC)  govGAse GIne

) ] o os
MAF
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dots represent the novel loci discovered by Tedja et al. [18] and the pink dots represent the loci
found by Verhoeven et al. [108], which now have been replicated

perturbations are responsible for larger changes in the retina-to-sclera signaling cascade,
ultimately explaining differences in refractive error from individual to individual.
Pathways inferred from the first large-scale CREAM GWAS [108, 110] included
neurotransmission (GRIA4), ion transport (KCNQ5), retinoic acid metabolism
(RDHYS), extracellular matrix remodelling (LAMA2, BMP2) and eye development
(S1X6, PRSS56). The 23andMe GWAS identified an overlapping set of pathways:
neuronal development (KCNMAI, RBFOXI, LRRC4C, NGL-1, DLG2, TJP2),
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dromic myopia genes according to literature. Bold: genes identified for both common refractive
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extracellular matrix remodelling (ANTXR2, LAMA?2), the visual cycle (RDH5, RGR,
KCNQ)5), eye and body growth (PRSS56, BMP4, ZBTB38, DLX1) and retinal gan-
glion cell (ZIC2, SFRPI) [117]. When considered in the context of known protein—
protein interactions, many genes in these pathways are related to growth and cell
cycle pathways, such as the TGF-beta/SMAD and MAPK pathways [118].

The most recent meta-analysis combining data from CREAM and 23andMe data
taken together confirmed previous findings and offered additional insights [18]. In a
gene-set analysis, several pathways were highlighted including “abnormal photore-
ceptor inner segment morphology” (Mammalian Phenotype Ontology (MP) 0003730);
“thin retinal outer nuclear layer” (MP 0008515); “nonmotile primary cilium” (Gene
Ontology (GO) 0031513); “abnormal anterior-eye-segment morphology” (MP
0005193) and “detection of light stimulus” (GO 0009583). The genes implicated in
this large-scale GWAS were distributed across all cell types in the retina-to-sclera
signaling cascade (neurosensory retina, RPE, vascular endothelium and extracellular
matrix, Fig. 5.3). The larger GWAS also suggested novel mechanisms, including
angiogenesis, rod-and-cone bipolar synaptic neurotransmission and anterior-segment
morphology. Interestingly, a novel association was found at the DRD1 gene, support-
ing previous work linking the dopamine pathway to myopia.

5.8 Next Generation Sequencing

GWAS approaches have been highly effective in assessing the role of common vari-
ants in myopia but such methods cannot effectively characterize very rare genomic
variants. Whole exome sequencing (WES) allows investigation of rare variants in
exonic regions; due to cost, applications to date have primarily been in family stud-
ies or studies of early onset high myopia.
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Studies employing WES to date have either focused on family designs (e.g. par-
ticular inheritance patterns such as X-linkage or conditions such as myopic anisome-
tropia) or case-control studies of early onset high myopia [119-122]. The WES-based
approaches identified several novel mutations in known myopia genes (Table 5.5).
For instance, Kloss et al. [131] performed WES on 14 families with high myopia,
identifying 104 genetic variants in both known MYP loci (e.g. AGRN, EMEI and
HOXA2) and in new loci (e.g. ATL3 and AKAP12) [131]. In the family studies, most
variants displayed an autosomal dominant mode of inheritance [119, 123, 124, 130]
although X-linked heterozygous mutations were found in ARR3 [126].

Both retinal dystrophies and ocular development disorders coincide with myo-
pia. Sun et al. [132] investigated if there was a genetic link by evaluating a large
number of retinal dystrophy genes in early onset high myopia. They examined 298
unrelated myopia probands and their families, identifying 29 potentially pathogenic
mutations in COL2A1, COL11AI, PRPH2, FBNI, GNATI, OPAl, PAX2, GUCY2D,
TSPANI2, CACNAIF and RPGR with mainly an autosomal dominant pattern.

5.9  Environmental Influences Through Genetics

Although myopia is highly heritable within specific cohorts, dramatic changes in
environment across many human populations have led to large changes in prevalence
over time [133-136]. The role of changes in socioeconomic status, time spent out-
doors, education and near-work are now well established as risk factors for myopia,
based on observational studies [137-139]. Education has proven the most influential
and consistent factor, with a doubling in myopia prevalence when attending higher
education compared to finishing only primary education [140-142]. There are two
main areas where genetic studies can inform our understanding of the role of environ-
ment. Firstly, gene—environment studies can highlight where interactions exist.
Secondly, observational studies only establish association and not causation—in some
circumstances genetic data can be used to strengthen the case for an environmental
risk factor causally (or not) influencing myopia risk (Mendelian randomization).
Gene—environment (GxE) interaction analyses examine whether genes operate
differently across varying environments. GXE studies in myopia have focused pri-
marily on education. An early study in North American samples examined GxE for
myopia and the matrix metalloproteinases genes (MMPI-MMPI10): a subset of
SNPs were only associated with refraction in the lower education level [58, 59]. A
subsequent study in five Singapore cohorts found variants in DNAH9, GJD2 and
ZMAT4, which had a larger effect on myopia in a high education subset [143].
Subsequent efforts to examine GXE considered the aggregate effects of many SNPs
together. A study in Europeans found that a genetic risk score comprising 26
genetic variants was most strongly associated with myopia in individuals with a
university level education [144]. A study examining GXE in children considered
near work and time outdoors in association with 39 SNPs and found weak evidence
for an interaction with near work [144, 145]. Finally, a CREAM study was able to
identify additional myopia risk loci by allowing for a GXE approach [19].
Mendelian randomization (MR) infers whether a risk factor is causally associ-
ated with a disease. MR exploits the fact that germline genotypes are randomly
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assigned at meiosis, to enable a “natural” randomized controlled trial. Since the
assigned genotypes are independent of non-genetic confounding and are unmodi-
fied by disease processes, MR offers a better assessment of causality than that avail-
able from observational studies [146, 147].

Two MR studies found a causal effect of education on the development of myopia.
One of the MR studies tested for causality bi-directionally [148]. Both found a larger
effect through MR than that estimated from observational studies suggesting that con-
founding in observational studies may have been obscuring the true relationship [149].
As expected, there was little evidence of myopia affecting education (—0.008 years/
dioptre, P = 0.6). Another study focused on the causality of low vitamin D on myopia
due to controversy in the literature [150]. The estimated effects of vitamin D on refrac-
tive error were so small (Caucasians: —0.02 [95% CI —0.09, 0.04] dioptres (D) per
10 nmol/l increase in vitamin D concentration; Asians: 0.01 [95% CI —0.17, 0.19] D
per 10 nmol/l increase) that the authors concluded that the true contribution of vitamin
D levels to degree of myopia is probably zero and that previous observational findings
were likely confounded by the effects of time spent outdoors.

5.10 Epigenetics

Epigenetics in refractive error and myopia is postulated to be important due to the
known effects of environmental factors on refractive error and myopia development.
Nevertheless, this field is still developing and some characteristics of epigenetics ren-
der it a difficult issue to unravel. Epigenetic features can be influenced by environmen-
tal factors and are time dependent and tissue specific. This complicates the study of
these effects, since myopia and refractive errors develop during childhood and young
adolescence and obtaining eye tissue, preferably retinal and scleral would be unethical.
Furthermore, although some epigenetic processes are conserved across species, this is
not always the case: making animal studies not always translational to humans.

Non-Coding RNAs and Myopia The latest GWAS meta-analysis found 31 of 161
loci residing in or near regions transcribing (small) noncoding RNAs, thus hinting
towards the importance of epigenetics [18, 151]. MicroRNAs, or miRNAs, are the
best-characterized family of small non-coding RNAs. They are approximately 19-24
nucleotides in length in their mature form. They are able to bind to 3" UTR regions on
RNA polymers by sequence-specific post-transcriptional gene silencing; one miRNA
can regulate the translation of many genes. MiRNAs have been a hot topic in the last
years due to their potential clinical application: the accessibility of the retina for
miRNA-based therapeutic delivery has great potential for the prevention and treat-
ment of retinal pathologies [152]. Up to now, there have only been a handful of studies
on miRNA and its role in myopiagenesis in humans, these are summarized in Table 5.6.

5.11 Implications for Clinical Management

Due to the high polygenicity of myopia and low explained phenotypic variance by
genetic factors (7.8%), clinical applications derived from genetic analyses of myo-
pia are currently limited. Risk predictions for myopia in children are based on
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family history, education level of the parents, the amount of outdoor exposure and
the easily measurable refractive error and axial length.

Currently, we are able to make a distinction between high myopes and high
hyperopes based on the polygenic risk scores derived from CREAM studies: per-
sons in the highest decile for the polygenic risk score had a 40-fold-greater risk of
myopia relative to those in the lowest decile.

A prediction model including age, sex and polygenic risk score achieved an AUC
of 0.77 (95% CI = 0.75-0.79) for myopia versus hyperopia in adults (Rotterdam
Study I-IIT) [18]. This AUC is similar to that achieved by modelling environmental
factors only; the AUC for myopia incidence in a European child cohort was 0.78
considering parental myopia, 1 or more books read per week, time spent reading, no
participation in sports, non-European ethnicity, less time spent outdoors and base-
line AL-to-CR ratio [156]. To date, one study has assessed both environmental and

Table 5.6 Overview of microRNAs associated with myopia

MiRNA | SNP Study design Outcome Author
MiR-328 | 15662702 High myopia case-control Down regulation effect on | Liang
binding study (Ncase = 1083, PAXG6 expression with C | et al.
site in <—6 D; Ncontrol 1096 allele, relative to T allele. | (2011)
3'UTR >-1.5D) OR for CC genotype 2.1 [153]
of PAX6 (P =0.007). This effect
gene was significant for
extreme myopia
(<—10 D) and not for high
myopia
MiR-184 | n.a. MiR-184 region sequenced | No miR-184 mutations Lechner
in 780 unrelated keratoconus | were detected in the axial | et al.
patients and 96 unrelated myopia cohort (2013)
Han southern Chinese [154]
patients with axial myopia
under the hypothesis that
axial myopia is associated
with keratoconus, possibly
under regulation of
MiR-184
MiR-29a | rs157907 High myopia case-control The G allele of the Xie
study (Ncases = 254, rs157907 locus was et al.
<—6 D; Ncontrols = 300, significantly associated (2016)
—0.5t0 0.5 D). COL1A1 is with decreased risk of [155]
possibly targeted by severe myopia (<10 D;
MiR-29a P =0.04), compared to
the A allele. rs157907
A/G might regulate
miR-29a expression
levels, but no functional
studies have been
conducted to confirm this
hypothesis
Let-7i rs10877885 | High myopia case-control No significant association | Xie
study (Ncases = 254, with rs10877885 (C/T) et al.
<—6 D; Ncontrols = 300, was found with myopia (2016)
—0.5t0 0.5 D). COL1ALl is risk [155]
possibly targeted by Let-71
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genetic factors together and showed that modelling both genes and environment
improved prediction accuracy [157]. Although these efforts to improve prediction
are promising, a prediction-based approach will only be beneficial if randomized
controlled trials of atropine therapy show that children with persistent myopic pro-
gression benefit from an earlier and higher dose of atropine administration. The
additional costs of genetic testing and potentially invasive regime (collecting blood
from children) also need to be taken into account.

5.12 Concluding Remarks

The scientific community has discovered more than 200 loci associated with myopia
and its endophenotypes with a variety of approaches (linkage, candidate gene, GWAS,
post-GWAS gene-based associations, next generation sequencing approaches, gene
environment interactions and epigenetic approaches). With the rise of large biobanks,
such as the UK Biobank [158], further GWAS meta-analyses between large consortia
and companies will enable identification of many more genes. This will allow full
elucidation of the molecular mechanism of myopiagenesis. Whole genome sequenc-
ing approaches will replace both GWAS and WES, and will elucidate the genetic
structure which regulates the function of the myopia risk variants.

To fully understand the underlying mechanisms, the focus should lie on unravel-
ing the genetic and epigenetic architecture of myopia by exploring interactions and
effects of other “omics” in relevant tissue, i.e. multi-omics. This concept includes
incorporation of methylomics, transcriptomics, proteomics and metabolomics.
Future projects should focus on gathering more omics data on eye tissue. Next to the
multi-omics approach, modelling gene—environment effects will tell us more about
the genetic key players which are also susceptible to the environment. Furthermore,
future functional studies interrogating the candidate genes and loci will point us to
therapeutic solutions for myopia management.
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