150 research outputs found

    Mapping Face Recognition Information Use across Cultures.

    Get PDF
    Face recognition is not rooted in a universal eye movement information-gathering strategy. Western observers favor a local facial feature sampling strategy, whereas Eastern observers prefer sampling face information from a global, central fixation strategy. Yet, the precise qualitative (the diagnostic) and quantitative (the amount) information underlying these cultural perceptual biases in face recognition remains undetermined. To this end, we monitored the eye movements of Western and Eastern observers during a face recognition task, with a novel gaze-contingent technique: the Expanding Spotlight. We used 2° Gaussian apertures centered on the observers' fixations expanding dynamically at a rate of 1° every 25 ms at each fixation - the longer the fixation duration, the larger the aperture size. Identity-specific face information was only displayed within the Gaussian aperture; outside the aperture, an average face template was displayed to facilitate saccade planning. Thus, the Expanding Spotlight simultaneously maps out the facial information span at each fixation location. Data obtained with the Expanding Spotlight technique confirmed that Westerners extract more information from the eye region, whereas Easterners extract more information from the nose region. Interestingly, this quantitative difference was paired with a qualitative disparity. Retinal filters based on spatial-frequency decomposition built from the fixations maps revealed that Westerners used local high-spatial-frequency information sampling, covering all the features critical for effective face recognition (the eyes and the mouth). In contrast, Easterners achieved a similar result by using global low-spatial-frequency information from those facial features. Our data show that the face system flexibly engages into local or global eye movement strategies across cultures, by relying on distinct facial information span and culturally tuned spatially filtered information. Overall, our findings challenge the view of a unique putative process for face recognition

    The effect of intergroup competition on intragroup affiliation in primates

    Get PDF
    Researchers from various disciplines have hypothesized a positive correlation between the level of intergroup contest competition (IGCC) and the evolution of behavioural traits, such as cooperation, altruism and friendship, which promote intragroup affiliation. Empirical support for this hypothesis is, however, scarce and mainly available from humans. We tested whether the level of IGCC affects intragroup affiliation (i.e. intragroup grooming exchange) among male and female nonhuman primates. To quantify intragroup affiliation, we used social network measures and a grooming index. Our measure of IGCC combined frequency of intergroup encounters and proportion of aggressive encounters and was calculated separately for males and females. We ran our analyses on 27 wild groups of primates belonging to 15 species (13 Cercopithecinae, one Colobinae and one Cebinae). Our analyses reveal a clear pattern of correlated evolution between grooming network density and interindividual variation in the number of grooming partners on the one hand and the intensity of IGCC on the other in females, but not males. Thus, our results suggest that the exact nature of the relationship between IGCC and intragroup affiliation is sex specific. These results may be explained by the differential costs and benefits males and females experience during aggressive intergroup confrontations and by sex-specific differences in intragroup affiliation

    Chloroquine Mediated Modulation of Anopheles gambiae Gene Expression

    Get PDF
    Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection.In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes.The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission

    PRKCA Polymorphism Changes the Neural Basis of Episodic Remembering in Healthy Individuals

    Get PDF
    Everyday functioning relies on episodic memory, the conscious retrieval of past experiences, but this crucial cognitive ability declines severely with aging and disease. Vulnerability to memory decline varies across individuals however, producing differences in the time course and severity of memory problems that complicate attempts at diagnosis and treatment. Here we identify a key source of variability, by examining gene dependent changes in the neural basis of episodic remembering in healthy adults, targeting seven polymorphisms previously linked to memory. Scalp recorded Event-Related Potentials (ERPs) were measured while participants remembered words, using an item recognition task that requires discrimination between studied and unstudied stimuli. Significant differences were found as a consequence of a Single Nucleotide Polymorphism (SNP) in just one of the tested genes, PRKCA (rs8074995). Participants with the common G/G variant exhibited left parietal old/new effects, which are typically seen in word recognition studies, reflecting recollection-based remembering. During the same stage of memory retrieval participants carrying a rarer A variant exhibited an atypical pattern of brain activity, a topographically dissociable frontally-distributed old/new effect, even though behavioural performance did not differ between groups. Results replicated in a second independent sample of participants. These findings demonstrate that the PRKCA genotype is important in determining how episodic memories are retrieved, opening a new route towards understanding individual differences in memory

    AKT overactivation can suppress DNA repair via p70S6 kinase-dependent downregulation of MRE11

    Get PDF
    Deregulated AKT kinase activity due to PTEN deficiency in cancer cells contributes to oncogenesis by incompletely understood mechanisms. Here, we show that PTEN deletion in HCT116 and DLD1 colon carcinoma cells leads to suppression of CHK1 and CHK2 activation in response to irradiation, impaired G2 checkpoint proficiency and radiosensitization. These defects are associated with reduced expression of MRE11, RAD50 and NBS1, components of the apical MRE11/RAD50/NBS1 (MRN) DNA damage response complex. Consistent with reduced MRN complex function, PTEN-deficient cells fail to resect DNA double-strand breaks efficiently after irradiation and show greatly diminished proficiency for DNA repair via the error-free homologous recombination (HR) repair pathway. MRE11 is highly unstable in PTEN-deficient cells but stability can be significantly restored by inhibiting mTORC1 or p70S6 kinase (p70S6K), downstream kinases whose activities are stimulated by AKT, or by mutating a residue in MRE11 that we show is phosphorylated by p70S6K in vitro. In primary human fibroblasts, activated AKT suppresses MRN complex expression to escalate RAS-induced DNA damage and thereby reinforce oncogene-induced senescence. Taken together, our data demonstrate that deregulation of the PI3K-AKT/ mTORC1/ p70S6K pathways, an event frequently observed in cancer, exert profound effects on genome stability via MRE11 with potential implications for tumour initiation and therapy
    corecore