102 research outputs found

    High-resolution distribution modeling of a threatened short-range endemic plant informed by edaphic factors

    Get PDF
    Short-range endemic plants often have edaphic specializations that, with their restricted distributions, expose them to increased risk of anthropogenic extinction. Here, we present a modeling approach to understand habitat suitability for Ricinocarpos brevis R.J.F.Hend. & Mollemans (Euphorbiaceae), a threatened shrub confined to three isolated populations in the semi-arid south-west of Western Australia. The model is a maximum entropy species distribution projection constructed on the basis of physical soil characteristics and geomorphology data at approximately 25 m2 (1 arc-second) resolution. The model predicts the species to occur on shallow, low bulk density soils that are located high in the landscape. The model shows high affinity (72.1% average likelihood of occurrence) for the known populations of R. brevis, as well as identifying likely locations that are not currently known to support the species. There was a strong relationship between the likelihood of R. brevis occurrence and soil moisture content that the model estimated at a depth of 20 cm. We advocate that our approach should be standardized using publicly available data to generate testable hypotheses for the distribution and conservation management of short-range endemic plant species for all of continental Australia

    A 300-year record of sedimentation in a small tilled catena in Hungary based on δ13C, δ15N, and C/N distribution

    Get PDF
    Purpose Soil erosion is one of the most serious hazards that endanger sustainable food production. Moreover, it has marked effects on soil organic carbon (SOC) with direct links to global warming. At the same time, soil organic matter (SOM) changes in composition and space could influence these processes. The aim of this study was to predict soil erosion and sedimentation volume and dynamics on a typical hilly cropland area of Hungary due to forest clearance in the early eighteenth century. Materials and methods Horizontal soil samples were taken along two parallel intensively cultivated complex convex-concave slopes from the eroded upper parts at mid-slope positions and from sedimentation in toe-slopes. Samples were measured for SOC, total nitrogen (TN) content, and SOMcompounds (δ13C, δ15N, and photometric indexes). They were compared to the horizons of an in situ non-eroded profile under continuous forest. On the depositional profile cores, soil depth prior to sedimentation was calculated by the determination of sediment thickness. Results and discussion Peaks of SOC in the sedimentation profiles indicated thicker initial profiles, while peaks in C/N ratio and δ13C distribution showed the original surface to be ~ 20 cm lower. Peaks of SOC were presumed to be the results of deposition of SOC-enriched soil from the upper slope transported by selective erosion of finer particles (silts and clays). Therefore, changes in δ13C values due to tillage and delivery would fingerprint the original surface much better under the sedimentation scenario than SOC content. Distribution of δ13C also suggests that the main sedimentation phase occurred immediately after forest clearance and before the start of intense cultivation with maize. Conclusions This highlights the role of relief in sheet erosion intensity compared to intensive cultivation. Patterns of δ13C indicate the original soil surface, even in profiles deposited as sediment centuries ago. The δ13C and C/N decrease in buried in situ profiles had the same tendency as recent forest soil, indicating constant SOM quality distribution after burial. Accordingly, microbiological activity, root uptake, and metabolism have not been effective enough to modify initial soil properties

    Sensitivity of South American tropical forests to an extreme climate anomaly.

    Get PDF
    corecore