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1  | INTRODUC TION

Species rarity is a common state, driven by diverse factors, that 
manifests in different ways (Fiedler & Ahouse, 1992; Kruckeberg 
& Rabinowitz, 1985). One form of rarity involves the localization of 
a species to a relatively small distribution and often an association 
with specialized habitat features (Lavergne, Thompson, Garnier, & 

Debussche, 2004), a pattern termed short-range endemism (SRE; 
Sreenivasulu and Amritphale, 1999). Short-range endemism may 
not be necessarily associated with either numerical rarity, since 
large and stable populations can occur in these specialized habitats, 
nor with high extinction risk (Murray, Thrall, Gill, & Nicotra, 2002), 
even throughout periods of substantial climatic changes (Byrne et 
al., 2018; Patsiou, Conti, Zimmermann, Theordoris, & Randin, 2014). 
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Abstract
1.	 Short-range endemic plants often have edaphic specializations that, with their re-

stricted distributions, expose them to increased risk of anthropogenic extinction.
2.	 Here, we present a modeling approach to understand habitat suitability for 

Ricinocarpos brevis R.J.F.Hend. & Mollemans (Euphorbiaceae), a threatened shrub 
confined to three isolated populations in the semi-arid south-west of Western 
Australia. The model is a maximum entropy species distribution projection con-
structed on the basis of physical soil characteristics and geomorphology data at 
approximately 25 m2 (1 arc-second) resolution.

3.	 The model predicts the species to occur on shallow, low bulk density soils that are 
located high in the landscape. The model shows high affinity (72.1% average likeli-
hood of occurrence) for the known populations of R. brevis, as well as identifying 
likely locations that are not currently known to support the species. There was a 
strong relationship between the likelihood of R. brevis occurrence and soil mois-
ture content that the model estimated at a depth of 20 cm.

4.	 We advocate that our approach should be standardized using publicly available 
data to generate testable hypotheses for the distribution and conservation man-
agement of short-range endemic plant species for all of continental Australia.
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However, it does increase susceptibility to anthropogenic extirpation 
where those habitats might be the target of intense habitat modifi-
cation (Burgman, Keith, Hopper, Widyatmoko, & Drill, 2007; Coates 
et al., 2014; Gibson, Coates, Leeuwen, & Yates, 2015). Conservation 
of these species is challenging in situations where their only known 
habitats are proposed to be either removed or significantly altered 
(Lande, Landweberg, & Dobson, 1999).

Short-range endemism is an intriguing phenomenon because it 
presents peculiar patterns that do not intuitively meet with our ex-
pectations of adaptation and evolution. Quite often the landscape 
presents large areas of apparently suitable habitat in which SRE 
species are not present and appear never to have been present for 
no obvious reason/s (Robinson, Virgilio, Temple-Smith, Hesford, & 
Wardell-Johnson, 2018). In the event that these habitats are sepa-
rated by some potential dispersal or geographic barriers, however 
small, stochastic local extinction with a failure to reinvade is often 
invoked as the reason for this patchiness (Fiedler & Ahouse, 1992; 
Hopper & Gioia, 2004). This suggestion however, is not always a 
feasible explanation in apparently contiguous habitats. In these cir-
cumstances, it is often presumed that there are cryptic environmen-
tal conditions that either provide a competitive advantage to SRE 
species by excluding competitors, or provide a specific requirement 
that is not available anywhere else in the landscape (Lavergne et al., 
2004). While these specific requirements are critical to defining the 
distributions of the species naturally, they also place constraints on 
many of the activities typically used to conserve species like this, 
such as the identification of unknown populations, the establishment 
of insurance populations, or translocation to new habitats should the 
existing populations come under threat (Armstrong & Seddon, 2008; 
Maschinski & Albrecht, 2017).

Ecological management requires quantification of threatening 
processes and constraints (e.g., Alagador, Cerdeira, & Araújo, 2015) 
as well as understanding species biology and spatial ecology (Fiedler 
& Ahouse, 1992). Correlative distribution modeling can be imple-
mented from basic, and sometimes freely available, data to offer 
initial insights into species-specific niche constraints (Kearney & 
Porter, 2009). In an applied context, correlative distribution model-
ing has been used to guide translocations and assisted colonizations 
(Ferrarini et al., 2016; Regan et al., 2012). While climate is typically 
used as the basis for such modeling, available global climate projec-
tions (e.g., Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; Kearney, 
Isaac, & Porter, 2014; Karger et al., 2017) generally produced at 30 
arc-seconds (i.e., >0.5 km2) or more resolution, cannot capture spe-
cific nuances of microclimatic variability critical to the conservation 
management of short-range (<0.1 km2) endemic species. Climatically 
informed models may thus fail to model distribution of SRE spe-
cies and require alternative modeling approaches (Beauregard & de 
Blois, 2014; Thuiller, 2013). However, interpolating large-scale atmo-
spheric conditions to estimate atmospheric temperature and rainfall 
patterns at higher resolution by “quasi-mechanistic statistical down-
scaling” (Karger et al., 2017; Xu & Hutchinson, 2013) may potentially 
be highly informative to project-specific species distribution models 
(SDMs). Outputs include air temperature, relative humidity, and wind 

speed, solar radiation, predicted precipitation, and soil temperature, 
and moisture content at finer resolution than global or regional cli-
mate data (Kearney & Porter, 2016). These latter variables of soil mi-
crohabitat are key drivers of many physiological processes in plants 
(Lambers, Chapin, & Pons, 2008). Thus, they are of key interest in 
modeling plant distributions, particularly at the resolution required 
to identify habitats for SRE taxa, where climatic conditions might be 
very similar across a landscape, but soil microhabitats can change 
cryptically over short distances. Understanding how below-ground 
conditions can change even when above-ground conditions appear 
homogeneous might provide substantial insights into ecological con-
straints defining the current distribution of SRE species and thereby 
inform their conservation and restoration.

The challenge for conservation agencies or other stakeholders in 
applying microclimatic data at appropriate scale and resolution is the 
requirement for substantial computational power to develop high-res-
olution environmental surfaces (Buckley et al., 2010). The problem 
of project-specific spatial data resolution has been approached in 
previous SDMs (e.g., Keppel et al., 2017) by training models using 
high-resolution topographic data collected from aerial photography, 
photogrammetry, and Lidar scanning, proving capable of resolving 
plausible model projections. The interpretation of these models is 
somewhat limited because topographical elements do not relate di-
rectly to biological processes that constrain distributions (Buermann 
et al., 2008; He et al., 2015). At best, they are proxies of biologically 
relevant microclimatic forcing factors, and, as such, offer limited in-
sight into the ecological requirements of the organism. We propose 
a workflow designed to minimize this heavy computational require-
ment (Figure 1) and potentially identify more directly biologically 
meaningful models. This workflow establishes SDMs on the basis of 
standardized data describing edaphic characteristics, and then further 
interrogates microclimatic correlates of habitat suitability in a subset 
of locations. As such, it may prove practical to develop high-resolu-
tion SDMs for SRE species independent of climate using these data 
layers. Interpreting the influences of microclimatic correlates can then 
be pursued by training a microclimatic algorithm on a subset of the 
edaphic data. In this quasi-mechanistic manner, patterns of endemism 
may be interrogated to either determine locations of potentially un-
identified populations of SRE species, or to inform the establishment 
of new insurance populations or mitigation-driven translocations.

Banded ironstone formations (BIF) are known for their high flo-
ral endemism, and their vulnerability to anthropogenic disturbance 
through mining and provide a natural testbed for developing the SDMs 
discussed above. One such example is the threatened SRE shrub, 
Ricinocarpos brevis R.J.F.Hend. & Mollemans (Euphorbiaceae), which 
is recognized under Australian federal legislation (the Environment 
Protection and Biodiversity Conservation Act 1999) and confined to 
isolated locations in the semi-arid south-west of Western Australia 
(Krauss & Anthony, 2018). Populations comprise of ~16,000 individ-
uals over a total area of 2,000 km2, of which only 8 km2 is specifi-
cally occupied (Department of Environment & Conservation, 2011). 
Focussing on R. brevis to develop a standardized SDM approach pre-
sented several advantages over other SRE flora. For example, there 
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are multiple, largely intact populations, all of which are restricted 
to very small spatial extents at different locations. The species has 
no sympatric close relatives over its area of known occupancy, thus 
eliminating the identification of potential habitats already filled by 
congenerics from our interpretation. Further, the species is associ-
ated with only a few landforms and vegetation communities which 
are more widely dispersed than the known populations of R. brevis. 
Consequently, we aim to demonstrate the practical value of our new 
workflow on a SRE species with clear conservation significance and 
for which efforts at in situ restoration are already underway (Gibson, 
Coates, & Thiele, 2007; Gibson, Yates, & Dillon, 2010; Krauss & 
Anthony, 2018; Turner et al., 2018).

We hypothesized that the SDM of R. brevis could be created on the 
basis of edaphic constraints and that potentially suitable habitat within 
the wider landscape remains unused by this species and therefore, 
may be targeted in future translocations. As such, the high-resolution 
SDM reported here had the following objectives: identifying landscape 
drivers of the distribution of R. brevis, and, by extrapolating the model 

across a larger region, identifying locations outside of the current dis-
tribution that, according to the model, would be most likely to support 
populations of R. brevis. Here we explore the increased modeling flex-
ibility and interpretation possible by training a correlative distribution 
model using ultra-high-resolution data describing geomorphology and 
soils that can also inform the calculation of microclimatic factors. This 
was undertaken to identify the microclimatic and ecophysiological 
correlates of rarity in a BIF endemic species in Western Australia, a 
landscape noted for its high rates of short-range endemism and eco-
nomically valuable iron ore.

2  | MATERIAL S AND METHODS

2.1 | Data sources

Ricinocarpos brevis has been heavily surveyed by the mineral extrac-
tion industry under their obligations to the Australian government 

F I G U R E  1   Our model workflow used 
a series of topographic and edaphic 
elements to define the environmental 
layers (a). Through MaxEnt (Phillips 
& Dudik, 2008), we developed an 
organism model (b) using locations of 
known species occurrence to project our 
final species distribution model (c). To 
interrogate the microclimatic correlates 
of high habitat suitability, we developed 
a microclimatic model for 2,000 subset 
locations across our study area using the 
micro_global algorithm in NicheMapR 
(Kearney & Porter, 2016) and then 
used a linear modeling approach (d) to 
seek correlation between microclimatic 
conditions and high habitat suitability. 
This workflow substantially reduces the 
computing power required by reducing 
the microclimatic calculations to a smaller 
subset of locations within the projection 
region
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to develop management plans to offset the impacts on the species 
resulting from mining. Collectively, 13,081 individuals are known 
across three populations, and their locations have all been recorded. 
We used these locations as our training data, ultimately contribut-
ing 762 point locations after local duplicates had been removed (see 
Section 2.2) to construct two species distribution models for R. bre-
vis. The SDM that used edaphic and geomorphological input data 
only is referred to as the edaphic-SDM, and the SDM that used cli-
mate input data only is referred to as the climate-SDM below.

The edaphic-SDM presented was constructed around publicly 
available data sets describing geomorphology and physical soil 
characteristics at one arc-second resolution (approximately 25 m2) 
or higher, providing the higher resolution required to model popula-
tions over small geographic ranges (Figure 2). Ultra-high-resolution 
digital elevation, aspect, and slope data were extracted from Gallant 
et al. (2011), and Gallant and Austin (2012a, 2012b), respectively. 
Soil properties including clay, sand, and silt percentage at 15  cm 
depth were extracted from Viscarra Rossel et al. (2014a); Viscarra 
Rossel et al. (2014b); Viscarra Rossel et al. (2014c). Soil bulk density 
(Mg/m3) and depth were interpolated for each 25 m2 grid location 
from national soil data provided by the Australian Collaborative 
Land Evaluation Program ACLEP, endorsed through the National 
Committee on Soil and Terrain NCST (www.clw.csiro.au/aclep​). The 
spatial extent of the training data set (Elith et al., 2011; Van der Wal, 
Schoo, Graham, & Williams, 2009) was objectively defined following 
Webber, Yates, et al. (2011) by spatially intersecting the distribution 
records for all known locations of R.  brevis with a continental en-
vironmental domain classification (Mackey, Berry, & Brown, 2008). 
The training region was defined by selecting the environmental do-
main polygons that encompass the known occurrence locations of 
the three populations at the Perrinvale, Johnston, and Windarling 
Ranges, (Figure 3), with neighboring polygons and “second neighbor” 
polygons also included. To provide a comparison of our non-climat-
ically informed SDM to a more traditional approach, we calculated 
a down-scaled microclimatic model at 1 arc-sec resolution using 
the “micro_global” algorithm of the NicheMapR package (Kearney, 
2016) in R (R Core Team, 2016). The details of this process are more 
completely explained below. We constructed our climate-SDM for 
three landscapes encompassing a 10 km buffer around all the known 
individuals of R.  brevis that described patterns in air temperature, 
solar irradiance, soil water potential at a depth of 20 cm and soil tem-
perature at a depth of 10 cm during the reproductive season of the 
species in the austral winter. These microclimatic parameters corre-
spond to the parameters Bio08, Bio24, and Bio32 of the established 
“bioclim” data set (Kriticos, Jarošik, & Ota, 2014; Xu & Hutchinson, 
2013). Soil temperatures are not generally included in the estab-
lished global climate layers.

2.2 | Species distribution modeling

We used the maximum entropy algorithm implemented in MaxEnt 
version 3.3.3a (Phillips, Anderson, & Schapire, 2006; Phillips & Dudik, 

2008) to model the local distribution of R. brevis within the three 
known populations. Default MaxEnt parameter settings (maximum 
number of background points 10,000; regularization multiplier 1; 
auto features; maximum iterations 500; and convergence threshold 
0.00001 and duplicate records deleted) were used to develop logistic 
likelihoods of occurrence, ranging from zero at the lowest likelihood 
of presence to one at the strongest prediction for presence (Phillips, 
2008). In applying the 10th percentile training presence, which 
omits the 10% most extreme presence observations, we sought to 
more accurately represent the “core of the species' present range” 
(Morueta-Holme, Fløjgaard, & Svenning, 2010). We then used a 10% 
test presence, which reserves 10% of the known occurrence locations 
for testing the resulting models (Phillips et al., 2006; Phillips & Dudik, 
2008). Pilot edaphic-SDMs were developed using all the available 
candidate layers (elevation, aspect, slope, clay, sand and silt content, 
and bulk density) and refined by removing layers that contributed less 
than 5% contribution to fit. The final model was constructed using 
only elevation, aspect, soil depth, sand and silt content, and bulk den-
sity (Figure 3) and projected to a 50,000 km2 area that included the 
entirety of the Windarling, Perrinvale and Johnston Ranges, and much 
of the surrounding plains and other intervening landforms (Figure 4). 
To explore patterns of extrapolation in the resulting model projection, 
we measured similarity of the covariance matrix between training and 
projection locations with Mahalanobis distance (Mesgaran, Cousens, 
& Webber, 2014) using the ecospat package (Di Cola et al., 2017) in the 
R statistical environment (R Core Team, 2016) to compare the model 
backgrounds with the projection to the wider project area.

2.3 | Microclimatic Interpretations

Geomorphological and soil characteristics used in our edaphic-SDM 
were chosen for their capacity to parameterize a microclimatic 
model using the “micro_global” algorithm of the NicheMapR package 
(Kearney, 2016) in R (R Core Team, 2016). This algorithm, developed 
to provide context for mechanistic distribution modeling (Kearney 
& Porter, 2016), interpolates a climate model (New, Lister, Hulme, & 
Makin, 2002) to estimate both atmospheric and substrate conditions 
associated with areas predicted by the SDM. By incorporating eleva-
tion, slope, aspect, and soil texture, these calculations can be modified 
as a function of shading and soil physical properties (Kearney, Isaac, 
et al., 2014; Kearney, Shamakhy, et al., 2014). Substrate conditions, to 
our knowledge, are not well-captured by other existing climate models 
(e.g., Hijmans et al., 2005; Karger et al., 2017), despite their critical 
value in estimating the abiotic niche. Two thousand random points 
were selected across the training range, and their physical soil char-
acteristics were summarized into a format appropriate for NicheMapR 
following a freely available soil texture calculator produced by the 
United States Department of Agriculture (https​://www.nrcs.usda.gov/
wps/porta​l/nrcs/detai​l/soils/​surve​y/?cxml:id=nrcs1​42p2_054167), 
adapted to a computer algorithm similar to Gerakis and Baer (1999). 
For lack of any quantified proxies for vegetation shading, all microcli-
matic projections were run assuming full sun, with the recognition that 

http://www.clw.csiro.au/aclep
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cxml:id=nrcs142p2_054167
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cxml:id=nrcs142p2_054167
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this will overestimate temperature properties and underestimate soil 
water potentials under vegetation and associated leaf litter. The model 
projections were averaged following calculation of microclimatic con-
ditions every hour over a 10-year projection period. The resulting mi-
croclimatic projections included average annual air temperature at a 
reference height of 1.0 m (corresponding to typical R. brevis canopy 
height), soil temperatures and water potentials at 0, 0.2 and 1.0  m 
depth, and annual average solar radiation (i.e., hours of sunlight). 
These three soil depths capture the biologically active layer of topsoil 
(Berrigan & Partridge, 1997; Jasper, Robson, & Abbott, 1988), relevant 
for seed germination, seedling establishment, plant root growth, and 
water acquisition, together with root zone conditions.

Although these are less completely resolved microclimatic cor-
relates than published data sets, which dissect the raw climatic data 

according to bioclimatic relevance (Hijmans et al., 2005; Kearney, 
Isaac, et al., 2014; Kriticos et al., 2012), they represent the simplest 
set of variables known to have physiological significance to plant 
performance. In order to interpret the ecophysiological correlates 
of modeled occurrence likelihood, a linear model was constructed, 
comparing likelihood of occurrence against all the microclimatic 
projections in R. A model averaging approach was carried out 
in the MuMIn package (Barton, 2013) using Akaike Information 
Criterion values (AICc, corrected for small sample bias; Burnham 
and Anderson, 2002) to find the most parsimonious model linking 
likelihood of occurrence with microclimatic parameters.

In order to compare the edaphic-SDM with a more traditional, 
climatically informed model, we developed a climate-SDM using the 
climatic layers estimated using the “micro_global” algorithm of the 

F I G U R E  2   A comparison of different resolutions of available data for species distribution modeling. The black grid represents the scale 
of the majority of freely available climate layers at 30 arc-second resolution. At the location where this study took place, that translates to 
a 754 m grid size. The gray grid represents the resolution of the layers that we used for our modeling at 1 arc-second (roughly 25 m grid 
size). As can be seen, the coarser resolution encompasses the known locations (black points) in a small number of grid squares, reducing 
the training power substantially. Furthermore, the resulting models only project at the highest resolution of environmental layers available, 
which limits the management insights and guidance available. This is of substantial importance when trying to guide the management or 
translocation of a short-range endemic species such as Ricinocarpos brevis, shown here, where the entire know distribution (roughly 8 km2) 
falls on three ridges, encompassed by 17 30 arc-second grids
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NicheMapR package (Kearney, 2016; Figure 5). We then randomly 
selected 3,000 points within these three landscapes and compared 
the projected habitat suitability estimated using the climate-SDM 

with that estimated using the edaphic-SDM using a paired t test 
where points that did not coincide with both projection areas were 
excluded.

F I G U R E  3   Spatial data used to train the MaxEnt distribution projections. (a) Elevation; (b) Aspect derived from Gallant et al. (2011), 
and Gallant and Austin (2012a, 2012b; (c) Soil depth; (d) Soil sand content; (e) Soil silt content extracted from Viscarra Rossel et al. (2014a, 
2014b, 2014c); and (f) Soil bulk density provided by the Australian Collaborative Land Evaluation Program ACLEP. The polygon indicates the 
training region for the modeling process
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3  | RESULTS

3.1 | Species distribution modeling

The final edaphic-SDM of R. brevis obtained a high area under the 
curve (AUC  =  0.95) within the training area. Potentially ranging 

between 0 and 1, an AUC value of 0.5 indicates that the model habi-
tat selection is equivalently capable of differentiating presence and 
absence as a random selection, and a model is considered to rep-
resent a plausible habitat selection if the AUC is greater than 0.7 
(Pearce & Ferrier, 2000). The MaxEnt response curves (Appendices 
S1 and S2) also suggest that the modeling captured a broad niche 

F I G U R E  4   (a) Projected species distribution of R. brevis likelihood of occurrence derived from the Maxent model. Increasing intensity 
of color (from red to green) indicates a high likelihood of occurrence. (b) Comparison of covariate space in the projection region, compared 
with the conditions encompassed within the training region calculated based on the Mahalanobis distance. Following the thematic scheme 
of Mesgaran et al. (2014), areas in red have one or more environmental variables outside the range present in the training data, while areas 
in blue have covariate interactions that are outside the range of those present in the training data, and so represent spatial range where the 
model is extrapolating, and require more cautious interpretation than green areas, which fall within the bounds of the training region. The 
remaining three panels represent projected likelihood of occurrence at Windarling Range (c), Johnston Range (d), and Perrinvale Range (e)
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space. The average likelihood of occurrence at known locations of 
R. brevis was 72% (range  =  0% to 93%). Over a quarter of known 
locations (encompassing 3,455 individuals) were modeled to have 
greater than 80% likelihood of occurrence, and two thirds of known 
locations (8,590 individuals) were modeled to have greater than 70% 

likelihood of occurrence. Only 492 known individuals were mod-
eled as having less than 50% likelihood of occurrence. The final con-
strained edaphic-SDM was constructed around soil depth, soil bulk 
density, elevation, aspect, sand, and silt content. The most powerful 
microhabitat factor determining the distribution of R. brevis was silt 
content (43%), followed by soil depth (24%), and soil bulk density 
(18%; Table 1). Ricinocarpos brevis was modeled to occur on shallow, 
low bulk density (i.e., well-draining) soils that tend to occur high in 
the landscape.

3.2 | Species distribution projections

Projection of the final model to encompass the three areas of inter-
est (Figure 4) indicated that the intervening area between the known 
populations was largely unsuitable for R. brevis. Nevertheless, there are 
landscape features, especially between the Windarling and Johnston 
Ranges, that have high predicted likelihood (i.e., >80%) of support-
ing populations, but from which no populations are currently known. 
When interrogated for patterns of novelty, the majority of the broader 
projection landscape represented similar covariate space to the three 
training areas (Figure 4b). Where differences did occur, they were typi-
cally Type I differences, indicating that part of the landscape exceeded 

F I G U R E  5   Projected species distribution of R. brevis 
likelihood of occurrence derived from Maxent model informed 
by microclimatic data describing patterns in air temperature, 
solar irradiance, soil water potential at a depth of 20 cm, and 
soil temperature at a depth of 10 cm during the austral winter at 
Windarling Range (a), Johnston Range (b), and Perrinvale Range (c). 
Increasing intensity of color (from red to green) indicates a high 
likelihood of occurrence

TA B L E  1   Relative contributions of the environmental variables 
to the final Ricinocarpos brevis MaxEnt distribution model

Variable
Percent 
contribution (%)

Permutation 
importance (%)

Edaphic model

Silt content (%) 43.4 2.4

Soil depth (m) 24.2 36.8

Soil bulk density (g/cm3) 18.0 24.6

Elevation (m) 11.3 30.1

Aspect (°) 1.8 2.0

Sand content (%) 1.2 4.2

Microclimatic model

Average air temperature 79.5 67.0

Soil temperature 20.1 30.9

Soil water potential 0.4 2.1

Note: Percent contribution is determined by the change in regularization 
at each iteration. Permutation importance is determined as the 
percentage normalized change in the area under the curve as the value 
is randomly permuted. The latter indicates the reliability of the factors 
in their contribution to the model.
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the univariate patterns of the training set, but that the covariance 
structures were stable (Mesgaran et al., 2014), which typically oc-
curred at the highest elevations. The projection space at these higher 
elevations was characterized by soil and geomorphology that are not 
present within the training areas on the ridges where R. brevis is known 
to occur. As such, while much of the projection area was generated 
based on interpolation, the projections generated at the highest parts 
of the landscape were based on extrapolation rather than interpolation 
and should be treated with some caution. The total range of elevational 
change in our project area is approximately 200 m, and the extrapola-
tions, by definition, encompass more than this.

3.3 | Ecophysiological correlates of distribution

The soil temperatures over which the likelihood of occurrence was 
correlated for the austral winter, ranged from 18.6°C at 100  cm 
depth to 26.0°C at the soil surface, while the soil water potentials 
ranged from −0.05 kpa at 100 cm depth to −138.1 kpa at the soil sur-
face (Table 2). There was a significant linear relationship between the 
modeled likelihood of occurrence of R. brevis and the microclimatic 
variables modeled for the training regions at Windarling, Perrinvale, 
and Johnston Ranges (F11, 1988 = 5.85, p <  .0001). Model averaging 
resulted in three equally parsimonious models (Table 3), indicating 
strong support that the positive relationship between likelihood of 
occurrence and microclimatic projections was driven by soil water 
potential at 0 cm depth (F1, 1995 = 19.4, p < .0001), soil water poten-
tial at 0.2 m depth (F1, 1995 = 11.9, p < .0001), and soil temperature at 
1.0 m depth (F1, 1995 = 15.4, p < .0001).

Projection of the climate-SDM across the three areas of inter-
est (Figure 5) indicated high habitat suitability that largely coincided 
with the known locations of the three populations. The known loca-
tions occurred in areas with 63.4 ± 0.20% microclimatic suitability. 
Consistent with our ecophysiological interrogation of the edaph-
ic-SDM, average temperature made the strongest contribution to the 
climate-SDM, followed by soil temperature (Table 1). At the 3,000 
randomly selected locations across the climate-SDM, there was sig-
nificant divergence in the estimated habitat suitability between the 
two models (t2808 = 64.6, p < .0001). The absolute mean difference in 
habitat suitability between the two models was 21.4 ± 3.11%.

4  | DISCUSSION

Our over-arching aim was to develop a standardized procedure by 
which SDMs could be constructed at a resolution and extent high 
enough to be practically informative for conservation management 
programs focussing on species that have highly localized distribu-
tions. By way of case study, we identified locations most suited to 
R. brevis, modeled upon correlations of geomorphology and soil type 
in its known locations. The result of a standardized procedure was 
targeted toward a mechanistic interpretation of the microclimatic 
factors most limiting the distribution of SRE taxa in order to suggest 

what future research is required to understand, and ameliorate, limi-
tations in the management and restoration of this species.

4.1 | Model extrapolations

The models described the distribution of R. brevis populations using 
freely available data on Australian soils, elevation and aspect and 
were prepared over a period of a single week on standard personal 
computers. We did not explicitly seek to exclude microclimate vari-
ables from our modeling, and the process that we advocate could, 
with appropriate computational power, develop highly resolved cli-
mate layers. However, this level of computing power can be prohibi-
tive to uptake of these modeling approaches by many stakeholders, 
and we sought a way to resolve a suitable, high-resolution SDM 
using freely available data layers on standard computing hardware 
that could also inform microclimatic analysis on a subset of loca-
tions. Using this edaphic-SDM approach, R. brevis populations were 
modeled to occur on shallow, well-drained soils. Although elevation 
emerged as an important factor driving the distribution of R. brevis, 
this is probably only because BIF is relatively resistant to weather-
ing, and shallow, well-drained soils on BIF mainly occur higher on 
the landform (Gibson et al., 2010), rather than because elevation has 
any intrinsic importance to the species: that is, that elevation is a 
proxy for BIF. We conclude this on the basis that the very low eleva-
tions in question, between 300 and 650 m above sea level (Figure 3) 
are unlikely to result in altitudinal climate shifts, as these localized 
ranges are generally no more than ~200 m above the surrounding 
plains. The exception to this, at least on face value, is the Johnston 
Range population, which persists on deeper soils, partly independ-
ent of BIF (Department of Environment & Conservation, 2011). The 
soil depth layers that we used here, however, characterize this re-
gion as a mosaic of shallow soils, between 30 and 50 cm deep, even 
though the elevation model (Gallant et al., 2011) does not indicate 
obvious geomorphological features that separately characterize the 
other two populations.

While relatively little land area outside of the existing popula-
tions was predicted as habitat highly likely to support R. brevis, there 
were nevertheless five distinct uplifted BIF regions of approximately 
1,500 km2 that had a high modeled likelihood of supporting R. brevis 
(Figure 4a). Given that a number of very highly suitable habitats occur 
in the broader region that are uninhabited by this species, it seems 
likely that stochastic local extinctions have played a substantial role 
in the distribution of R. brevis, as with other flora species associated 
with BIF ranges in the region (Byrne et al., 2018). In this regard, the ini-
tial species distribution modeling approach based entirely on edaphic 
features, independent of the usual climatological data that informs cor-
relative SDMs (e.g., Hijmans et al., 2005; Kearney, Isaac, et al., 2014) 
appears entirely suitable for the production of insightful high-resolu-
tion SDMs for SREs. Furthermore, the SDM produced here was trained 
by freely available data sets that span all of continental Australia, such 
that any other models produced using these data should be directly 
comparable and equally interpretable to this one.
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The climate-SDM was much less accurate in discriminating be-
tween pockets of highly suitable habitat and less suitable habitat. 
Partly, this probably reflects the microclimates that we used to train 
the model, being the conditions in the coolest and wettest times 
of the year, when R. brevis is more likely to germinate and recruit 
(Turner et al., 2018). While these conditions provide one distribu-
tional constraint through recruitment, they probably do not provide 
the most powerful limitation to persistence, which is likely to happen 
either when conditions exceed a tolerance threshold (Buckley et al., 
2010), or when sub-lethally challenging conditions restrict phys-
iological performance to the extent that that prevent growth and 
reproduction (Evans, Diamond, & Kelly, 2015). It may also be that, 
since we were restricted to developing microclimate layers for three 
relatively small landscapes, the pseudoabsences used by MaxEnt to 
estimate unsuitable conditions did not encapsulate a broad enough 
extent to strongly discriminate between suitable and unsuitable hab-
itat. Nevertheless, similar spatial patterns emerged, and the same 
vacant pockets of potentially suitable habitat were identified as we 
found with the edaphic-SDM. In light of the aims of this study, which 
were to test whether habitat suitability could be modeled reliably 
using only edaphic constraints (sensu Velazco, Galvão, Villalobos, 
and Marco Júnior, 2017), the climate-SDM certainly reinforces the 
patterns observed in the edaphic-SDM. Furthermore, the intensive 
calculations required to provide appropriate microclimate data sug-
gest that the practical return on investment is greater in training a 
model of this type using edaphic data alone, rather than calculating 
microclimatic layers.

As a caveat on the interpretation of this model, the training areas 
were identified using one of the finest-scale environmental classifi-
cation schemes published (Mackey et al., 2008), but the known pop-
ulations are tightly clustered even within these areas (see Figure 2). 
Given the propensity for MaxEnt and other correlative processes to 
overfit (Buckley et al., 2010), it may be that the niche space gener-
ated by even these relatively localized training areas is too broad to 
result in accurate outputs. Also, all models are heavily dependent on 
the consistency and quality of the data on which they are trained 
and projected. The freely available data sets used were derived from 
large computing efforts unifying data collected via remote sensing, 
which sometimes incorporate artefacts indicating varying precision 
across tile boundaries, and this is evident in the projection data here 
(Figure 3). Although we acknowledge that it may reduce accuracy of 
this layer for prediction, we have no way to quantify the spatial bias 
it implies, and no capacity to correct, nor strongly interrogate the 
source data. In this regard, the edaphic-SDM of R. brevis produced is 
nevertheless plausible, though further interpretation is required to 
ascertain whether or not the resulting correlations reflect the mech-
anisms underlying the distribution (Buckley et al., 2010; Meynard & 
Quinn, 2007).

4.2 | Ecophysiological interpretations

Most SDMs are trained using climatic data, but over small distri-
butions, such as those relating to individual management projects, 

    Surface 20 cm 100 cm

Air temperature 
(°C)

min 14.61

max 18.12

avg 16.46 ± 0.019

Solar Radiance 
(lumens)

min 176.41

max 198.80

avg 189.58 ± 0.116

Soil temperature 
(°C)

min 21.61 20.75 18.65

max 25.99 25.05 22.69

avg 23.94 ± 0.023 23.03 ± 0.023 20.80 ± 0.022

Soil water poten-
tial (kPa)

min −91.24 −0.63 −0.05

max −138.16 −4.82 −0.08

avg −116.59 ± 0.233 −2.00 ± 0.020 −0.08 ± 0.000

Note: Air temperature and solar radiance were calculated once at each location, while soil 
temperatures and soil water potentials were calculated at three depths.

TA B L E  2   Summary details of the 
microclimatic conditions calculated at 
2000 random locations across the project 
area

TA B L E  3   AIC comparisons of 
microclimatic correlates of likelihood of 
occurrence in R. brevis

Model k Δ AICc

likelihood ~ SWP(0) + SWP(20) + 1 4 0.00

likelihood ~ temp(100) + SWP(0) + SWP(20) + temp(100):SWP(0) + 1 6 0.32

likelihood ~ temp(air) + SWP(0) + SWP(20) + 1 5 0.81

Note: Soil water pressure at different depths in centimetres is indicated by SWP(), while soil 
temperatures at different depths in centimetres is indicated by temp().
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SREs or mining tenements, the available global climate projections 
are too coarse a resolution to provide meaningful insight into mi-
croclimatic variability (Tomlinson, Webber, Bradshaw, Dixon, & 
Renton, 2017). Indeed, there is growing recognition that plant dis-
tributions can be heavily influenced by below-ground microclimatic 
shifts driven by soil types within otherwise homogenous climatic re-
gions (Velazco et al., 2017). By specifically choosing to develop the 
edaphic-SDM based on the geomorphological and soil features that 
inform the microclim data set (Kearney, Isaac, et al., 2014), we were 
able to calculate microclim estimates across the projection area, in-
cluding below-ground microclimate. We feel that our proposed ap-
proach is advantageous to the study of short-range endemism due 
to its breadth of applicability. One of the challenges facing studies 
of SRE flora, especially in highly biodiverse landscapes such as the 
BIF outcrops of south-western Western Australia (Gibson, Prober, 
Meissner, & Leeuwen, 2017; Gibson et al., 2010), Table Mountain 
National Park in South Africa (Helme & Trinder-Smith, 2006), or ar-
chipelagos such as New Caledonia (Gâteblé et al., 2019; Kier et al., 
2009) is that there may be a large number of SRE species, but they 
are usually either entirely unique, or a unique clade of closely related 
species within a taxon. In either case, it is very difficult to untangle 
the paired effects of ecology and phylogeny (Felsenstein, 1985). The 
approach that we have used here is dependent upon a standardized 
set of spatial data that can be applied at the same resolution to any 
endemic species in Australia. Furthermore, where similar data sets 
are available globally (Hengl et al., 2014), the micro_global algorithm 
can be used to calculate down-scaled microclimate estimates using 
a standardized approach anywhere in the world. As such, this allows 
direct comparison of the drivers of short-range endemism across 
similar habitats with markedly different flora throughout the world, 
such as the endemic flora of granitic inselbergs in Africa, Asia, South 
America, and Australia (Porembski, Seine, & Barthlott, 1997). The 
limitation to such a comparative study of the ecophysiological driv-
ers of short-range endemism in plants is that the global soil grids 
are currently available at a resolution of 1 km (Hengl et al., 2014), or 
roughly 30 arc-sec, which is the same resolution as most of the freely 
available digital climate layers which we have already demonstrated 
are at too coarse a resolution to be applied to SRE flora (Figure 2). 
Currently, therefore, we can only pursue the ecophysiological inter-
pretations that we have gleaned for our case study species.

The most critical microclimatic factor contributing to the distri-
bution of R. brevis was soil water potential at biologically relevant 
depths (i.e., 20 cm to 1 m). Indeed, our models suggest that R. bre-
vis may be restricted to comparatively wetter soil conditions in an 
otherwise arid environment, indicating that R. brevis may be refu-
gial in highly localized milder and wetter niches. Recent research 
showed high susceptibility of seed germination to water stress, with 
requirements of above −90 kpa soil water potential for optimal ger-
mination over a relatively long period of time (Turner et al., 2018), is 
highly consistent with the modeled expectations. We expect these 
processes to rely on frequent and sustained moisture availabil-
ity, although these events are likely to be irregular and unpredict-
able (Elliott, Lewandrowski, Miller, Barrett, & Turner, 2019; Miller, 

Symonds, & Barrett, 2019). Given the hot semi-arid environment 
where R. brevis is found, this may relate to a complex set of plant 
traits regulating water loss and water uptake (Lambers et al., 2008). 
Understanding these mechanisms should be a component of any fu-
ture species-specific ecophysiological studies on this species with 
our model identifying several potentially insightful lines of scientific 
enquiry.

4.3 | Future research and management directions

In light of the anthropogenic disturbances to this species, and the 
highly restricted locations of the known populations, there are sev-
eral conservation opportunities to minimize the risk of extinction 
and improve species recovery identified by our SDMs. The simplest 
to justify is the supplementation of existing populations via direct 
seeding or the planting of nursery produced seedlings (Coates et al., 
2014). Even at the known populations, the modeling suggests that 
not all suitable habitat is filled (Figure 4). The identification of vacant 
niche space at known populations provides an apparent opportunity 
to supplement and increase these populations to offset losses due to 
anthropogenic disturbance. A more complex possibility raised by the 
model outcomes is the establishment of a population in a landscape 
bearing a conservation covenant. There are locations currently not 
known to support R. brevis, but with high modeled suitability within 
the proposed Mount Manning conservation reserve at the Die 
Hardy Ranges and could be a suitable location for the establishment 
of an insurance population of the species, if such was required for 
conservation management and successful translocation approaches 
into the natural environment were already known.

Assisted colonization is a philosophy originally proposed for mov-
ing species threatened by changing climates (McLachlan, Hellmann, 
& Schwartz, 2007; Webber, Scott, & Didham, 2011) that is gaining 
traction rapidly as a conservation tool (Sgrò, Lowe, & Hoffmann, 
2011). Correlative modeling approaches such as MaxEnt are often 
used to guide these enterprises (Ferrarini et al., 2016; Regan et al., 
2012). Translocation to establish insurance populations is also a 
common conservation practice for rare or range-restricted animals 
and plants (Griffith, Scott, Carpenter, & Reed, 1989; Morris et al., 
2015; Silcock et al., 2019). The challenge in establishing insurance 
populations for SRE plants following distribution modeling has gen-
erally been the difficulty in constructing suitable models at high res-
olution. The workflow that we advocate here produces SDMs that 
are not specifically trained by climate data, and so cannot be readily 
extrapolated into future climate scenarios. This limits their capacity 
to identify targets for climate-sensitive assisted colonization. For 
guiding the establishment of insurance populations under presumed 
stable climates, however, our workflow would be generally valuable. 
An argument could be made that ignoring global climate change in 
any conservation venture is naive, and ultimately self-defeating, 
but Harrison and Noss (2017) note that the areas of highest short-
range endemism tend to also be associated with long-term climatic 
stability, so as long as the insurance populations are not proposed 
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to be established outside the climate region of other known pop-
ulations  the modelled locations should remain valuable to guide 
conservation efforts. However, with current global climate change 
proceeding at rates and magnitudes that eclipse all previous known 
periods of changing global climate in more recent times, this may no 
longer be a safe assumption.

While the MaxEnt model appears convincing, we must be mea-
sured in our interpretation and remain mindful that the modeling 
process is correlative. MaxEnt simply finds environmental correlates 
of population boundaries, and not the underlying biological or eco-
logical drivers that regulate species occurrence. Interpretation of 
these projections, including interpretation of their plausibility, is 
subjective. The ultra-high-resolution projections reported here sug-
gest some ecophysiological interpretations that are more strongly 
substantiated than other high-resolution MaxEnt models, because 
the association between the environmental data and the resulting 
microclimatic is empirical, rather than implicit, but the actual eco-
physiological mechanisms that restrict R. brevis to these habitats re-
mains unresolved. Further ecophysiological studies provide the raw 
performance functions around which more flexible and insightful 
niche envelope modeling (Kearney, 2006) can re-interpret the same 
high-resolution training data presented here and mark the next step 
in the evolution of a standardized and comparable modeling ap-
proach to support the conservation of SRE flora.
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