1,462 research outputs found

    Designing a Belief Function-Based Accessibility Indicator to Improve Web Browsing for Disabled People

    Get PDF
    The purpose of this study is to provide an accessibility measure of web-pages, in order to draw disabled users to the pages that have been designed to be ac-cessible to them. Our approach is based on the theory of belief functions, using data which are supplied by reports produced by automatic web content assessors that test the validity of criteria defined by the WCAG 2.0 guidelines proposed by the World Wide Web Consortium (W3C) organization. These tools detect errors with gradual degrees of certainty and their results do not always converge. For these reasons, to fuse information coming from the reports, we choose to use an information fusion framework which can take into account the uncertainty and imprecision of infor-mation as well as divergences between sources. Our accessibility indicator covers four categories of deficiencies. To validate the theoretical approach in this context, we propose an evaluation completed on a corpus of 100 most visited French news websites, and 2 evaluation tools. The results obtained illustrate the interest of our accessibility indicator

    A new approach for the ortho-positronium lifetime determination in a vacuum cavity

    Full text link
    Currently, the experimental uncertainty for the determination of the ortho-positronium (o-Ps) decay rate is at 150 ppm precision; this is two orders of magnitude lower than the theoretical one, at 1 ppm level. Here we propose a new proof of concept experiment aiming for an accuracy of 100 ppm to be able to test the second-order correction in the calculations, which is ≃45(απ)2≈200\simeq 45\left(\frac{\alpha}{\pi}\right)^2\approx 200 ppm. The improvement relies on a new technique to confine the o-Ps in a vacuum cavity. Moreover, a new method was developed to subtract the time dependent pick-off annihilation rate of the fast backscattered positronium from the o-Ps decay rate prior to fitting the distribution. Therefore, this measurement will be free from the systematic errors present in the previous experiments. The same experimental setup developed for our recent search for invisible decay of ortho-positronium is being used. The precision will be limited by the statistical uncertainty, thus, if the expectations are fulfilled, this experiment could pave the way to reach the ultimate accuracy of a few ppm level to confirm or confront directly the higher order QED corrections. This will provide a sensitive test for new physics, e.g. a discrepancy between theoretical prediction and measurements could hint the existence of an hidden sector which is a possible dark matter candidate.Comment: 12 pages, 8 Figures, prepared for the proceedings of the PSAS2018 conference, Vienna (Austria

    Cardiovascular Endurance Among College Students: How is it Related to Overall Fitness?

    Get PDF
    Please see the pdf version of the abstract

    Barium alginate capsules for 3D immobilisation of living cells: morphology, membrane properties and permeability

    Get PDF
    Encapsulation in a barium alginate membrane is a promising strategy to obtain a three dimensional culture of living cells: membrane properties are crucial for a realistic clinical application. A one-step encapsulation technique, recently developed for controlled release of boar semen, was employed to prepare barium alginate and protamine-alginate membranes: permeability to two model molecules (haemoglobin and glucose) was evaluated. Capsules were evaluated for technological properties and scanning electron microscopy was used to examine the external morphology of the capsules and the 3D distribution of the cells within the core. The results indicate that 3D arrangement and cell shape are maintained, capsule dimensions and mechanical properties can be modulated, as well as their permeability to model molecules such as haemoglobin and glucose

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed
    • 

    corecore