26,168 research outputs found

    Experimental demonstration of digital predistortion for orthogonal frequency-division multiplexing-radio over fibre links near laser resonance

    Get PDF
    Radio over fibre (RoF), an enabling technology for distribution of wireless broadband service signals through analogue optical links, suffers from non-linear distortion. Digital predistortion has been demonstrated as an effective approach to overcome the RoF non-linearity. However, questions remain as to how the approach performs close to laser resonance, a region of significant dynamic non-linearity, and how resilient the approach is to changes in input signal and link operating conditions. In this work, the performance of a digital predistortion approach is studied for directly modulated orthogonal frequency-division multiplexing RoF links operating from 2.47 to 3.7 GHz. It extends previous works to higher frequencies, and to higher quadrature amplitude modulation (QAM) levels. In addition, the resilience of the predistortion approach to changes in modulation level of QAM schemes, and average power levels are investigated, and a novel predistortion training approach is proposed and demonstrated. Both memoryless and memory polynomial predistorter models, and a simple off-line least-squares-based identification method, are used, with excellent performance improvements demonstrated up to 3.0 GHz

    Supercurrent on a vortex core in 2H-NbSe2_2: current driven scanning tunneling spectroscopy

    Full text link
    We report current driven scanning tunneling spectroscopy (CDSTS) measurements at very low temperatures on vortices in 2H-NbSe2. We find that a current produces an increase of the density of states at the Fermi level in between vortices, and a reduction of the zero bias peak at the vortex center. This occurs well below the de-pairing current. We conclude that a supercurrent affects the low energy part of the superconducting gap structure of 2H-NbSe2.Comment: 5 pages, 5 figure

    Phase diagram of random lattice gases in the annealed limit

    Full text link
    An analysis of the random lattice gas in the annealed limit is presented. The statistical mechanics of disordered lattice systems is briefly reviewed. For the case of the lattice gas with an arbitrary uniform interaction potential and random short-range interactions the annealed limit is discussed in detail. By identifying and extracting an entropy of mixing term, a correct physical expression for the pressure is explicitly given. As an application, the one-dimensional lattice gas with uniform long-range interactions and random short-range interactions satisfying a bimodal annealed probability distribution is discussed. The model is exactly solved and is shown to present interesting behavior in the presence of competition between interactions, such as the presence of three phase transitions at constant temperature and the occurrence of triple and quadruple points.Comment: Final version to be published in the Journal of Chemical Physic

    Stabilized jellium model and structural relaxation effects on the fragmentation energies of ionized silver clusters

    Full text link
    Using the stabilized jellium model in two schemes of `relaxed' and `rigid', we have calculated the dissociation energies and the fission barrier heights for the binary fragmentations of singly-ionized and doubly-ionized Ag clusters. In the calculations, we have assumed spherical geometries for the clusters. Comparison of the fragmentation energies in the two schemes show differences which are significant in some cases. This result reveals the advantages of the relaxed SJM over the rigid SJM in dynamical processes such as fragmentation. Comparing the relaxed SJM results and axperimental data on fragmentation energies, it is possible to predict the sizes of the clusters just before their fragmentations.Comment: 9 pages, 12 JPG figure
    • …
    corecore