16,139 research outputs found

    Perfect Sampling with Unitary Tensor Networks

    Get PDF
    Tensor network states are powerful variational ans\"atze for many-body ground states of quantum lattice models. The use of Monte Carlo sampling techniques in tensor network approaches significantly reduces the cost of tensor contractions, potentially leading to a substantial increase in computational efficiency. Previous proposals are based on a Markov chain Monte Carlo scheme generated by locally updating configurations and, as such, must deal with equilibration and autocorrelation times, which result in a reduction of efficiency. Here we propose a perfect sampling scheme, with vanishing equilibration and autocorrelation times, for unitary tensor networks -- namely tensor networks based on efficiently contractible, unitary quantum circuits, such as unitary versions of the matrix product state (MPS) and tree tensor network (TTN), and the multi-scale entanglement renormalization ansatz (MERA). Configurations are directly sampled according to their probabilities in the wavefunction, without resorting to a Markov chain process. We also describe a partial sampling scheme that can result in a dramatic (basis-dependent) reduction of sampling error.Comment: 11 pages, 9 figures, renamed partial sampling to incomplete sampling for clarity, extra references, plus a variety of minor change

    Tensor network states and algorithms in the presence of a global SU(2) symmetry

    Full text link
    The benefits of exploiting the presence of symmetries in tensor network algorithms have been extensively demonstrated in the context of matrix product states (MPSs). These include the ability to select a specific symmetry sector (e.g. with a given particle number or spin), to ensure the exact preservation of total charge, and to significantly reduce computational costs. Compared to the case of a generic tensor network, the practical implementation of symmetries in the MPS is simplified by the fact that tensors only have three indices (they are trivalent, just as the Clebsch-Gordan coefficients of the symmetry group) and are organized as a one-dimensional array of tensors, without closed loops. Instead, a more complex tensor network, one where tensors have a larger number of indices and/or a more elaborate network structure, requires a more general treatment. In two recent papers, namely (i) [Phys. Rev. A 82, 050301 (2010)] and (ii) [Phys. Rev. B 83, 115125 (2011)], we described how to incorporate a global internal symmetry into a generic tensor network algorithm based on decomposing and manipulating tensors that are invariant under the symmetry. In (i) we considered a generic symmetry group G that is compact, completely reducible and multiplicity free, acting as a global internal symmetry. Then in (ii) we described the practical implementation of Abelian group symmetries. In this paper we describe the implementation of non-Abelian group symmetries in great detail and for concreteness consider an SU(2) symmetry. Our formalism can be readily extended to more exotic symmetries associated with conservation of total fermionic or anyonic charge. As a practical demonstration, we describe the SU(2)-invariant version of the multi-scale entanglement renormalization ansatz and apply it to study the low energy spectrum of a quantum spin chain with a global SU(2) symmetry.Comment: 32 pages, 37 figure

    Aharonov-Bohm cages in the GaAlAs/GaAs system

    Full text link
    Aharonov-Bohm oscillations have been observed in a lattice formed by a two dimensional rhombus tiling. This observation is in good agreement with a recent theoretical calculation of the energy spectrum of this so-called T3 lattice. We have investigated the low temperature magnetotransport of the T3 lattice realized in the GaAlAs/GaAs system. Using an additional electrostatic gate, we have studied the influence of the channel number on the oscillations amplitude. Finally, the role of the disorder on the strength of the localization is theoretically discussed.Comment: 6 pages, 11 EPS figure

    Nonlocal Entanglement Transformations Achievable by Separable Operations

    Full text link
    For manipulations of multipartite quantum systems, it was well known that all local operations assisted by classical communication (LOCC) constitute a proper subset of the class of separable operations. Recently, Gheorghiu and Griffiths found that LOCC and general separable operations are equally powerful for transformations between bipartite pure states. In this letter we extend this comparison to mixed states and show that in general separable operations are strictly stronger than LOCC when transforming a mixed state to a pure entangled state. A remarkable consequence of our finding is the existence of entanglement monotone which may increase under separable operations.Comment: v2 has rephrased Theorem 1 and corrected Kraus operators in Theorem 2. Additional comments are welcome

    Asymptotic entanglement capacity of the Ising and anisotropic Heisenberg interactions

    Get PDF
    We compute the asymptotic entanglement capacity of the Ising interaction ZZ, the anisotropic Heisenberg interaction XX + YY, and more generally, any two-qubit Hamiltonian with canonical form K = a XX + b YY. We also describe an entanglement assisted classical communication protocol using the Hamiltonian K with rate equal to the asymptotic entanglement capacity.Comment: 5 pages, 1 figure; minor corrections, conjecture adde

    Three qubits can be entangled in two inequivalent ways

    Get PDF
    Invertible local transformations of a multipartite system are used to define equivalence classes in the set of entangled states. This classification concerns the entanglement properties of a single copy of the state. Accordingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other by means of local operations and classical communcication (LOCC) with nonzero probability. When applied to pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine tripartite entanglement, for which the GHZ state and a W state appear as remarkable representatives. In particular, we show that the W state retains maximally bipartite entanglement when any one of the three qubits is traced out. We generalize our results both to the case of higher dimensional subsystems and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure states cannot be converted into each other by means of LOCC, not even with a small probability of success.Comment: 12 pages, 1 figure; replaced with revised version; terminology adapted to earlier work; reference added; results unchange

    Characterization of non-local gates

    Get PDF
    A non-local unitary transformation of two qubits occurs when some Hamiltonian interaction couples them. Here we characterize the amount, as measured by time, of interaction required to perform two--qubit gates, when also arbitrarily fast, local unitary transformations can be applied on each qubit. The minimal required time of interaction, or interaction cost, defines an operational notion of the degree of non--locality of gates. We characterize a partial order structure based on this notion. We also investigate the interaction cost of several communication tasks, and determine which gates are able to accomplish them. This classifies two--qubit gates into four categories, differing in their capability to transmit classical, as well as quantum, bits of information.Comment: revtex, 14 pages, no pictures; proof of result 1 simplified significantl

    Entanglement of Assistance is not a bipartite measure nor a tripartite monotone

    Full text link
    The entanglement of assistance quantifies the entanglement that can be generated between two parties, Alice and Bob, given assistance from a third party, Charlie, when the three share a tripartite state and where the assistance consists of Charlie initially performing a measurement on his share and communicating the result to Alice and Bob through a one-way classical channel. We argue that if this quantity is to be considered an operational measure of entanglement, then it must be understood to be a tripartite rather than a bipartite measure. We compare it with a distinct tripartite measure that quantifies the entanglement that can be generated between Alice and Bob when they are allowed to make use of a two-way classical channel with Charlie. We show that the latter quantity, which we call the entanglement of collaboration, can be greater than the entanglement of assistance. This demonstrates that the entanglement of assistance (considered as a tripartite measure of entanglement), and its multipartite generalizations such as the localizable entanglement, are not entanglement monotones, thereby undermining their operational significance.Comment: 5 pages, revised, title changed, added a discussion explaining why entanglement of assistance can not be considered as a bipartite measure, to appear in Phys. Rev.

    Detection of deuterium Balmer lines in the Orion Nebula

    Get PDF
    The detection and first identification of the deuterium Balmer emission lines, D-alpha and D-beta, in the core of the Orion Nebula is reported. Observations were conducted at the 3.6m Canada-France-Hawaii Telescope, using the Echelle spectrograph Gecko. These lines are very narrow and have identical 11 km/s velocity shifts with respect to H-alpha and H-beta. They are probably excited by UV continuum fluorescence from the Lyman (DI) lines and arise from the interface between the HII region and the molecular cloud.Comment: 4 pages, latex, 1 figure, 1 table, accepted for publication in Astronomy & Astrophysics, Letter
    • 

    corecore