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Characterization of nonlocal gates
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A nonlocal unitary transformation of two-qubits occurs when some Hamiltonian interaction couples them.
Here we characterize the amount, as measured by time, of interaction required to perform two-qubit gates,
when also arbitrarily fast, local unitary transformations can be applied on each qubit. The minimal required
time of interaction, orinteraction cost, defines an operational notion of the degree of nonlocality of gates. We
characterize a partial order structure based on this notion. We also investigate the interaction cost of several
communication tasks, and determine which gates are able to accomplish them. This classifies two-qubit gates
into four categories, differing in their capability to transmit classical, as well as quantum, bits of information.
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I. INTRODUCTION

An essential ingredient in quantum information proce
ing is the ability to make two two-level systems or qub
undergo a joint unitary evolution. Accordingly, most curre
proposals for the implementation of a quantum compu
rely on some ingenious method to realize two-qubit gate

Irrespective of the physical substrate of the qubits, a jo
unitary evolution can only be achieved through some form
interaction. This quite often couples the two qubits direc
though a third system may alternatively mediate in the tra
formation. The starting goal of this paper is, given any fix
two-qubit Hamiltonian, to describe how it can be used
accomplish any desired gate on the two systems.

Of course, some form of external control on the two q
bits is required to conveniently modify their evolution, whic
would otherwise be dictated only by the coupling interactio
Inspired by the possibilities presently demonstrated in s
eral quantum optical setups, where each qubit can be in
pendently addressed@1#, we assume here the ability to pe
form arbitrary local unitary operations~LU! on each of the
systems. More specifically, we shall analyze the fast con
limit, in which these control operations can be perform
instantaneously. Physically, such a limit amounts to assum
ing a neat separation between the time scale of the inte
tion ~which is comparatively slow! and that of the externa
manipulations.

The setting we consider corresponds, thus, to the so-ca
gate simulation under LU of Ref.@2#. This setting has been
previously considered in Ref.@3#, where powerful math-
ematical techniques were developed to study time-opti
strategies; that is, strategies that perform the desired gat
using the available interaction for the shortest time. In R
@4#, and by elaborating on the results of Ref.@3# and of Refs.
@2,5,6#, time-optimal strategies have been analytically ch
acterized for any interaction and gate of two qubits.

The main result of Ref.@4# permits therefore to asses
explicitly the minimum time an interaction is required
simulate a given gate, a measure that has been called
interaction costof the gate. The merit of such a measure
twofold: On one hand, time is by itself a crucial parameter
present experiments. In order to successfully process q
1050-2947/2002/66~6!/062321~13!/$20.00 66 0623
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tum information, unitary evolutions must in practice be e
forced in a sufficiently small time as compared to the de
herence time of the quantum systems. In several settings
time scale of gates is essentially determined by the inte
tion between qubits, for one-qubit unitary transformatio
can be performed much faster. Then, an efficient use of
interaction becomes a priority. On the other hand, the m
mal realization time or interaction cost of a gate can be na
rally used to compare gates, thereby endowing the se
nonlocal transformations with a partial order structure t
refers to the amount of inherent interaction. This, in tu
provides us with a meaningful notion of the degree of no
locality of a gate, built upon the observation that local ga
can be performed without any interaction.

In the present paper we first reproduce and extend
results of Ref.@4# concerning the time optimal use of inte
actions, and put these into work by characterizing the inf
mation exchange associated to a two-qubit gate. In Ref.@4#,
the derivation of the interaction cost rested on a previo
proof of Ref.@3# which requires familiarity with several fact
of differential geometry. Here we present an alternati
self–contained proof, which in addition employs ideas an
formalism that we believe to be more common to quant
information community. This new proof is complemente
with an expanded analysis of the interaction cost of tw
qubit gates, including several relevant examples. The ove
result is an operational characterization of two-qubit gate
terms of the interaction resources needed to perform the

For any specific information processing task, there m
be several gates that can accomplish it. It is then reason
to investigate the most efficient way to accomplish the
sired task with a given interaction, that is, to search for
gate with lowest interaction cost compatible with that ta
In particular, a joint gate can be used to transmit informat
between the qubits, and one can study the interaction co
certain communication tasks, such as the transmission
classical and quantum bits from one system to the other

A second main goal of this paper is precisely to char
terize the minimal interaction time required to send classic
as well as quantum, information. As a byproduct, and v
much in the spirit of Refs.@7# and @8#, where information
exchange has been used to characterize the nonlocal co
©2002 The American Physical Society21-1

https://core.ac.uk/display/15027792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


o
ie
on

:
of
il-

o
th

c-
n

s

as

n

d

nd
an

i
th
it

na
t

or
ly
t

le
-

d
Tw

l

s

e

te
ot
ns:

tor
in

ch

ible
li-

at it
for
is

in

are
ble

ned
c

his

be
me
ny
n
of

ors
so-
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of certain gates, we obtain a complete classification of tw
qubit gates with respect to their transmission capabilit
thereby supplementing the original characterization of n
local gates.

The results we present can be summarized as follows
~a! Analytical characterization of the interaction cost

any two-qubit gate by any two-qubit interaction Ham
tonian, through a new, self-contained proof~Sec. III!.

~b! Analytical characterization, in part of the space
two-qubit gates, of the partial order structure based on
interaction cost~Sec. III!.

~c! Analytical characterization, for any two-qubit intera
tion, of the interaction cost of the following communicatio
processes between two qubits~Sec. IV!:

~1! Transmission of one classical bit: cbitA→B .
~2! Simultaneous, bidirectional transmission of two cla

sical bits: cbitA→B and cbitB→A .
~3! Transmission of one quantum bit: qubitA→B
~4! Simultaneous, bidirectional transmission of one cl

sical bit and one quantum bit: cbitA→B and qubitB→A .
~5! Simultaneous, bidirectional transmission of two qua

tum bits: qubitA→B and qubitB→A .
~d! Analytical characterization of two-qubit gates accor

ing to their capability to perform any of the above tasks~Sec.
IV !.

II. DEFINITIONS AND BASIC FACTS

This section is a prelude providing the definitions a
notations that will be used throughout the whole paper
reviews some facts concerning two-qubit gates which w
build the basis for our further results. We shall also define
notion of majorization and collect some lemmas linked to

A. Two-qubit gates

Consider a system consisting of two two-dimensio
subsystems~qubits!, A and B. The corresponding Hilber
spaces areHA'C2 and HB'C2. The compound Hilbert
space isHAB5HA^ HB'C2

^ C2.
By a two-qubit gateU we understand a unitary operat

acting onHAB . By choosing the global phase appropriate
we can always consider such a unitary to be an elemen
the group SU(4,C). We speak of alocal two-qubit gate
whenever we can writeU5UA^ VB , whereUA andVB are
unitary operators acting only onHA and HB respectively.
Again we can restrict ourselves to local unitaries being e
ments of SU(2,C) ^ SU(2,C). Nonlocal gates are then trivi
ally two-qubit gates which cannot be written asUA^ VB .

With just the help of these two definitions we can alrea
divide the set of nonlocal gates into equivalence classes.
two-qubit gatesU and Ũ are said to belocally equivalentif
there exist local unitariesUA^ VB and ŨA^ ṼB such thatU
5UA^ VBŨ ŨA^ ṼB . A useful decomposition of a genera
two-qubit gate developed in Refs.@3# and @5# admits to fur-
ther characterize these equivalence classes enabling u
easily decide whether two gates are locally equivalent.

Lemma 1.For any two-qubit gateU there exist local uni-
tariesUA^ VB andŨA^ ṼB and a self-adjoint operator of th
06232
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form H5(k51
3 aksk^ sk such that U5ŨA^ ṼBe2 iHUA

^ VB @3,5#.
Here thesk’s denote the usual Pauli spin matrices. No

that the real numbersak are not unique, as long as we do n
pose further conditions on them. This is so for two reaso
First, operators of the type6sk^ sk are local and commute
with H so that we can always extract such a local opera
from the local parts in this decomposition and include it
H. This alters the corresponding coefficientak by 6p/2.
Second, there are certain local transformations ofH which
conserve its form but permute the coefficientsak and change
the sign of two of them. The local unitaries which cause su
a transformation are of the types6 isk^ 1 and 6 i1^ sk .
Using this it can easily be checked that it is always poss
to bringH to a form, where its coefficients obey the inequa
ties ~see also Ref.@5#!

p/4>a1>a2>ua3u. ~1!

Note that these conditions are an arbitrary choice and th
might be necessary to relax them when we are looking
optimal simulation protocols. We will come back to th
point later on.

We call the decomposition of a two-qubit gate as given
lemma 1, where the coefficientsak fulfill Eq. ~1! its canoni-
cal form. The purely nonlocal unitarye2 iH in this decompo-
sition is termed theinteraction contentof the gate.

That the nonlocal characteristics of a two-qubit gate
determined by only three real parameters is a remarka
result in view of the fact that a general element of SU(4,C) is
fixed by 15 independent parameters. It might be mentio
here that while Ref.@3# provides a profound Lie-algebrai
basis for the decomposition in lemma 1,@5# gives a construc-
tive proof which allows to determine the coefficientsak , as
well as the local unitaries for any given gate. Based on t
method we show in the Appendix how to derive theak for a
given U without constructing the local unitaries.

A necessary and sufficient criterion for two gates to
locally equivalent is now obviously that they have the sa
interaction content. By definition it is also clear that a
two-qubit gate is locally equivalent to its own interactio
content, a fact on which our results concerning simulation
gates heavily rely.

For later use we mention here that self-adjoint operat
of the form considered in lemma 1 are diagonal in the
called magic basis@9# defined as

u1&52
i

A2
~ u01&1u10&), u2&5

1

A2
~ u00&1u11&),

u3&52
i

A2
~ u00&2u11&), u4&5

1

A2
~ u01&2u10&), ~2!

such that we have

H5 (
k51

3

aksk^ sk5(
j 51

4

l j u j &^ j u, ~3!
1-2
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where the eigenvaluesl j follow from the ak by

l15a11a22a3 , l25a12a21a3 ,

l352a11a21a3 , l452a12a22a3 . ~4!

In terms of thel j conditions ~1! read 3p/4>l1>l2>l3
>l4>23p/4. Note also that thel js sum up to zero~i.e., H
is traceless! such that the corresponding unitaryU5exp
(2iHlW) is an element of the special unitary group as we h
required. In the following we will characterize the interactio
content of nonlocal gates either by the three-vectoraW

5(a1 ,a2 ,a3) or by the four-vectorlW 5(l1 ,l2 ,l3 ,l4)
freely switching between the representations. For opera
like in Eq. ~3! we writeHaW or HlW and for the corresponding
unitary UaW or UlW .

B. Majorization

The relation of majorization emerged as a powerful too
the issue of simulation, as well as in other fields of quant
information theory. From an intuitive perspective it simp
makes a precise statement out of a vague notion that
components of a vectorxW are ‘‘less spread out’’ or ‘‘more
equal’’ than are the components of a vectoryW .

Definition 2. Let xW5(x1 , . . . ,xn) andyW5(y1 , . . . ,yn) be
real vectors whose components are ordered nonincreasi
Then we say that ‘‘xW majorizesyW ’’ and write xWsyW if

(
i 51

k

xi>(
i 51

k

yi k51, . . . ,n21,

(
i 51

n

xi5(
i 51

n

yi .

A central result in the theory of majorization is the fo
lowing.

Lemma 3 (Ref. [10]).Let x and y be defined as before
Then xWsyW iff there exists a doubly stochastic~Ref. @15#!

n3n matrix Q such thatyW5QxW .
We will use two facts related to doubly stochastic ma

ces:
~a! The first one is called Birkhoff’s theorem and stat

that the set of doubly stochastic matrices is the convex
of the permutation matrices. Therefore, we can writeQ
5(pi Pi ~thepi>0 summing up to one andPi being permu-
tation matrices! for any doubly stochastic matrixQ.

~b! If we take the so-called Hadamard product of a r
orthogonal matrixO with itself i.e., square it componentwis
~written symbolically asOsO) then we get a special type o
doubly stochastic matrix called orthostochastic matrix.

Later on we will use this relation to compare four-vecto
(lW ,mW ,nW , . . . ) of the kind introduced in the following sec
tion. In related works~Refs.@2,11#! it has already turned ou
to be convenient to have at hand an equivalent relation
the corresponding three-vectors (aW ,bW ,gW , . . . ) called the
06232
e

rs

he

ly.

-

ll

l

r

s~pecial!-majorization relation. LetaW andbW be two real and
nonincreasingly ordered three vectors. ThenaW s-majorizesbW

(aW ssbW ) if

a1>b1 ,

a11a22a3>b11b22b3 ,

a11a21a3>b11b21b3 . ~5!

Now let lW and mW be the four-vectors related toaW and bW ,
respectively via Eq.~4!. Then it is easily verified thatlW

smW iff aW ssbW .
The s-majorization relation can be extended to nono

dered vectors as follows. Given a vectoraW 5(a1 ,a2 ,a3),
we construct a new ‘‘s-ordered’’ vectoraW s5(a1

s ,a2
s ,a3

s),
a1

s>a2
s>ua3

su by first nonincreasingly reordering the mod
lus of the componentsa i , and by then givinga3

s the sign of

the producta1a2a3. Then for any pair of vectorsaW andbW ,
aW ssbW denotes the set of inequalities~5! applied toaW s and
bW s. We note also that according to the above discussio
gateUaW (aW being anarbitrary three-vector! is locally equiva-
lent to the gateU aW s corresponding to thes-ordered form of
aW .

III. INTERACTION COSTS OF GATE SIMULATION
AND PARTIAL ORDER OF GATES

The main result~Theorem 1! in Ref. @4# permits to assess
the interaction cost~as defined in Ref.@4#! for simulating a
two-qubit gate using any given interaction Hamiltonian a
fast local unitaries analytically after performing a simple o
timization. The proof in Ref.@4# is based on results deve
oped in the areas of quantum control@3# and quantum infor-
mation ~Refs. @5,2,6#!. Here we give an alternative proo
relying only on the tools introduced so far. We do this
giving a necessary and sufficient condition for the existe
of a simulation protocol. Before we state and prove this
sult we will introduce the problem of simulating a gate~see
Refs. @2,12# for a more general discussions! and describe
some simplifications that can be assumed in this context

A. Setting of gate simulation and basic assumptions

Simulating a desired two-qubit gateU using a given inter-
action described by a HamiltonianH @16# and arbitrary local
unitary transformations means to specify a series of lo
unitaries $U1^ V1 , . . . ,Un^ Vn% and of time intervals
$t1 , . . . ,tn% such that

U5~Un^ Vn!e2 iHt n~Un21^ Vn21!e2 iHt n21
•••e2 iHt 2

3~U1^ V1!e2 iHt 1~U0^ V0!. ~6!

Such a partition of a gateU equals a list of instructions like
‘‘Perform transformationU0 and V0 on qubit A and B, re-
spectively. Then let them interact according toH for a time
t1. Perform U1 and V1. Let them interact fort2. Finally
1-3
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perform Un and Vn . ’’ Following this protocol one would
then effectively perform the gateU on the two qubits no
matter what their initial state was.

Posing the problem of finding such a simulation proto
naturally evokes other questions: Is there always a solut
How much time will it take to perform a possible simulatio
protocol? What is the minimal time of simulation? Do w
have to allow for infinitesimal time steps? In case we c
restrict on taking finite time steps, how many of them w
suffice? In the following we will give an answer to all o
them.

To do so we adopt two simplifications. At first we emplo
a physical idealization namely thefast control limitwhich is
well justified in most of the proposed settings for quantu
information processing. It states that the cont
operations—in our case the local unitary transformation
can be executed in times, where the natural evolution—h
the interaction of the qubits—has no considerable effect
the system’s state. In other words local manipulations
interactions have to take place on significantly different ti
scales. That is what we assume and what allows us to de
the simulation time simply astS5( i 51

n t i , implying that the
local transformations in Eq.~6! take effectivelyno time. We
term the minimal timetS such that we can find a simulatio
protocol its ‘‘interaction cost’’@CH(U)# because it actually
measures thetime of interactionrequired to perform the gate

The second simplification is of pure mathematical nat
and concerns the system’s HamiltonianH. Based on results
of Refs. @2,6# we use that although a general two-qu
Hamiltonian has the form H5c01^ 11( i 51

3 ais i ^ 1
1( j 51

3 bj1^ s j1( i , j 51
3 ci j s i ^ s j we can restrict ourselve

to much simpler HamiltoniansHlW ~or equivalentlyHaW ) as
given in Eq.~3!. This is due to the fact that for any gener
Hamiltonian there exists a HamiltonianHlW , called itsca-
nonical form, and efficient protocols for simulating the evo
lution according to the latter in terms of the first. By a
efficient simulation protocol we mean that we can obtain
evolution e2 iH lW t for any time t by using H for the same
period of timet. ~Note that such a simulation involves infin
tesimal time steps, see Ref.@2#.! For the purpose of simula
tion these Hamiltonians are equivalent in the sense that
are equally effective in simulating other Hamiltonians
gates.

B. Necessary and sufficient condition for gate simulation

We are now ready to give a necessary and sufficient c
dition for the existence of a simulation protocol.

Result 1. Given a two-qubit gateU having an interaction
contentUbW and a HamiltonianH having a canonical formHaW

there exists a simulation protocol of type~6! consuming a
total timetS>0 iff a vectornW 5(n1 ,n2 ,n3) of integers exists
such thatbW nW5bW 1p/2nW satisfies

bW nWasaW tS . ~7!

Proof. We first show that this is a necessary conditio
According to the above discussion a simulation protocol
U usingH for a timet is equivalent to a protocol forUbW using
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HaW for the same timet. Moreover, we can assume that th
protocol we have consists entirely of infinitesimal time ste
dt since any finite time step can be decomposed into infi
tesimal ones. Then Eq.~6! reads as

UbW 5~Un^ Vn!e2 iH aW dt~Un21^ Vn21!•••e2 iH aW dt

3~Ui ^ Vi !e
2 iH aW dt

•••~U1^ V1!e2 iH aW dt~U0^ V0!.

Let us assume that at a time 0<t<tS we perform thei th
intermediate local transformation having then attained
effective transformation Ut5(Ui ^ Vi)e

2 iH aW dt
•••(U1

^ V1)e2 iH aW dt(U0^ V0). SinceUt is itself a gate, we can de
compose it asUt5Ut ^ VtUgW t

Ũ t ^ Ṽt , whereUgW t
5e2 iH gW t is

the interaction content ofUt . The indext indicates the time
dependence of all these unitaries.

To determine howgW t varies witht we take the next infini-
tesimal time stepe2 iH aW dt in the protocol and get

e2 iH aW dtUt5e2 iH aW dtUt ^ VtUgW t
Ũ t ^ Ṽt

5Ut1dt ^ Vt1dtUgW t1dt
Ũ t1dt ^ Ṽt1dt .

For convenience we change here to the four-vector repre
tation @as defined in Eq.~4!#. Denote bylW , nW , and jW the
vectors corresponding toaW , gW t , andgW t1dt , respectively. Af-
ter local transformations the last identity can be written a

e2 iH lW dtU ^ VUnW5W^ XUjWY^ Z, ~8!

whereW^ X and Y^ Z are appropriately defined local un
taries and all time indices are omitted. The right-hand side
Eq. ~8! is a decomposition of the left-hand side, but we
not require this to be the canonical form as defined in S
II A. We therefore, have the possibility to put further cond
tions on the unitaries in this decomposition.

If we multiply from the left byU†
^ V† and sandwich this

equation betweenuk&, one of the magic states, we find

^ckue2 iH lW dtuck&e
2 ink5^ckuW^ XUjWY^ Zuk&, ~9!

whereuck&:5U ^ Vuk&. In order to have equality fordt50
we make use of the above mentioned freedom and require
this caseW^ X5U ^ V, Y^ Z51^ 1 andjW5nW .

For infinitesimaldt we can thus expand

^ckuW^ X5^ku1^dk'u,

Y^ Zuk&5uk&1ud k̄'&,

jW5nW 1dnW .

where we may assumêdk'uk&5^kud k̄'&50. Combining
everything in Eq.~9! and collecting terms up to first order w
find

^ckuHlW uck&dt5dnk

which has to hold for allk.
1-4
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Let us now take a closer look at the diagonal eleme
^ckuHlW uck&. With regard to the definitionuck& and now
again including the time dependence ofUt ^ Vt we have
^ckuHlW uck&5^ku(Ut ^ Vt)

†HlW (Ut ^ Vt)uk&. In the magic ba-
sis local unitaries take on the form of real orthogonal ma
ces @(Ut ^ Vt)

†→O(t)# and the Hamiltonian gets diagon

@HlW→DlW :5diag(lW )#. Therefore, dnk5dt(ODlW O
T)kk

5dt@(OsO)lW #k , where (OsO) denotes the Hadamar
product of the real orthogonal matrixO(t) with itself. De-
fining Q(t):5O(t)sO(t) we can write compactly

dnW

dt
5Q~ t !lW . ~10!

Recall thatdnW is the variation of the interaction content
some intermediate time 0<t<tS in our simulation protocol.
The overall interaction contentnW (tS) is found by integrating
Eq. ~10! from 0 to tS . As initial condition we havenW (0)
50W since our simulation protocol starts from the ident
having no interaction content. We then find

nW ~ tS!5E
0

tS
Q~ t !dtlW 5SlW tS ,

whereS:51/tS*0
tSQ(t)dt is again a doubly stochastic matrix

To see this observe( j 51
4 Sjk5(1/tS)*0

tS( j 51
4 Q(t) jkdt

5(1/tS)*0
tS1dt51. The same holds for summation overk.

With Lemma 3 we can state thatnW (tS)alW tS or switching
again to the three-vector representationgW (tS)asaW tS @see the
definitions preceding Eq.~8!#. Remember that our basic a
sumption was that we have a simulation protocol for a g
U5U ^ VUbW Ũ ^ Ṽ. However, by means ofgW (tS) we can find
a—possibly different—decomposition sinceU5UtS

5UtS

^ VtS
UgW tS

Ũ tS
^ ṼtS

. From the discussion in Sec. II A w

know that the vectorsbW and gW tS
have to be related via th

local operations specified there. There are two operat
that can be done to alterbW : ~i! add multiples ofp/2 to its
components, i.e., buildbW nW5bW 1p/2nW for a vector nW
5(n1 ,n2 ,n3), and ~ii ! permute and simultaneously chan
the sign of two components, which can be expressed ea
by multiplication with an appropriate matrixP. Therefore,
we must havegW (tS)5PbW nWasaW tS for someP andnW . Recall-
ing the definition ofs ordering of vectors@see Eq.~5! and the
remarks there# we find (PbW nW)s5(bW nW)s and thereforebW nW

asaW tS .
We now turn to the second part of our proof and sh

sufficiency. Since this has already been proven in Ref.@11#

we will just sketch this proof. LetmW and lW be the four-
vectors corresponding tobW nW and aW . Then Eq.~7! reads as
mW alW tS and it follows by Brikhoff’s theorem~see Sec. II B!
that we can writemW 5( i 51

n pi PilW tS5( i 51
n PilW t i where we

definedt i5pitS . Using that each of the 4!524 permutations
06232
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Pi of the magic states$u j &% can be performed through a
appropriate local unitariesUi ^ Vi we have

UbW nW
5e2 iH mW 5expS 2 i(

i 51

n

HPil
W t i D

5expS 2 i(
i 51

n

Ui ^ ViHlW Ui
†

^ Vi
†t i D

5)
i 51

n

Ui ^ Vie
2 iH lW t iUi

†
^ Vi

† .

For the last line we took into account that@Ui ^ ViHlW Ui
†

^ Vi
† ,U j ^ VjHlW U j

†
^ Vj

†#50; i , j since the local transforma
tions involved only permute the eigen vectors ofHlW . The
last line provides clearly a proper simulation protocol forUbW nW

and—by applying appropriate local unitaries at the beginn
and at the end—for all locally equivalent gates~including
UbW ).

We remark here that Ref.@11# shows how to find explic-
itly the probability distribution$pi% and permutations$Pi%
which determine the time steps$t i% and the local unitaries
$Ui ^ Vi%. There also the maximal numbern of evolution
steps sufficient in any simulation protocol was determined
turned out to be three for time optimal protocols.

This condition for the simulation of gates is an analog
to that established in Ref.@2# for efficient Hamiltonian simu-
lation. Such a correspondence was, in principle, only
pected for infinitesimal gates. It is remarkable that it exten
in such a tight analogy to finite gates. The main difference
that here we have to include all different decompositions
the gate under consideration by allowing for variationsbW nW

5bW 1(p/2nW ). There is no analog to this in the case
Hamiltonian simulation. The reason for this is that here
have to accommodate the periodicity properties of unit
operators while in the setting of Hamiltonian simulation w
deal with a linear space of Hermitian operators.

C. Interaction costs

To finally assess the interaction costCH(U)—i.e., the
minimal time to simulateU using H and local unitaries as
defined in Ref.@4#—we just have to optimize condition~7!

with respect to bothtS and nW . Doing so we reproduce the
main result of Ref.@4#:

Result 2. The interaction costCH(U) is the minimal value
of tS>0 such that eitherbW (0,0,0)asaW tS or bW (21,0,0)asaW tS
holds.

Proof. This is equivalent to Result 1 under the restricti
that it suffices to look atnW being (0,0,0) or (21,0,0) to find
the smallesttS . This is because in casenW is not one of these
two vectors we can show that eitherbW (0,0,0)asbW nW or
bW (21,0,0)asbW nW . For the minimal timetS such thatbW nWasaW tS

for a given nW we therefore essentially have eitherbW (0,0,0)

asaW tS or bW (21,0,0)asaW tS for the same timetS . Obviously
letting nW be (0,0,0) or (21,0,0) will make forat least the
1-5
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same minimal time. The optimization for (0,0,0) o

(21,0,0) cannot be avoided since in generalbW (0,0,0) and

bW (21,0,0) are incomparable according to thes-majorization

relation. To show that eitherbW (0,0,0)asbW nW or bW (21,0,0)asbW nW

for all nW different than (0,0,0) or (21,0,0) we distinguish

two cases.~i! First we look at vectorsnW having at least one

componentunj u.1. Since the components ofbW have to ful-
fill Eq. ~1! the maximal component of the reordered form

bW nW ~see Sec. II A! is at least 3p/4. We then havebW nW

ss(3p/4,0,0) and this last vector clearlys majorizes both

bW (0,0,0) and bW (21,0,0). ~ii ! The vectorsnW satisfying unj u
<1; j have to be checked case by case. We findbW (21,0,0)

asbW nW for nW P$(21,21,21),(0,1,0),(0,0,21),(0,0,1)% and

bW (0,0,0)asbW nW for the remainingnW .
Let us formulate result 2 as a kind of recipe. In order

time optimally perform a gateU using an interaction de
scribed by a HamiltonianH together with arbitrary local uni-
taries proceed as follows:

~1! DeterminebW characterizing the interaction content
U following Ref. @5# ~see, also the Appendix!. Using Refs.
@2,6# compute the canonical form ofH to getaW .

~2! Test whetherbW or bW (21,0,0) is s majorized byaW tS for a
smaller timetS .

~3! For the vector yielding the better result, as well as
aW compute the corresponding four-vectorsmW andlW , respec-
tively. Following Ref. @11# find the permutationsPi and
probabilitiespi ( i 51,2,3) such thatmW 5( i 51

3 pi PilW tS .
~4! The pi determine the time stepst i and thePi give the

local unitaries to be applied in between. This provides
simulation protocol forUmW usingHlW for at most three finite
time steps.

~5! Simulate the evolutions according toHlW by using the
HamiltonianH for the same period of time following Ref
@2#. Apply appropriate local unitaries~determined using Ref
@5#! in the beginning and at the end of the overall simulat
to effectively performU.

We now discuss certain special cases for which some
the above points can be dropped or get simpler.

~a! In case the Hamiltonian we use describes solely p
interaction, that is to say is of the formH5( i , j 51

3 ci j s i

^ s j without any local parts, we can attain its canonical fo
by a local transformationHaW 5U ^ VHU†

^ V† ~see Ref.
@2#!. Sincee2 iH aW t i5U ^ Ve2 iHt iU†

^ V† we do not have to
employ infinitesimal simulations@as required in step~5!# and
the simulation protocol will only contain three finite tim
steps.

~b! In case the interaction content of the desired gate
characterized by a vectorbW 5(b1 ,b2 ,b3) satisfying bW

asbW (21,0,0) we can skip the optimization@step~2!# and state
directly: The interaction costCH(U) is the minimal value of
tS such thatbW asaW tS . The condition onbW for bW asbW (21,0,0)
to be true isb11ub3u<p/4. To see this we have to apply th
inequalities ~5! defining the s majorization to bW and
bW (21,0,0)

s 5(p/22b1 ,b2 ,2b3), the s-ordered version of
06232
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bW (21,0,0) ~see Sec. II A!. We find

b1<p/22b1 ,

b11b27b3<p/22b11b26b3 .

The first inequality is fulfilled trivially sinceb1<p/4 in any
case. The last two inequalities are equivalent tob11ub3u
<p/4 and this is what we claimed. The reversebW (21,0,0)

asbW is never true because the first inequality is violated
any b1. In all the other cases wherebW and bW (21,0,0) are
incomparable it will depend on the Hamiltonian which of th
two vectors yields the optimal time.

D. Interaction costs of basic gates

As an illustration we shall give here explicitly the inte
action costs for three specific gates@controlledNOT ~CNOT!,
double CNOT ~DCNOT!, SWAP# and for the whole class o
controlled-U gates. We choose those not only because t
play a prominent role in quantum information but also due
their role as ‘‘landmarks’’ in the set of two-qubit gates as w
will show in the following section. Let us list them here b
first giving their definition in terms of their action on th
computational basis$u i , j &% i , j 50

1 , then characterizing their in

teraction content by the corresponding vectorbW and finally
assessing the interaction costs pursuant to a general Ha
tonianH with canonical formHaW .

1. CNOT gate and controlled-U gates

The CNOT gate is the prototypical two-qubit quantum
logic gate. Its action is defined compactly asu i &A^ u j &B
→u i &A^ u i % j &B , where% denotes addition modulo 2. Tha
is, it flips the second~target! qubit iff the first ~control! qubit
is in stateu1&. Let us denote theCNOT gate byU CNOT

AB , where
the first superscript indicates the control and the second
target qubit. In the Appendix we show that the interacti
content of this gate is given bybW 5(p/4)(1,0,0). Therefore,
the CNOT belongs to the special class of gates where we
skip the optimization in result 2 and go straight ahead
majorization in order to determine the interaction cost. R
quiring bW asaW tS is equivalent to

p/4<a1tS,

p/4<~a11a26a3!tS .

Clearly the first inequality yields the tighter bound. The i
teraction cost for simulating aCNOT is CH(CNOT)
5(p/4)1/a1.

The CNOT is a representative of the general class
controlled-U gates. These gates apply a unitary operation
the target qubit iff the control qubit is in stateu1&. Thus they
have the form

Uctrl 2U5u0&^0u ^ 11u1&^1u ^ U.

In the Appendix we show that the interaction content o
controlled-U gate is always described bybW 5(b,0,0), where
1-6
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CHARACTERIZATION OF NONLOCAL GATES PHYSICAL REVIEW A66, 062321 ~2002!
b is fixed by the eigenvalues ofU. The interaction cost to
simulate such a gate isCH(Uctrl 2U)5b/a1.

2. DCNOT gate

TheDCNOT gate is the concatenation of twoCNOT gates in
the following wayU DCNOT

AB 5UCNOT
BA U CNOT

AB and its action on
the computational basis can be described asu i &A^ u j &B
→u j &A^ u i % j &B . This gate was introduced in Ref.@7# as an
intermediate gate between theCNOT and theSWAP gates. In
the following we will emphasize the special role of theDC-

NOT gate. Its interaction content is described bybW 5(p/4)
3(1,1,0) such that theDCNOT falls as well under the class o
gates where we do not have to care about the optimizat
For the interaction cost we findCH(DCNOT)5(p/4)2/(a1
1a22ua3u).

3. SWAP gate

The SWAP gate is the unique gate having the effect
exchange the states of two qubits i.e., transformingu i &A
^ u j &B→u j &A^ u i &B . It is well known that USWAP

5UCNOT
AB U CNOT

BA U CNOT
AB and regarding the two other gate

not very surprising that its interaction content isbW
5p/4(1,1,1). Once more recalling conditions~1! we can say
that this is maximal. Now the optimization cannot b
avoided. We findbW (21,0,0)

s 5p/4(1,1,21) and it turns to be

optimal to simulatebW (bW (21,0,0)
s ) if a3.0 (a3,0). In case

a350 the interaction costs are equal for both alternatives
any case we find the interaction costsCH(SWAP)
5(p/4)3/(a11a21ua3u).

E. Order of gates

What we see by these examples and what was to be
pected is that the interaction costs depend strongly on
interaction resource—i.e., the Hamiltonian—we have at
disposal. But once the interaction is fixed the notion of
teraction cost induces an order in the set of gates allowin
to compare the ‘‘nonlocality’’ of two gates in terms of th
resources needed to perform them. Of course this orde
always relative to the Hamiltonian and may change when
choose another one. For example if we use the Ising inte
tion s1^ s1 we find theCNOT to be less nonlocal than th
DCNOT and this one in turn to be less nonlocal than theSWAP.
On the contrary with the exchange interactions1^ s11s2
^ s21s3^ s3 at hand theSWAP is less time consuming tha
the DCNOT and in this sense less nonlocal. However, in
restricted region of the set of two-qubit gates this order
absolute, in that it does not depend on the interaction Ha
tonian. We will first define this order properly and then sta
and prove this result.

We say gateU is more nonlocalthan gateV, and write
V<U, when for all interactionsH the interaction cost ofU is
never smaller than that ofV,

V<U[CH~V!<CH~U! ;H.

Result 3. Let U andV be two two-qubit gates with corre
sponding ordered vectorsbW U andbW V such that in both case
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the restrictionb11ub3u<p/4 holds. Then gateU is more

nonlocal than gateV if and only if bW VasbW U .
Proof. Since both vectorsbW satisfy b11ub3u<p/4 the

interaction costsCH(V) andCH(U) are given, respectively, by
the smallesttU ,tV>0 such that

bW VasaW tV

bW UasaW tU .

Suppose firstV<U, that is, for any HamiltonianH we have
CH(V)<CH(U) and in particularbW VasaW CH(U). If we rewrite
this relation for the particular Hamiltonian whereaW 5bW U and
use that in this caseCH(U)51 we findbW VasbW U . This proves
the direct implication. The inverse follows right away b
using the partial order property of majorization.aW CH(U)
ssbW UssbW V directly impliesCH(U)> CH(V) ~see the proof of
result 2!.

Once more coming back to the problem of Hamiltoni
simulation we mention that the corresponding partial or
there has been solved completely@2#. The reason why the
partial order established in result 3 only holds in the reg
of gates, whereb11ub3u<p/4 is again that we have to dea
here with the rather involved periodic structure of SU(4). It
is exactly this restricted region where we can evade this
ficulty by suppressing the otherwise essential optimizat
betweenbW (0,0,0) and bW (21,0,0) ~step 2 in the recipe given in
Sec. III C!.

IV. TRANSMISSION OF INFORMATION AND CLASSES
OF GATES

By now we analyzed two-qubit gates in terms of the tim
expense they cause in the context of simulation. There
main objective is to perform a given gate on two qubits us
a minimum time of interaction seen as a valuable resou
The notion of interaction cost thereby obtained gave a m
sure for how nonlocal~either relative to a specific interactio
or absolute as in result 3! a gate is. In this section we chang
the perspective. We now want to prescribe the tasks a
has to accomplish and ask how nonlocal it, therefore, ha
be. In this setting we consider the gate and its inherent n
locality to be the valuable resource. The task we have
mind here is the transmission of information in form of cla
sical as well as quantum bits.

This section is organized as follows: First we motiva
why the capability of gates to transmit bits is a proper m
sure for their nonlocality. After having given some bas
definitions, we collect a number of known results for certa
gates. Then we treat the problems of transmitting a cbit o
qubit in one direction, as well as all possible combinations
them in both directions by using a two-qubit gate and de
mine the interaction content necessary to do so. The su
quent discussion of the results will allow us to distingui
various classes of gates differing in their capability f
quantum-communicational tasks which will give a charact
ization of the nonlocality of a gate as well.
1-7
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A. Transmission capability and nonlocal content of gates

Nonlocal gates result physically from an interaction tak
place between the qubits by some means. Interaction
tween two physical systems conditions on the other hand
transmission of information between them since after hav
interacted~at least one of! the subsystem’s states will hav
changed depending on the states ofboth subsystems as the
were before the interaction. Hence there must have b
some kind of information exchange in the process of int
action. It is, therefore, natural to ask whether we can utiliz
nonlocal gate to send~classical or quantum! information.
The amount of information we can transmit using a gate w
give us then a characterization of its degree of nonlocality
similar point of view was captured in Refs.@7,8# where the
amount of classical and quantum information necessar
implement a gate was adapted as a measure for its non
content.

What do we mean by the transmission of classical
quantum information? Consider two parties Alice and B
holding a qubitA and B, respectively. Assume further tha
somehow they manage to perform a gateU on their qubits.
Then we say thatU allows for thetransmission of a classica
bit from Alice to Bob ~denoted by cbitA→B) if after the ap-
plication ofU Bob can distinguish with probability 1 whethe
Alice’s qubit was inu0& or u1&. We speak of thetransmission
of a quantum bitfrom Alice to Bob (qubitA→B) if under the
action ofU Bob’s qubit takes on the state of Alice’s qubit.

Let us make some remarks here.~i! The essential differ-
ence between these two effects of a gate is, that in the ca
cbitA→B we do not require superpositions ofu0& and u1& to
be transmitted faithfully whereas in the case qubitA→B we
do. The possibility to send a qubit trivially includes the o
to transmit a cbit resembling the fact that quantum inform
tion incorporates classical information.~ii ! Without further
specifyingU we can state directly that in case qubitA→B Al-
ice loses her state after sending it due to the no-clon
theorem.~iii ! If Alice’s qubit is maximally entangled to som
ancilla qubit on her side then the transmission qubitA→B
swaps the entanglement thus establishing a maximally
tangled pair of qubits~ebit! between Alice and Bob. That i
why the authors of Refs.@7,8# identified the capabilities of a
gate to send a qubit and to create an ebit. Here we wan
distinguish between the actualcreation of entanglemen
without ancilla systems as treated in Ref.@5# and entangle-
ment swappingby the transmission of a qubit. This differen
tiation is essential for example in the case of aCNOT gate
which can be used to create an ebit@U CNOT

AB (1/A2)(u0&
1u1&) ^ u0&5(1/A2)(u00&1u11&)] but not to transmit a qu-
bit as we will show in the following.

For the gates introduced in Sec. III D it is well known an
easy to see how they can be used to transmit bits. Regar
the definitions given there the following is effortless verifie

~a! U CNOT
AB u i0&5u i i &, i 50,1 and therefore theCNOT is

sufficient to send a cbit from Alice to Bob. Since Alice
qubit does not change at all under the action of this gate
impossible for her to send a qubit to Bob~see remark~ii !
above!. This is not true if Alice and Bob share entangleme
as an additional resource. See the remark below.
06232
n
e-
e

g

en
r-
a

ll
A

to
cal

r

of

-

-

n-

to

ing
:

is

t

~b! U DCNOT
AB uw0&5u0w& where uw& is an arbitrary qubit

state transmitted by the action ofU DCNOT
AB . Moreover, we

find U DCNOT
AB uw1&5u1& ^ sxuw& telling us that Bob may send

at the same time a cbit to Alice under the condition that
case he sentu1& he flips his qubit after the transmission
order to recover the correct stateuw&. Since he knows wha
he sent, as we can assume, this requires no additional c
munication.

~c! USWAPuwc&5ucw&, where uw& and uc& are arbitrary
states both being transmitted faithfully.

We can summarize this by the implications

CNOT→cbitA→B ,

DCNOT→qubitA→B1cbitB→A ,

SWAP→qubitA→B1qubitB→A .

Obviously, due to the symmetry of the nonlocal content
two-qubit gates under exchange of parties, the same exp
sions hold if we make the substitutionsA↔B. These rela-
tions hold strictly for the case where the communicating p
ties have no ancilla systems and no prior entanglemen
hand, but have to be read as lower bounds on the capabi
of these gates to transfer information if we allow for add
tional resources of this kind. It is a central result in quantu
information that the capacities to transmit information can
increased if the parties possess shared entanglement~ebits!
@7,8#.

B. Transmission of information in the context
of gate simulation

Assume now Alice and Bob want to send some giv
amount of information~possibly in both directions! by using
some fixed interaction described by a HamiltonianH and
arbitrary local transformations of their qubits. They could
so by choosing appropriately one of the above gates pro
ing the necessary transmission capability and then simula
according to the results we derived so far. The interact
costs thereby incurred are given in Sec. III D. But is th
optimal? There might be gates which are suitable for
same task but have an interaction content different fr
those ofCNOT, DCNOT, or SWAP yielding smaller interaction
costs. In the following we want to single out which gate
both sufficient for a certain transmission task and optima
terms of interaction costs. We do this by deriving necess
and sufficient conditions on the interaction content of a g
to be capable for the transmission of a given amount of
formation. All we have to do then is to find the gate whic
fulfills the appropriate condition and causes the minimal
teraction cost.

1. cbitA\B

Assume Alice encodes a classical bit into her qubit
preparing it inu0& or u1& and Bob holds some arbitrary sta
uw&. Then the bit is by definition transmitted if after an a
plication of a gateU Bob’s qubit takes on a stateuc& or uc'&
~some state orthogonal touc&) depending on whether Alice
1-8
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CHARACTERIZATION OF NONLOCAL GATES PHYSICAL REVIEW A66, 062321 ~2002!
sent ‘‘0’’ or ‘‘1.’’ At the same time Alice’s qubit may change
arbitrarily. The action ofU we have to require is described b

u0w&→uxc&,

u1w&→ux̃c'&. ~11!

More precisely we can state: A necessary condition for a g
U to be capable of transmitting a cbit is, that there exist sta
uw&, ux&, ux̃&, uc&, and uc'& such that relations~11! hold.
Assume now that this is indeed the case. What can we
about the interaction content ofU? Since independent loca
transformations before and after the application ofU do not
affect its interaction content, we can look for unitaries fu
filling Zuw&5u0&, Yux&5u0&, Xuc&5u0& and Xuc'&5u1&
and defineU 85(XA^ YB)U(1A^ ZB) having a simpler action
given by

u00&→u00&,

u10&→ua1&, ~12!

whereua&5Yux̃&. U 8 andU are locally equivalent and there
fore have the same interaction content. To derive conditi
on this interaction content we applyU 8 to the state%:
5 1

2 1A^ u0&B^0u—transforming under the terms of Eq
~12!—and take the partial trace with respect to systemA:

trA$U 8%U 8†%5
1

2
tr$u00&^00u1ua1&^a1u%5

1

2
1B . ~13!

When we, on the other hand, assume a decompositionU 8

5(Ũ ^ Ṽ)UbW (U ^ V) we find

trA$U 8%U 8†%5
1

2
trA$@ṼBU bW

AB
VB#1A^ u0&B^0u@ṼBU bW

AB
VB#†%.

~14!

Equating the right-hand sides of Eqs.~13! and~14! and mul-
tiplying from the left byṼB

† and from the right byṼB yields

1B5trA$U bW
AB1A^ uv&B^vuU bW

AB†
%,

where we have abbreviatedVu0&5uv&. Expressing without
loss of generality uv&5cos(v)u0&1e2iusin(v)u1& one can
workout the trace explicitly and finds

1B5S 12a b

b* 11aD ,

a5cos~2v!cos~2b1!cos~2b2!,

b5sin~2v!cos~2b3!@cos~u!cos~2b2!1 i sin~u!sin~2b1!#.
~15!

Let us stop here and consider what Eq.~15! tells us. The
left-hand side was an immediate consequence of the ne
sary conditions onU to properly transmit a cbit while the
right-hand side results from the general ansatzU 85(Ũ
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^ Ṽ)UbW (U ^ V), where the unitaryV contains the parameter
v, u andbW 5(b1 ,b2 ,b3) characterizes the interaction con
tent UbW . Equation~15! thus puts certain conditions on th
parameters in the decomposition ofU 8. Obviously we have
to requirea5b50. This in turn is fulfilled in various cases
for example whenever two of the coefficientsbk5p/4, the
third being arbitrary. However, it is also easy to see that th
are solutions, where onlyoneof the coefficientsbk5p/4. In
this case we have to choose eitherv or u appropriately. This
puts conditions on the stateuw& in Eq. ~11! denoting the input
state Bob has to choose in order to properly receive the
Alice aims to send him. Three solutions of this kind are f
example given by$b15p/4,v50%, $b25p/4,v50%, and
$b35p/4,v5p/4% where in each case the remaining para
eters can be chosen arbitrarily. All in all we have shown t
it is a necessarycondition for the transmission of a cbit t
have at least one of the coefficientsbk equal top/4 and
without loss of generality we can always require this to
b1.

To be systematic we should now continue and show, t
any gate characterized by a vectorbW 5(p/4,b2 ,b3) is also
sufficientfor this task. But at this point we will not do so fo
two reasons. First we already know that an interaction c
tent bW 5(p/4,0,0) is sufficient to transmit a cbit becau
this basically fixes aCNOT or any gate locally equivalen
to a CNOT. Second we find (p/4,0,0)as(p/4,b2 ,b3)
for all 0<ub3u<b2<p/4 and therefore CH(CNOT)
<CH(U(p/4,b2 ,b3)) for all H. Thus looking for gates othe
than those out of theCNOT class has no advantage in terms
interaction costs. Let us state this as

Result 4. The cheapest~time optimal! way to transmit a
cbit using some given interaction is to simulate aCNOT gate.
The interaction cost isCH(cbitA→B)5(p/4)1/a1.

The following results will show that the transmission c
pability scales up with the coefficientsbk becoming bigger.
Just by continuity it follows then right away that any ga
having an interaction contentbW 5(p/4,b2 ,b3) is also suffi-
cient to tranmit at least a cbit.

2. cbitA\B and cbitB\A

Again let Alice encode a logical bit into her qubit asu0&
or u1&. Further assume Bob wants to send ‘‘0’’ and therefo
preparesu0&. To properly transmit their two messages th
have to find a gate, which transforms the states like

u00&→uwx&,

u10&→ucx'&. ~16!

To detect the messages being sent to him, Bob has to m
sure the observablesx5ux&^xu2ux'&^x'u. Conversely Al-
ice has to measuresw or sc ~defined similarly! depending
on whether her message was ‘‘0’’ or ‘‘1.’’ Consider now th
same situation but let Bob’s message be ‘‘1.’’ The same r
soning as before yields
1-9
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u01&→uw'v&,

u11&→uc'v'&. ~17!

Now Bob has to measuresv . The transformation behavio
characterized so far lacks of one essential condition: it is
unitary. Unitary transformations map an orthonormal ba
into another one and this is so long not fulfilled, since f
^wxuc'v'&Þ0. Imposing that the vectors on the right-ha
side of Eqs.~16! and ~17! build again a basis one finds fou
possible cases:~i! ^wuc'&50 and ^cuw'&50, ~ii ! ^xuv'&
50 and ^vux'&50, ~iii ! ^wuc'&50 and ^vux'&50, and
~iv! ^cuw'&50 and^xuv'&50. The last two cases are mo
restrictive than~i! and ~ii ! since there the states ofboth qu-
bits have to meet certain conditions. We are, however, in
ested to stay as less restrictive as possible so that we
going to focus on~i! in which case we have to requireuc&
5e2 iauw& and uc'&5e2 ibuw'&. Let us summarize what we
have found so far:

u00&→uwx&,

u10&→e2 iauwx'&,

u01&→uw'v&,

u11&→e2 ibuw'v'&.

Including the phases intoux'& anduv'& and again adjusting
the axes by local transformations to cleanse the notation~as
we did for the cbitA→B-problem! we can write equivalently

u00&→u00&,

u10&→u01&,

u01&→u1v&,

u11&→u1v'&. ~18!

We can see that Bob has to measure a different observ
depending on what he sent. For the case~ii ! above we would
find similar transformations but then being Alice the one w
has to adapt her observable. Therefore case~i! gets identical
with ~ii !, if we let Alice and Bob exchange their name
which in turn cannot have any relevance for the interact
content of the gate they use. Or more mathematically:~i! can
be transformed into~ii ! by conjugating the gate with th
SWAP and this does not alter the interaction content.

We can now parametrizeuv&5cos(v)u0&1e2iusin(v)u1&
and uv'&5e2 ih(2sin(v)u0&1e2iucos(v)u1&) and determine
the interaction content of the gate
06232
ot
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U~h,u,v!5e2 ip/4ei (h1u)/4

3S e2 i (h1u)cos~v! 0 e2 iusin~v! 0

2e2 ihsin~v! 0 cos~v! 0

0 1 0 0

0 0 0 1

D
~19!

written in the computational basis$u11&,u10&,u01&,u00&% in
this order. The global phase assuresU(h,u,v) being aspe-
cial unitary operator. Following Appendix one finds for th
vectorbW 5(b1 ,b2 ,b3) characterizing the interaction conte
UbW of U(h,u,v),

b15p/4,

b25p/4,

b35p/42q,

whereq is a solution to tan2(2q)5sec2@(h1u)/2#sec2(v)
21. q therefore parametrizes a family of gates, of whi
each element has the desired capability to transmit cbitA↔B .

Note especially that theDCNOT @bW 5(p/4,p/4,0)# and the
SWAP @bW 5(p/4,p/4,p/4)# belong to this family as we
should expect according to the discussion in Sec. III
These gates are attained for the choiceq5p/4 andq50,
respectively. In terms of (h,u,v) this corresponds f.e. to se
(h5p,u50,v5p/2) and (h1u50,v50) for the DCNOT

and theSWAP, respectively yielding the expected result wh
inserted in Eq.~19!.

If we want to tranmit the cbits using some given intera
tion we can freely choose the parameterq out of @0,p/2# in
order to keep down the interaction costs. Let us present
optimal choice in

Result 5. The cheapest~time optimal! way to trans-
mit cbits in both directions using some given interacti
is to simulate a gate holding an interaction conte
bW 5(p/4)@1,1,2a3 /(a11a2)#. The corresponding interac
tion cost isCH(cbitA↔B)5(p/4)2/(a11a2).

Proof. Define bª1/222/p•q and parametrizebW (q)
5bW (b)5(p/4)(1,1,2b). We have to findbP@21/2,1/2# and
tS>0 such that eitherbW (b)asaW ts or bW (21,0,0)(b)asaW ts

holds and tS is minimal. First note thatbW (21,0,0)
s (b)

5bW (2b). The optimization with respect tob therefore in-
cludes that with respect tobW andbW (21,0,0). The minimal time
such thatbW (b)asaW ts is fulfilled is given by

tmin~b!5maxH p

4

1

a1
,
p

2

12b

a11a22a3
,

p

2

11b

a11a21a3
J .

Optimization with respect tob yields the interaction cost
1-10
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TABLE I. Interaction content, transmission capability and interaction costs are listed for various c
of gates. With respect to their transmission capability the whole set of two-qubit gates resolves into a
hierarchy of four classes.

Interaction content Transmission capability Interaction co

b1 b2 b3 cbitA→B qubitA→B and cbitB→A qubitA↔B CH(U)

Controlled-U x 0 0 3 3 3
x

a1

CNOT p/4 0 0 A 3 3
p

4

1

a1

I p/4 y z A 3 3 >
p

4

1

a1

DCNOT p/4 p/4 0 A A 3
p

4

2

a11a22ua3u

II p/4 p/4 z A A 3

p

4

2

a11a2

for

z5
p

4

2a3

a11a2

SWAP p/4 p/4 p/4 A A A p

4
3

a11a21ua3u
be

ve

e

st

e a

m

ing

-
y

c-

o
the

nd

in

for-
CH~cbitA↔B!

5 min
bP@21/2,1/2#

@ tmin~b!#

5 min
bP@21/2,1/2#

3FmaxH p

4

1

a1
,
p

2

12b

a11a22a3
,
p

2

11b

a11a21a3
J G .

This is an exercise in linear optimization which has to
solved under the conditionp/4>a1>a2>ua3u. An elemen-
tary calculation yieldsCH(cbitA↔B)5(p/2)1/(a11a2) for
b5a3 /(a11a2).

3. qubitA\B and „qubitA\B and cbitB\A…

To reliably transmit a qubit we require

u00&→uwx&,

u10&→uwx'&.

The remaining vectorsu01& and u11& may transform arbi-
trarily but have to stay orthogonal to both among themsel
and with respect touwx& and uwx'&. The least restrictive
choice yields similar to the foregoing section

u01&→uw'v&,

u11&→uw'v'&.

Without loss of generality we can identifyuw&5u0&,uw'&
5u1&,ux&5u0&, andux'&5u1& ending up with the same gat
06232
s

~18! as for cbitA↔B . The optimal interaction content and co
to send a qubitA→B is therefore the same as in result 5.

Regarding the transformations given in Eq.~18! it is ob-
vious that this gate is also capable to send at the same tim
cbitB→A . To do so Bob encodes his bit intou0& or u1&. Ap-
plying U sends the bit to Alice. The qubit Bob gets fro
Alice comes in faithfully if Bob sent ‘‘0.’’ In the other case
he has to recover the qubit by a local transformation obey

Vuv&5u0& and Vuv'&5u1&. An interaction contentbW

5(p/4,p/4,p/42q) is therefore sufficient for the transmis
sion qubitA→B and cbitB→A . This is also necessary since an
interaction content showing less thanp/4 in the first two
entries is not sufficient to send a qubitA→B . Again we can
refer to the values given in result 5 for the optimal intera
tion content and cost.

4. qubitA^B

This problem is trivial since the exchange of the tw
quantum states completely fixes the transformation of
basis states and therefore also the gate. TheSWAP is the only
gate providing the required action. Interaction content a
cost are given in Sec. III D.

C. Classes of gates

The results of the foregoing sections are summarized
Table I.

One can see that the capability of a gate to transmit in
mation increases when the coefficientsbk characterizing its
interaction content approach their maximal valuesp/4. Es-
1-11
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pecially when one of them takes on this maximum value,
corresponding gate acquires a new feature. The special g
CNOT, DCNOT, and SWAP ~and all their local equivalents!
mark these thresholds and that is why we announced t
being ‘‘landmarks’’ in the set of two-qubit gates. This allow
us to distinguish four classes of gates differing in their tra
mission capability:~i! gates withp/4.b1>b2>ub3u ~no
transmission capability!, ~ii ! CNOT and type I,~iii ! DCNOT

and type II, and~iv! SWAP. This classification endows th
coefficients bk with physical significance and therefor
complements earlier work, where a gate’s interaction con
UbW was associated with its capability to create entanglem
@5#.

V. CONCLUSIONS

In this work we addressed the problem of simulating tw
qubit gates using some given interaction and local unit
transformations in the fast control limit. For this to be po
sible we presented a necessary and sufficient condition l
ing the gate, the Hamiltonian characterizing the interact
and the total time of simulation. Optimization with respect
time gave a measureCH(U)—termed interaction cost—fo
how costly such a simulation in terms of time of interacti
is and thereby recovered a result already attained in Ref.@4#.
The interaction cost has been computed for various gates
was shown to induce a partial order in a region of the se
two-qubit gates thus establishing a meaningful notion of a
measure for the nonlocality of a gate.

To give an application, as well as a supplementation
these results we then turned to the problem of transmit
information between two parties using two-qubit gates. N
essary and sufficient conditions on gates were establishe
be capable of transferring classical and quantum bits in
combinations and directions. This allowed us to compute
plicitly the interaction costs for these tasks. Beyond it t
transmission capability of a gate provided a classification
two-qubit gates.

All results derived here concern two-qubit systems.
the underlying problems can naturally be extended to hig
dimensional systems and therefore, it would be desirabl
generalize the results. The main obstacle to do so is tha
higher dimensions there is no decomposition like in Eq.~1!
for a general unitary operator.
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APPENDIX: INTERACTION CONTENT OF NONLOCAL
GATES

In Lemma 1 we presented a decomposition for two-qu
gates of the form U5ŨA^ ṼBe2 iHUA^ VB , where H
5exp((k51

3 aksk^sk). Here we demonstrate a method bas
on Ref.@5# to determine theak for a general givenU.

In Sec. II A we gave an alternative representation ofH in
terms of its eigenvalueslk . The method actually admits to
compute thelks and relies on the following two observa
tions: ~i! Hamiltonians of the special form considered he
are diagonal in the magic basis as we have already show
Sec. II A. ~ii ! Local unitaries are real in the magic basis@9#.
Especially they become real orthogonal matrices since
course they stay to be unitary. This fact resembles the ho
morphism SU(2,C) ^ SU(2,C).SO(4,R) @14# becoming
manifest in the magic basis. Using these two facts the
composition takes on the formU5ÕDO when written in the
magic basis whereD5diag(e2 il1,e2 il2,e2 il3,e2 il4) and
Õ,O are real orthogonal matrices corresponding toŨA^ ṼB

and UA^ VB . Therefore U TU5OTDÕTÕDO5OTD2O.
Hence, if we compute the eigenvalues ofU TU we will find
them to be$e22il1,e22il2,e22il3,e22il4%. Taking the argu-
ments of these phases and dividing by two will give us
lks and via Eq.~4! the aks.

As an example let us determine theaks for theCNOT gate.
In the computational basis @in the order
(u11&,u10&,u01&,u00&)] and the magic basis@in the order
given by the enumeration in Eq.~2!# we find respectively

U CNOT
AB 5e2 ip/4S 0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

D
CB

5
e2 ip/4

2 S 1 2 i 21 2 i

i 1 i 21

21 2 i 1 21

i 21 i 1

D
MB

.

The overall phase included assures that det(UCNOT)51 and
thereforeUCNOTPSU(4). Theeigenvalues ofU CNOT

T UCNOT

turn out to be$ i ,i ,2 i ,2 i %. Taking the square root an
then ordering the arguments in decreasing order
find lW 5p/4(1,1,21,21). Solving Eq. ~4! we get aW
5p/4(1,0,0).

However, in some cases simple algebraic considerat
provide a more elegant way to find the interaction conte
We shall demonstrate this on the basis of the class
controlled-U gates. These gates are of the formU ctrl 2U

AB

5P01P11^ U, wherePi5u i &A^ i u ^ 1B as we mentioned in
Sec. III D. If we now take the transposeU ctrl 2U

T in the magic
basis and take into account thatP0

T5P1 and (1^ U)T51
^ U† we find U ctrl 2U

T Uctrl 2U5(P11P01^ U†)(P01P11
1-12
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^ U)5P01^ U†1P11^ U5u0&^0u ^ U†1u1&^1u ^ U. This
operator is block diagonal in the computational basis a
therefore has the same eigenvalues asU but with multiplicity
2, i.e., has a spectrum$ei2b,ei2b,e2 i2b,e2 i2b%, wheree6 i2b
n,
y

ys

hy

06232
d
are the eigenvalues ofU. Solving Eqs. ~4! for l15l2

5b,l35l452b we find aW 5(b,0,0)@aW 5(p/22b,0,0)#
for b<p/4@b>p/4#. For theCNOT we have especiallyU
5sx and thusb5p/4 as it shall be.
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