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A nonlocal unitary transformation of two-qubits occurs when some Hamiltonian interaction couples them.
Here we characterize the amount, as measured by time, of interaction required to perform two-qubit gates,
when also arbitrarily fast, local unitary transformations can be applied on each qubit. The minimal required
time of interaction, ointeraction costdefines an operational notion of the degree of nonlocality of gates. We
characterize a partial order structure based on this notion. We also investigate the interaction cost of several
communication tasks, and determine which gates are able to accomplish them. This classifies two-qubit gates
into four categories, differing in their capability to transmit classical, as well as quantum, bits of information.

DOI: 10.1103/PhysRevA.66.062321 PACS nuntber03.67—a

[. INTRODUCTION tum information, unitary evolutions must in practice be en-
forced in a sufficiently small time as compared to the deco-

An essential ingredient in quantum information process-Herence time of the quantum systems. In several settings, the
ing is the ability to make two two-level systems or qubitstime scale of gates is essentially determined by the interac-
undergo a joint unitary evolution. Accordingly, most currenttion between qubits, for one-qubit unitary transformations
proposals for the implementation of a quantum computecan be performed much faster. Then, an efficient use of the
rely on some ingenious method to realize two-qubit gates. interaction becomes a priority. On the other hand, the mini-

Irrespective of the physical substrate of the qubits, a jointmal realization time or interaction cost of a gate can be natu-
unitary evolution can only be achieved through some form ofally used to compare gates, thereby endowing the set of
interaction. This quite often couples the two qubits directly,nonlocal transformations with a partial order structure that
though a third system may alternatively mediate in the transrefers to the amount of inherent interaction. This, in turn,
formation. The starting goal of this paper is, given any fixedprovides us with a meaningful notion of the degree of non-
two-qubit Hamiltonian, to describe how it can be used tolocality of a gate, built upon the observation that local gates
accomplish any desired gate on the two systems. can be performed without any interaction.

Of course, some form of external control on the two qu- In the present paper we first reproduce and extend the
bits is required to conveniently modify their evolution, which results of Ref[4] concerning the time optimal use of inter-
would otherwise be dictated only by the coupling interaction.actions, and put these into work by characterizing the infor-
Inspired by the possibilities presently demonstrated in sevmation exchange associated to a two-qubit gate. In [R&f.
eral quantum optical setups, where each qubit can be indé¢he derivation of the interaction cost rested on a previous
pendently addressdd], we assume here the ability to per- proof of Ref.[3] which requires familiarity with several facts
form arbitrary local unitary operationdU) on each of the of differential geometry. Here we present an alternative,
systems. More specifically, we shall analyze the fast contra$elf—contained proof, which in addition employs ideas and a
limit, in which these control operations can be performedformalism that we believe to be more common to quantum
instantaneouslyPhysically, such a limit amounts to assum- information community. This new proof is complemented
ing a neat separation between the time scale of the interagvith an expanded analysis of the interaction cost of two-
tion (which is comparatively sloyand that of the external qubit gates, including several relevant examples. The overall
manipulations. result is an operational characterization of two-qubit gates in

The setting we consider corresponds, thus, to the so-calle@rms of the interaction resources needed to perform them.
gate simulation under LU of Ref2]. This setting has been For any specific information processing task, there may
previously considered in Ref3], where powerful math- be several gates that can accomplish it. It is then reasonable
ematical techniques were developed to study time-optimato investigate the most efficient way to accomplish the de-
strategies; that is, strategies that perform the desired gate lsjred task with a given interaction, that is, to search for the
using the available interaction for the shortest time. In Refgate with lowest interaction cost compatible with that task.
[4], and by elaborating on the results of Rf] and of Refs.  In particular, a joint gate can be used to transmit information
[2,5,6], time-optimal strategies have been analytically charbetween the qubits, and one can study the interaction cost of
acterized for any interaction and gate of two qubits. certain communication tasks, such as the transmission of

The main result of Ref[4] permits therefore to assess classical and quantum bits from one system to the other.
explicitly the minimum time an interaction is required to A second main goal of this paper is precisely to charac-
simulate a given gate, a measure that has been called therize the minimal interaction time required to send classical,
interaction costof the gate. The merit of such a measure isas well as quantum, information. As a byproduct, and very
twofold: On one hand, time is by itself a crucial parameter inmuch in the spirit of Refs[7] and[8], where information
present experiments. In order to successfully process quaexchange has been used to characterize the nonlocal content
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of certain gates, we obtain a complete classification of twosy H=33_ o @a, such that U=U,0Vge HU,
qubit gates with respect to their transmission capabilities®v [3.5] k=1
B IRAE

thereby supplementing the original characterization of non- Here theo,’s denote the usual Pauli spin matrices. Note

local gates. that the real numb t uni | do not
The results we present can be summarized as follows: a fe rﬁa numd_e_rak are ng un'qlr‘:.e’ as onfg as we dono )
(a) Analytical characterization of the interaction cost of pose urther conditions on them. This is so for two reasons:
any two-qubit gate by any two-qubit interaction Hamil- F|_rst, operators of the type o ® o are local and commute
with H so that we can always extract such a local operator

tonian, through a new, self-contained pragec. I1). from the local parts in this decomposition and include it in
(b) Analytical characterization, in part of the space of _This alters the corresponding coefficiemt by = /2.

two-qubit gates, of the partial order structure based on th . ! :
intergctiongcos(Sec 1) P econd, there are certain local transformationgioivhich
(c) Analytical characterization, for any two-qubit interac- ;?”S?We ]'cttsv\l;orr? tt;]Ut pe;rrr]]utle thle cqteff!meatﬁar;]d change h
tion, of the interaction cost of the following communication € sign of two ofthém. 1he focal unitaries which cause suc
a transformation are of the typesio®1 and *il® oy.

. V)
processes between two gubisec. 1) Using this it can easily be checked that it is always possible

(1) Transmission of one classical bit: chifg . _ . - i X
(2) Simultaneous, bidirectional transmission of two clas—t.0 bringH to a form, where its coefficients obey the inequali-
' ties (see also Refl5])

sical bits: cbif_,g and cbig_, A .

(3) Transmission of one quantum bit: qupifg 4= ay= ay=| . 1)
(4) Simultaneous, bidirectional transmission of one clas-
sical bit and one quantum bit: cRitg and qubig_ A . Note that these conditions are an arbitrary choice and that it
(5) .Slmulta_neous, bldlre_cnonal transmission of two quan-might be necessary to relax them when we are looking for
tum bits: qubif_g and qubig_ x . _ optimal simulation protocols. We will come back to this
(d) Analytical characterization of two-qubit gates accord- noint Jater on.
ing to their capability to perform any of the above tasgsc. We call the decomposition of a two-qubit gate as given in
V). lemma 1, where the coefficients fulfill Eq. (1) its canoni-
cal form The purely nonlocal unitarg '™ in this decompo-

[l. DEFINITIONS AND BASIC FACTS sition is termed thénteraction contenof the gate.
d That the nonlocal characteristics of a two-qubit gate are
etermined by only three real parameters is a remarkable
Iresult in view of the fact that a general element of SUj4s
ixed by 15 independent parameters. It might be mentioned
ere that while Ref[3] provides a profound Lie-algebraic
basis for the decomposition in lemma[ %] gives a construc-
tive proof which allows to determine the coefficienig, as
well as the local unitaries for any given gate. Based on this
Consider a system consisting of two two-dimensionalmethod we show in the Appendix how to derive agfor a
subsystemgqubity, A and B. The corresponding Hilbert giveni/ without constructing the local unitaries.
spaces areH,~C? and Hg~C2. The compound Hilbert A necessary and sufficient criterion for two gates to be
space isHag=Ha® Hg~C?® (2, locally equivalent is now obviously that they have the same
By a two-qubit gaté/ we understand a unitary operator interaction content. By definition it is also clear that any
acting onH,g. By choosing the global phase appropriately two-qubit gate is locally equivalent to its own interaction
we can always consider such a unitary to be an element afontent, a fact on which our results concerning simulation of
the group SU(4;). We speak of alocal two-qubit gate gates heavily rely.
whenever we can writt/=U,® Vg, whereU, and Vg are For later use we mention here that self-adjoint operators
unitary operators acting only ok, and Hg respectively. of the form considered in lemma 1 are diagonal in the so-
Again we can restrict ourselves to local unitaries being elecalled magic basif9] defined as
ments of SU(Z,)®SU(2(). Nonlocal gates are then trivi-
ally two-qubit gates which cannot be written dg® Vg . i 1
With just the help of these two definitions we can already ~ |1)=— E(|01>+|10>)' 12)= E(|00>+|11>),
divide the set of nonlocal gates into equivalence classes. Two
two-qubit gated/ and{ are said to bdocally equivalentif )
there exist local unitaried ,® Vg and U,® Vg such that/ 13)=— I_(|oo>_|11>)' |4)=
=U,®Vgll Up®Vg. A useful decomposition of a general V2 V2
two-qubit gate developed in Ref8] and[5] admits to fur-
ther characterize these equivalence classes enabling us $§¢h that we have
easily decide whether two gates are locally equivalent. 3
Lemma 1For any two-qubit gaté/ there exist local uni- H=S
k=1

tariesU ,® Vg andU ,®Vp and a self-adjoint operator of the

This section is a prelude providing the definitions an
notations that will be used throughout the whole paper an
reviews some facts concerning two-qubit gates which wil
build the basis for our further results. We shall also define th
notion of majorization and collect some lemmas linked to it.

A. Two-qubit gates

1
—=(0)~]10), (@

4
aka'k®0'k:j§=:l NTNIIE 3
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where the eigenvalues; follow from the o, by

)\1=a1+a2—a3, )\2=a1—a2+a3,

Nz=—ajtaytaz, N=—a;—ar—aj. 4)
In terms of the\; conditions (1) read 3m/4=N,=N\,=\3
=\,=—3m/4. Note also that tha;s sum up to zergi.e., H

is tracelesp such that the corresponding unitaby=exp

PHYSICAL REVIEW A66, 062321 (2002

s(pecia)-majorization relation. Letr and 8 be two real and
nonincreasingly ordered three vectors. Thesmajorizess

(a>B) if
ay=fq,
a1t ar,—az=B1+ Br— Ba,

al+ a2+ CU3>B]_+ ﬂz"‘ﬁs.

©)

(—iHy) is an element of the special unitary group as we have

required. In the following we will characterize the interaction
content of nonlocal gates either by the three-vector
=(ay,ay,a3) or by the four-vectorx=(\;,A,A3,\y)

Now let X and . be the four-vectors related te and 3,
respectively via Eq(4). Then it is easily verified thak
> iff a>¢B.

freely switching between the representations. For operators The s-majorization relation can be extended to nonor-

like in Eq. (3) we write H; or Hy; and for the corresponding
unitary U, or Uy .

B. Majorization

dered vectors as follows. Given a vector (ay,a,,as),
we construct a new $-ordered” vector a®=(a$,a$,as),
a3= a5=|aj| by first nonincreasingly reordering the modu-
lus of the components;, and by then givingy3 the sign of

The relation of majorization emerged as a powerful tool inthe producte;a,e3. Then for any pair of vectors and 3,

the issue of simulation, as well as in other fields of quantum-
information theory. From an intuitive perspective it simply -

makes a precise statement out of a vague notion that thé o _ _ _
“more gateld; (a being anarbitrary three-vectoris locally equiva-

components of a vector are “less spread out” or
equal” than are the components of a vecfor

Definition 2. Let = (X4, . .. X,) andy=(y;, ...y, be
real vectors whose components are ordered nonincreasing
Then we say thatX majorizesy” and write x>y if

1,...n—-1,

k k
z Xizz Yi k
i=1 i=1

n n
2 xi=2 Yi-
i=1 =1

A central result in the theory of majorization is the fol-
lowing.

Lemma 3 (Ref. [10])Let x andy be defined as before.
Then x>y iff there exists a doubly stochasti®Ref. [15])
nXn matrix Q such that)7= Q;(.

We will use two facts related to doubly stochastic matri-
ces:

(a) The first one is called Birkhoff's theorem and states
that the set of doubly stochastic matrices is the convex hull

of the permutation matrices. Therefore, we can wi@e
=2>p;P; (thep;=0 summing up to one anid, being permu-
tation matricesfor any doubly stochastic matri®.

(b) If we take the so-called Hadamard product of a realt,, ..

orthogonal matrixO with itself i.e., square it componentwise
(written symbolically aDOO) then we get a special type of
doubly stochastic matrix called orthostochastic matrix.

> A denotes the set of inequaliti€s) applied toe® and
. We note also that according to the above discussion a

(47

lent to the gaté/ s corresponding to the-ordered form of

ly.
y IIl. INTERACTION COSTS OF GATE SIMULATION

AND PARTIAL ORDER OF GATES

The main resul{Theorem 1} in Ref.[4] permits to assess
the interaction costas defined in Refl4]) for simulating a
two-qubit gate using any given interaction Hamiltonian and
fast local unitaries analytically after performing a simple op-
timization. The proof in Ref[4] is based on results devel-
oped in the areas of quantum contf8] and quantum infor-
mation (Refs. [5,2,6]). Here we give an alternative proof
relying only on the tools introduced so far. We do this by
giving a necessary and sufficient condition for the existence
of a simulation protocol. Before we state and prove this re-
sult we will introduce the problem of simulating a gdtee
Refs.[2,12] for a more general discussignand describe
some simplifications that can be assumed in this context.

A. Setting of gate simulation and basic assumptions

Simulating a desired two-qubit gatéusing a given inter-
action described by a Hamiltoniah[16] and arbitrary local
unitary transformations means to specify a series of local
unitaries {U,;®V4, ... U,®V,} and of time intervals

. ta} such that

U=(U,@Vye MU, _0V,_ ;e Hi-1... g H:

X (U;oVy)e Mi(Uye V). (6)

Later on we will use this relation to compare four-vectors

(N,p,v, ...) of thekind introduced in the following sec- Such a partition of a gatf equals a list of instructions like:
tion. In related workgRefs.[2,11]) it has already turned out “Perform transformationU, and V, on qubitA and B, re-
to be convenient to have at hand an equivalent relation fogpectively. Then let them interact accordingHdor a time
the corresponding three—vectors?,@,;/, ...) called the t;. PerfformU; andV;. Let them interact fort,. Finally
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perform U, and V,,.” Following this protocol one would H for the same timd. Moreover, we can assume that the
then effectively perform the gat& on the two qubits N0 protocol we have consists entirely of infinitesimal time steps

matter what their initial state was. _ _ St since any finite time step can be decomposed into infini-
Posing the problem of finding such a simulation protocoliesimal ones. Then E@6) reads as

naturally evokes other questions: Is there always a solution?

How much time will it take to perform a possible simulation  2/3=(U,®V,)e Me®(U 1@V, _;)---e Ha
protocol? What is the minimal time of simulation? Do we LMt ZiH -4t

have to allow for infinitesimal time steps? In case we can X(UieVj)e M- (Uy@Vy)e Ma®(Ug® Vo).
restrict on taking finite time steps, how many of them will
suffice? In the following we will give an answer to all of
them.

Let us assume that at a times@<tg we perform theith
intermediate local transformation having then attained an

i i =(U: e iHaot, |
To do so we adopt two simplifications. At first we employ ;ﬁ\?ctlvEH&mtﬁtn;f\c;rmagpn LZ{/{t'_ (tu'ﬁv')et (Ué
a physical idealization namely thast control limitwhich is e ) (Uo®Vo). Sincel, is itself a gate, we can de-

well justified in most of the proposed settings for quantumcompose it ag4=U® Vi, U@V, whereld; =e " is
information processing. It states that the controlthe interaction content df;. The indext indicates the time
operations—in our case the local unitary transformations—edependence of all these unitaries.

can be executed in times, where the natural evolution—here To determine howy, varies witht we take the next infini-
the interaction of the qubits—has no considerable effect oesimal time steg™""«? in the protocol and get

the system’s state. In other words local manipulations and

interactions have to take place on significantly different time e Mady=e My, @ Vi, U@V,

scales. That is what we assume and what allows us to define !

the simulation time simply ass==""_,t;, implying that the = vV - 0 V.. .

local transformations in Eq6) takeI e%“fectivelynotime. We Vera®Virally, ;Ui a®Viea

term the minimal timets such that we can find a simulation For convenience we change here to the four-vector represen-
protocol its “interaction cost’[Cy(U)] because it actually tation [as defined in Eq(4)]. Denote by):, 7, and £ the

measures theéme of interactiorrequired to perform the gate. dina . ~ 4 ivelv. Af
The second simplification is of pure mathematical nature/SCtors corresponding @, i, andyi, 5, respectively. At-

and concerns the system's Hamiltoniein Based on resuits ter local transformations the last identity can be written as

of R_efs. _[2,6] we use that although a genegral two-qubit efngﬁtU(gvu;:W@XUEY@Z, @)

Hamiltonian has the form H=cyl®1l+27_,a;0i®1

+3% 1bjl® o+ 37, ,cjoi®0; we can restrict ourselves whereWe X and Y®Z are appropriately defined local uni-

to much simpler Hamiltoniansl; (or equivalentlyH;) as  taries and all time indices are omitted. The right-hand side of

given in Eq.(3). This is due to the fact that for any general Eq. (8) is a decomposition of the left-hand side, but we do

Hamiltonian there exists a Hamiltoniaty, called itsca-  not require this to be the canonical form as defined in Sec.

nonical form and efficient protocols for simulating the evo- Il A. We therefore, have the possibility to put further condi-

lution according to the latter in terms of the first. By an tions on the unitaries in this decomposition.

efficient simulation protocol we mean that we can obtain the  If we multiply from the left byUT® V' and sandwich this

evolution e "™\' for any timet by usingH for the same equation betweetk), one of the magic states, we find

period of timet. (Note that such a simulation involves infini- . )

tesimal time steps, see RER].) For the purpose of simula- (e pye = (] We XUYe ZIk),  (9)

tion these Hamiltonians are equivalent in the sense that both )

are equally effective in simulating other Hamiltonians orWhere|y):=U®VIk). In order to have equality fost=0

gates. we make use of the above mentioned freedom and require for
this caseWeX=U®V, Y®Z=1®1 andé=».

B. Necessary and sufficient condition for gate simulation For infinitesimalst we can thus expand

We are now ready to give a necessary and sufficient con- (W X=(K|+(5k*],
dition for the existence of a simulation protocol.

Result 1 Given a two-qubit gaté/ having an interaction Y®Z|k)=|k)+| 5p>
content/; and a HamiltoniarH having a canonical forrhi ; '
there exists a simulation protocol of tygé) consuming a

_ ) - _ : E=v+6v.
total timetg=0 iff a vectorn=(nq,n,,n3) of integers exists
such that;= B+ m/2n satisfies where we may assumgsk'|k)=(k|sk*)=0. Combining
- - everything in Eq(9) and collecting terms up to first order we
Br<sats. (M find
Proof. We first show that this is a necessary condition. (B H5 ) 8t= 61,

According to the above discussion a simulation protocol for
U usingH for a timet is equivalent to a protocol fd@#; using  which has to hold for alk.

062321-4



CHARACTERIZATION OF NONLOCAL GATES PHYSICAL REVIEW A66, 062321 (2002

Let us now take a closer look at the diagonal element$; of the magic state$|j)} can be performed through an

(¥lH| ¢ With regard to the definitiorjy,) and now  appropriate local unitaries;® V, we have
again including the time dependence Of®V; we have

(i Hxl ) = (K|(Ui@ V) TH (U@ Vy) [K). In the magic ba- . i

sis local unitaries take on the form of real orthogonal matri- u[;r;:e"Hﬁ:exp( —iz Hpigti
ces[(U,®V,)T—=0(t)] and the Hamiltonian gets diagonal =1
[H;—D;:=diag(\)]. Therefore, Sv,=t(OD;O )k n

= St[(OO0)N],, where ©OO) denotes the Hadamard —exp<—i2,l UieViHUle VY

product of the real orthogonal matri@(t) with itself. De-

fining Q(t):=0O(t)OO(t) we can write compactly n .

=II uievie Mtiule V.
i=1

E:Q(m" (19 For the last line we took into account thet; © ViH;U!

oV ,U;®V;HUf®V]1=0Vi,j since the local transforma-
Recall thatsv is the variation of the interaction content at ;uonsr involved °”|3|/ pelrmute the e!ger: vectorsf . IThe
some intermediate time<t=<ts in our simulation protocol. 'ast liné provides clearly a proper simulation protocoly

The overall interaction content(ts) is found by integrating and—Dby applying appropriate local unitaries at the beginning

Eq (10) from 0 tots. As initial condition we havev(O) Zr]d at the end—for all locally equivalent gatéscluding

=0 since our simulation protocol starts from the identity 'B\Ne remark here that Ref11] shows how to find explic-
having no interaction content. We then find itly the probability distribution{p;} and permutationgP;}
which determine the time steds;} and the local unitaries
{U;®V;}. There also the maximal number of evolution
steps sufficient in any simulation protocol was determined. It
turned out to be three for time optimal protocols.

This condition for the simulation of gates is an analogue
whereS: = MS[ yQ(t)dtis agaln a doubly stochastic matrix. to that established in Ref2] for efficient Hamiltonian simu-

To see this observeX]_;Sy=(11g =/ 1Q(t)jdt lation. Such a correspondence was, in principle, only ex-
—(1/ts)ft51dt 1. The same holds for summation over pected for infinitesimal gates. It is remarkable that it extends
in such a tight analogy to finite gates. The main difference is

. > - that here we have to include all different decompositions of
again to the three-vector representatigts) < ;ats [see the h i d ideration by allowing f iatich
definitions preceding Eq8)]. Remember that our basic as- '€ 9ate under consideration by allowing for variatigsys
sumption was that we have a simulation protocol for a gate—,3+(77/2n) There is no analog to this in the case of

U= U®VU,BU®V. However, by means of(t<) we can find Ir—]|amll'ion|an smulaz;uotn t‘rl'lhe reas((j)n t1‘or this |st that Peretwe
a—possibly different—decomposition sinck=14,_= U, ave 10 accommoadate the periodicity properties ot unitary
s S operators while in the setting of Hamiltonian simulation we

®Vtsu;t50ts®vts- From the discussion in Sec. IlA we deal with a linear space of Hermitian operators.
know that the vectorg and y,_ have to be related via the
local operations specified there. There are two operations

that can be done to altes: (i) add multiples ofm/2 to its To finally assess the interaction cosfi(i)—i.e., the
components, i.e., buiIdB ,éJ”T/Zﬁ for a vector n minimal time to simulaté/ usingH and local unitaries as
n—

=(Ny,Ny,Ng), and(u) permute and simultaneously change defined in Ref[4]—we just have to optimize conditiofY)

the sign of two components, which can be expressed easilyith respect to botts and n. Doing so we reproduce the
by multiplication with an appropriate matriR. Therefore, ~Mmain result of Ref[4]: _ _ o
we must havey(ts) = P3:< .ats for someP andn. Recall- Result 2 The interaction coser(u) is the minimal value

ing the definition ofs ordering of vector§see Eq(5) and the  Of ts=0 such that eitherB,0,0<sats OF B(—100<sats

. 2 3 2 holds.
remarks therg we find (P =(Br)s and therefore
- o L (PBa)s=(Br)s Pr Proof. This is equivalent to Result 1 under the resriction
S S

We now turn to the second part of our proof and showthat it suffices to look ai being (0,0 O) or 1,0,0) to find
sufficiency. Since this has already been proven in Riff]  the smallests. This is because in caseis not one of these
we will just sketch this proof. Lefu and X be the four- two vectors we can show that eithd_é(o,o,mfséﬁ or
vectors corresponding t8; and a. Then Eq.(7) reads as  B(-100<sBn- For the minimal timets such thatg;<sats
p<NXtsand it follows by Brikhoff's theoren{see Sec. 1B~ for a givenn we therefore essentially have eithBfo,,0)
that we can writeu=3_;p;PiXts==_,PiXt; where we  <sats OF B(_100)<sats for the same times. Obviously
definedt; = p;ts. Using that each of the 4 24 permutations  letting n be (0,0,0) or ¢ 1,0,0) will make forat leastthe

- t - -
y(ts)zf *Q(t)dtx = Sits,
0

With Lemma 3 we can state tha(t5)<)\ts or switching

C. Interaction costs
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same minimal time. The optimization fot (0,0,0) or :é(—l,0,0) (see Sec. Il A We find
(é—l,0,0) cannot be avoided since in genef o) and Bi=mlo— B
B(-1,0,0) are incomparable according to tisamajorization = b
relation. To show that eitheB(g,0,0/<sB5 OF B(-1,00<sBr B1+ BoT Ba=ml2— B1+ Byt Ba.
for all n different than (0,0,0) or £1,0,0) we distinguish
two cases(i) First we look at vectors having at least one

componendnj|>1. Since the components &f have to ful-
fill Eq. (1) the maximal component of the reordered form of

Br (see Sec. IIAis at least 3r/4. We then haveg;
>4(37/4,0,0) and this last vector clearlymajorizes both

The first inequality is fulfilled trivially since8;< /4 in any
case. The last two inequalities are equivalentBtot | 85|

<m/4 and this is what we claimed. The revergg )
<S,é is never true because the first inequality is violated for

any B;. In all the other cases wherg and B_1 ) are
incomparable it will depend on the Hamiltonian which of the

Booo) and B(_100). (i) The vectorsn satisfying [nj|  two vectors yields the optimal time.

<1V j have to be checked case by case. We fiad; o o)

<¢B; forne{(—-1,-1,-1),(0,10),(0,0-1),(0,0,1)} and D. Interaction costs of basic gates

B(o,o,o><s/;’ﬁ for the remainingn. As an illustration we shall give here explicitly the inter-

Let us formulate result 2 as a kind of recipe. In order toaction costs for three specific gafeontrolledNOT (CNOT),
time optimally perform a gaté/ using an interaction de- double cNOT (DCNOT), swaP| and for the whole class of

scribed by a Hamiltonia#l together with arbitrary local uni- controlledt gates. We choose those not only because they
taries proceed as follows: play a prominent role in quantum information but also due to

(1) Determine@ characterizing the interaction content of th€ir role as “landmarks” in the set of two-qubit gates as we

U following Ref. [5] (see, also the AppendixUsing Refs. will show in the following section. Let us list them here by
[2,6] compute the canoni,cal form &f to get& first giving their definition in terms of their action on the

(2) Test whethegd o 3 ) orized bvat f computational basiﬂi,j)}ﬁjzo, then characterizing their in-
smalleret?mvevt etheps or B(—100)iS smajorized byatsfora . - ion content by the corresponding vecgomnd finally
(3) For thes\./ector yielding the better result, as well as forassessing the interaction costs pursuant to a general Hamil-

- ) = N tonianH with canonical formH .
a compute the corresponding four-vectarsand\, respec-
tively. Following Ref.[11] find the permutationd?; and 1. cNoT gate and controlled-U gates

gege s "_ 3 g
probabilitiesp ('_132’3) SU(.:h thaﬂ_Ei:lpiPiMSﬁ The cNOT gate is the prototypical two-qubit quantum
(4) The p; determine the time stefisand theP; give the logic gate. Its action is defined compactly H3o®|j)s

local unitaries to be applied in between. This provides a—>|i)A®|i@j)B, where® denotes addition modulo 2. That
simulation protocol foif,; usingHy for at most three finite

is, it flips th bit iff the first t bit
fime steps. is, it flips the secondtarge} qubit iff the first(control) qubi

. . . . is in statd 1). Let us denote thenoT gate byl/25 o1, where
(5? Slmulate the evolutions ac_cordlng key by using the the first superscript indicates the control and the second the
HamiltonianH for the same period of time following Ref.
[2]. Apply appropriate local unitariggletermined using Ref.

target qubit. In the Appendix we show that the interaction
[5]) in the beginning and at the end of the overall simulationCoNtent of this gate is given by =(/4)(1,0,0). Therefore,
to effectively performi.

the cNOT belongs to the special class of gates where we can
We now discuss certain special cases for which some ofKip the optimization in result 2 and go straight ahead to
the above points can be dropped or get simpler.

majorization in order to determine the interaction cost. Re-

(@) In case the Hamiltonian we use describes solely purdluiring 8<sats is equivalent to
interaction, that is to say is of the form=Eﬁjzlcijai
® o without any local parts, we can attain its canonical form
by a local transformatiorH ;=U®VHU'@V' (see Ref.
[2]). Sincee Hai=UeVe MiUTo V' we do not have to
employ infinitesimal simulationgas required in stefb)] and  Clearly the first inequality yields the tighter bound. The in-
the simulation protocol will only contain three finite time teraction cost for simulating acnoT is Cy(CNOT)
steps. =(ml4) la;.

(b) In case the interaction content of the desired gate is The CcNOT is a representative of the genera| class of
characterized by a vectop=(B;,B,,8;) satisfying 3  controlledyU gates. These gates apply a unitary operation on
<s:é(—l,0,0) we can S|(|p the Optimizatiotstep(Z)] and state the target qubit iff the control qubit is in stajtda). Thus they
directly: The interaction cosfy (1) is the minimal value of have the form
tg such thatB<sats. The condition onB for B<¢B(_ -
tg be true ist51+5|/33s|s7-r/4. To see thisngve ha€e tsf;plbcl)ﬁ?)the Uetri—u=]0)(0|® 1+|1)(1|®U.
inequalities (5) defining the s majorization to # and In the Appendix we show that the interaction content of a
éf,1’0'0)=(7r/2— B1,B2,— B3), the sordered version of controlledU gate is always described tﬁ/:(B,0,0), where

’7T/4$ alts,

TIA< (a1 + ar* ag)ts.
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B is fixed by the eigenvalues df. The interaction cost to the restriction3;+|Bs|<w/4 holds. Then gaté/ is more
simulate such a gate &(Uey-u) = Bl ;. nonlocal than gat® if and only if B,< <8y,

Proof Since both vectorgd satisfy 8;+|Bs|</4 the
interaction costgy()) andC(U) are given, respectively, by
TheDcNoOT gate is the concatenation of tvenioT gates in - the smallest,,,t,=0 such that
the following wayl/Henor=U R0t enor and its action on
the computational basis can be described |Bs®|j)g By=<saty,
—|j)a®li®j)g. This gate was introduced in Réf] as an
intermediate gate between tk®oT and theswap gates. In
the following we will emphasize the special role of the-

NOT gate. Its interaction content is described By: (7/4) Suppose firsV<u, that is, for any Hamiltoniad we have

X(1,1,0) such that thecNoT falls as well under the class of - . . 5o~ o ;
gates where we do not have to care about the optimizatior?H(V)\CH(m and in particulag, < saCy(l). If we rewrite

For the interaction cost we findy(DCNOT) = (7/4)2/(a; this relation for the particular Hamiltgnian*wheae= By and
+ay,—|as). use that in this cas@,(U) =1 we find 8,<¢B;,. This proves
the direct implication. The inverse follows right away by

3. swap gate using the partial order property of majorizatioECH(L{)

The swAP gate is the unique gate having the effect to>s,éu>s/§v directly impliesCy(U) = Cy(V) (see the proof of
exchange the states of two qubits i.e., transformjijg ~ result 2.
®lj)g—i)a®li)g. It is well known that Uswap Once more coming back to the problem of Hamiltonian
=URR o UEA U R o and regarding the two other gates simulation we mention that the corresponding partial order
not very surprising that its interaction content |  theré has been solved complet¢Bf. The reason why the
= 7/4(1,1,1). Once more recalling conditiofly we can say partial order established in re_sult 3_onIy holds in the region
that this is maximal. Now the optimization cannot be Of 9at€s, whergs, +| 85| < /4 is again that we have to deal

. . . here with the rather involved periodic structure of (@Y. It
S — J—
aqued. We, fmdﬁ(:l'o;os)_ Tr/4(_1’1’ 1) and ittums to be i"a actly this restricted region where we can evade this dif-
Op“ma|ht0 simulates (B(-100) if a3|>f0 (gaio)l- In case ficulty by suppressing the otherwise essential optimization
a3=0 the interaction costs are equal for both alternatives. I .o veens and & step 2 in the recipe given in
any case we find the interaction costS,(SWAP Sec. I é)B(O,O,O) Bi-100) (Step Pe g

2. DCNOT gate

BZ/{< Satu .

IV. TRANSMISSION OF INFORMATION AND CLASSES

E. Order of gates
OF GATES

What we see by these examples and what was to be ex- ] ] .
pected is that the interaction costs depend strongly on the BY now we analyzed two-qubit gates in terms of the time
interaction resource—i.e., the Hamiltonian—we have at ouXpense they cause in the context of simulation. There the
disposal. But once the interaction is fixed the notion of in-Main objective is to perform a given gate on two qubits using
teraction cost induces an order in the set of gates allowing ud Minimum time of interaction seen as a valuable resource.
to compare the “nonlocality” of two gates in terms of the 1he notion of interaction cost th.ereby obtalng_d gave a mea-
resources needed to perform them. Of course this order gure for how nqnloceﬂenher rela}tlve to gspec_lflc interaction
always relative to the Hamiltonian and may change when wé@" absolute as in resuly & gate is. In this section we change
choose another one. For example if we use the Ising interadh® perspective. We now want to prescribe the tasks a gate
tion o,® o, we find thecNOT to be less nonlocal than the has to accomplish and ask how nonlocal it, therefore, has to
DCNOT and this one in turn to be less nonlocal thanshep. €. In this setting we consider the gate and its inherent non-
On the contrary with the exchange interactiop® o, + o, Iopallty to .be the valua_ble_ resource. Th_e tgsk we have in
® 0,+ 03® 03 at hand theswap s less time consuming than mlnd here is the transm|SS|pn of information in form of clas-
the bcNOT and in this sense less nonlocal. However, in aSical as well as quantum bits. _ _
restricted region of the set of two-qubit gates this order is ' NiS section is organized as follows: First we motivate
absolute, in that it does not depend on the interaction Hamilwhy the capability of gates to transmit bits is a proper mea-

tonian. We will first define this order properly and then stateSure for their nonlocality. After having given some basic
and prove this result. definitions, we collect a number of known results for certain

We say gate/ is more nonlocalthan gateV, and write gates. Then we treat the problems of transmitting a cbit or a
V<14 when for all interactions! the interaction cost di/is  dubit in one direction, as well as all possible combinations of

never smaller than that af, thgm in b(_)th direptions by using a two-qubit gate and deter-
mine the interaction content necessary to do so. The subse-
V<U=Cy(V)<Cy(U) VH. quent discussion of the results will allow us to distinguish

. _ various classes of gates differing in their capability for
Result 3 Let/ and ) be two two-qubit gates with corre- - quantum-communicational tasks which will give a character-
sponding ordered vectoy;, and 3y, such that in both cases ization of the nonlocality of a gate as well.
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A. Transmission capability and nonlocal content of gates (b) USENOH ¢0)=|0¢) where|¢) is an arbitrary qubit

Nonlocal gates result physically from an interaction takenState transmitted by the action dfsenor- Moreover, we
place between the qubits by some means. Interaction bdind Upenot¢1)=|1)® 0,/ ¢) telling us that Bob may send
tween two physical systems conditions on the other hand that the same time a cbit to Alice under the condition that in
transmission of information between them since after havingase he seritl) he flips his qubit after the transmission in
interacted(at least one ofthe subsystem’s states will have Order to recover the correct stdig). Since he knows what
changed depending on the statesofh subsystems as they he sent, as we can assume, this requires no additional com-
were before the interaction. Hence there must have begfunication. .
some kind of information exchange in the process of inter- ©) USWAM.@:W@)' _where |.9°> and|y) are arbitrary
action. It is, therefore, natural to ask whether we can utilize glates both being tr_ansrmtted fa|th_fuIIy_. .
nonlocal gate to sendclassical or quantuiminformation. We can summarize this by the implications

The amount of information we can transmit using a gate will CNOT—Cbity .,

give us then a characterization of its degree of nonlocality. A

similar point of view was captured in RefZ,8] where the DCNOT—qubity_,g+cbitz_, 5,
amount of classical and quantum information necessary to

implement a gate was adapted as a measure for its nonlocal SWAP— qubits 5+ qubits_. 5 -
content.

What qlo we mean by the transm|SSI9n Of' classical Oobviously, due to the symmetry of the nonlocal content of
quar_ltum mfor_matlon? Con5|der_two parties Alice and BObtwo-qubit gates under exchange of parties, the same expres-
holding a qubitA and B, respectively. Assume fgrther-that sions hold if we make the substitutioms—B. These rela-
somehow they manage to perform a gaten their qubits. ions hold strictly for the case where the communicating par-
Then we say tha/ allows for thetransmission of a classical {ies have no ancilla systems and no prior entanglement at
bit from Alice to Bob (denoted by cbjt_.g) if after the ap-  hang, put have to be read as lower bounds on the capabilities
plication of¢/ Bob can distinguish with probability 1 whether of these gates to transfer information if we allow for addi-
Alice’s qubit was in|0) or |1). We speak of théransmission  tional resources of this kind. It is a central result in quantum
of a quantum bifrom Alice to Bob (qubif ) if under the jnformation that the capacities to transmit information can be

action OfZ/{ Bob’s qub|t takes on the state of Alice’s qub|t increased if the parties possess shared entang|e¢abm
Let us make some remarks he(B. The essential differ- [7.8].

ence between these two effects of a gate is, that in the case of
chity_.g we do not require superpositions |@) and|1) to

be transmitted faithfully whereas in the case qubi we

do. The possibility to send a qubit trivially includes the one
to transmit a cbit resembling the fact that quantum informa- Assume now Alice and Bob want to send some given
tion incorporates classical informatiofii) Without further — amount of informatior(possibly in both directionsby using
specifyingl/ we can state directly that in case qubit Al-  some fixed interaction described by a Hamiltonidnand

ice loses her state after sending it due to the no-cloningarbitrary local transformations of their qubits. They could do
theorem((iii ) If Alice’s qubit is maximally entangled to some S0 by choosing appropriately one of the above gates provid-
ancilla qubit on her side then the transmission qubi  ing the necessary transmission capability and then simulate it
swaps the entanglement thus establishing a maximally erccording to the results we derived so far. The interaction
tangled pair of qubitgebit) between Alice and Bob. That is costs thereby incurred are given in Sec. Il D. But is this
why the authors of Ref$7,8] identified the capabilities of a optimal? There might be gates which are suitable for the
gate to send a qubit and to create an ebit. Here we want t8ame task but have an interaction content different from
distinguish between the actuareation of entanglement those ofCNOT, DCNOT, or swAP yielding smaller interaction
without ancilla systems as treated in RgF] andentangle-  costs. In the following we want to single out which gate is
ment swappindpy the transmission of a qubit. This differen- both sufficient for a certain transmission task and optimal in
tiation is essential for example in the case otnoT gate  terms of interaction costs. We do this by deriving necessary
which can be used to create an eWéEjOT(ll\/i)(“» and sufficient conditions on the interaction content of a gate

+]1))®|0)=(1/42)(|00) +|11))] but not to transmit a qu- O be capable for the transmission of a given amount of in-
bit as we will show in the following. formation. All we have to do then is to find the gate which

For the gates introduced in Sec. 11 D it is well known and fulfills_the appropriate condition and causes the minimal in-
easy to see how they can be used to transmit bits. Regardiri§raction cost.
the definitions given there the following is effortless verified:

(@ URRo4i0)=]ii), i=0,1 and therefore theNoT is
sufficient to send a chit from Alice to Bob. Since Alice’s  Assume Alice encodes a classical bit into her qubit by
qubit does not change at all under the action of this gate it igreparing it in0) or |1) and Bob holds some arbitrary state
impossible for her to send a qubit to Babee remarkii) |®). Then the bit is by definition transmitted if after an ap-
above. This is not true if Alice and Bob share entanglementplication of a gaté/ Bob’s qubit takes on a state) or | ")
as an additional resource. See the remark below. (some state orthogonal {@/)) depending on whether Alice

B. Transmission of information in the context
of gate simulation

1. chityg

062321-8



CHARACTERIZATION OF NONLOCAL GATES PHYSICAL REVIEW A66, 062321 (2002

sent “0” or “1.” At the same time Alice’s qubit may change ¥

o . (i X YUz(U®V), where the unitary contains the parameters
arbitrarily. The action ot/ we have to require is described by

w, 0 andEz(,Bl,,Bz,ﬁ3) characterizes the interaction con-

|00)— | x), tentUs. quation(lS) thus p.u-ts certain cpnditions on the
parameters in the decompositionéf. Obviously we have
11¢)— Y t). (1) to requirea=b=0. This in turn is fulfilled in various cases,

for example whenever two of the coefficiem@g= 7/4, the

More precisely we can state: A necessary condition for a gat#ird being arbitrary. However, it is also easy to see that there
U to be capable of transmitting a cbit is, that there exist state@hre solut|ons,hwhere orr:lyneof thheecoefﬂmentsﬁk: 7T|/4- |r:1

~ ; this case we have to choose eitlaeor 6 appropriately. This
le), |x), [x), [#), and|4*) such that relationgl1) hold. Wi _ ) _
Assume now that this is indeed the case. What can we sajHtS conditions on the stake) in Eq. (11) denoting the input
about the interaction content df? Since independent local tate B.Ob has to cho_ose in order to.properly receive the cbit
transformations before and after the applicatiori/aio not Alice aims to send h'T' Thre(i solutlonf of th's_kmd are for
affect its interaction content, we can look for unitaries ful- ©X@Mple given by, =m/4,0=0}, {B,=m/4,»=0}, and
filing Z|)=|0), Y|x)=|0), X|#)=|0) and X|¢*)=|1) {B3= wl4,w=ml4} where in each case the remaining param-

and definé/’ = (X,® Yg)U(1,® Zg) having a simpler action eters can be chosen arbitrarily. All in all we have shown that
AT B ATB it is a necessarycondition for the transmission of a cbit to

iven b .
g y have at least one of the coefficien8g equal to#/4 and
|00)— |00), without loss of generality we can always require this to be
B1.
|10)—|al), (12 To be systematic we should now continue and show, that

_ any gate characterized by a vecyﬁt:(a-r/4,,82, B3) is also
where|a)=Y|x). U’ andU/ are locally equivalent and there- sufficientfor this task. But at this point we will not do so for
fore have the same interaction content. To derive conditiongwvo reasons. First we already know that an interaction con-
on this interaction content we apply’ to the state:  tent 3=(#/4,0,0) is sufficient to transmit a cbit because
=31,®|0)g(0|]—transforming under the terms of Ed. this basically fixes aNOT or any gate locally equivalent
(12—and take the partial trace with respect to sysi&m to a cNoT. Second we find 4/4,0,0)<(7/4,8,,05)

1 1 for all 0<|Bs|<B,<w/4 and therefore Cy(cNOT)
trA{u’Qu’T}=Etr{lOO)(OOI+|a1><a1|}=§15. (13) <Cu(U(r1ap, p,) for all H. Thus looking for gates other
than those out of theNOT class has no advantage in terms of
interaction costs. Let us state this as

When we, on the other hand, assume a decomposifion Result 4 The cheapesttime optima) way to transmit a

=(UeV)U(UaV) we find chit using some given interaction is to simulatenoT gate.
1 The interaction cost i§y(cbita_,g) = (7/4) ;.
trA{u,Qu,T}:EtrA{[VBugBVB]lA@)|O>B<0|[VBZ/{SBVB]T}' The following results will show that the transmission ca-

pability scales up with the coefficienf, becoming bigger.
(149 Just by continuity it follows then right away that any gate
Equating the right-hand sides of Eq&3) and(14) and mul-  having an interactilon contegﬁz(w/4,,82,ﬁ3) is also suffi-
tiplying from the left byV\ and from the right by yields cient to tranmit at least a cbit.

1B:trA{u281A®|w>B<w|ugBT}! 2. chity_,g and chitz_, 5
Again let Alice encode a logical bit into her qubit g3
where we have abbreviate|0)=|w). Expressing without or |1). Further assume Bob wants to send “0” and therefore
loss of generality|w)=cos)|0)+e™'’sin(w)|1) one can prepareg0). To properly transmit their two messages they

workout the trace explicitly and finds have to find a gate, which transforms the states like
l-a b
=| v 14a) |00)—|ex),
a=cog2w)cog26,)cog2p,), |10)— | xt). (16)

b=sin(2w)cog2B3)[cog 8)cog28,)+i sin(0)sin(281)].
(150  To detect the messages being sent to him, Bob has to mea-
_ sure the observable,=|x)(x|—|x"){(x"|. Conversely Al-
Let us stop here and consider what EgS) tells us. The ice has to measure, or o, (defined similarly depending
left-hand side was an immediate consequence of the necegn whether her message was “0” or “1.” Consider now the
sary conditions ori{ to properly transmit a cbit while the same situation but let Bob’s message be “1.” The same rea-
right-hand side results from the general ansatz=(U soning as before yields
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01— ¢ ), Uy, 0,w) =€ el (r+ )8
e (7" 9coqw) 0 e 'fsinfw) O
1 .
1D =]yt wh). 17 —e’sifw) 0 cogw) O
% 0 1 0 0
Now Bob has to measure,. The transformation behavior
characterized so far lacks of one essential condition: it is not 0 0 0 1
unitary. Unitary transformations map an orthonormal basis (19)

into another one and this is so long not fulfilled, since f.e.
o')#0. Imposing that the vectors on the right-hand . . . . .

<s;ii)gl’obflEq;.(16) an2(17)gbuild again a basis one fir?ds four wr'ltten in the computational bas{é,ll),|10),|01},|00)} n

possible casesi) (o] )=0 and(y|e")=0, (i) (x|o") tr_ns orc_jer. The global phase_ assub£(97,6_,w) bel_ng aspe-

~0 and(w|x ) =0, (i) (¢|¢")=0 and(w|x")=0, and cial un[tary operator. Followmg.AppendQ( one fllnds for the

(V) (#]e")=0 and(x|w")=0. The last two cases are more VeCtorB=(B1,B2,Bs) characterizing the interaction content

restrictive than(i) and (ii) since there the states bbthqu- Uz of U(7,0,w),

bits have to meet certain conditions. We are, however, inter-

ested to stay as less restrictive as possible so that we are By= w4,

going to focus on(i) in which case we have to requife)

=e 9 ) and|yt)=e""#|¢"). Let us summarize what we

have found so far: B2=ml4,
|00 —[¢x), Bz=lA— 9,
110 —e ¥ ox") where & is a solution to taf(29) = sed[ ( 5+ 6)/2]sed(w)
ex —1. 9 therefore parametrizes a family of gates, of which
each element has the desired capability to transmig, chit
10D —|¢" w), Note especially that thecNoT [ 3= (/4,7/4,0)] and the
SWAP [B=(77/4,7T/4,7r/4)] belong to this family as we
|11) —e "ot wb). should expect according to the discussion in Sec. Il D.

These gates are attained for the chofte #/4 and9=0,
respectively. In terms of#, 6, w) this corresponds f.e. to set
Including the phases inty) and|w") and again adjusting (=, §=0,w=/2) and (7+ 6=0,0=0) for the DcNOT
the axes by local transformations to cleanse the notdtisn and theswar, respectively yielding the expected result when
we did for the cbif . g-problem) we can write equivalently  inserted in Eq(19).
If we want to tranmit the chits using some given interac-
|00)—|00), tion we can freely choose the parameteout of [0,7/2] in
order to keep down the interaction costs. Let us present the
optimal choice in
[10)—|01), Result 5 The cheapes{time optima) way to trans-
mit chits in both directions using some given interaction
is to simulate a gate holding an interaction content
[5’=(7T/4)[1,1,2a3/(a1+ a,)]. The corresponding interac-
tion cost isCy(chita,g) = (7/4)2/(a1+ a5).
11D —[1lwh). (18) Proof Define b:=1/2—2/w-9 and parametrize3(9)
= ,é(b) =(m/4)(1,1,20). We have to findb e[ —1/2,1/2] and
We can see that Bob has to measure a different observablg=0 such that eitherd(b)<sats or B(_100fb)<sats
depending on what he sent. For the cdseabove we would  ho|ds and tg is minimal. First note that/é?—l,o,m(b)
find similar transformations but then being Alice the one who_ A(—b). The optimization with respect tb therefore in-
has to adapt her observable. Therefore ¢asgets identical o P N - P o i
with (ii), if we let Alice and Bob exchange their names cludes that with respect 1 and3(- 1 0)- The minimal time
which in turn cannot have any relevance for the interactiorsuch thatg(b) <ats is fulfilled is given by
content of the gate they use. Or more mathematicéllycan
be transformed intqii) by conjugating the gate with the o1l oo 1-b - 1+b
swAP and this does not alter the interaction content. tmin(b)zmax{— — 5 5 .
We can now parametrizéw)=cos)|0)+e '’sin(w)|1) 4oy’ 2 aitayas’ 2 aitaytag
and |o')=e"'"(—sin(w)|0)+e '’cosw)|1)) and determine
the interaction content of the gate Optimization with respect tb yields the interaction cost

|01>~> | 1a)>,
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TABLE I. Interaction content, transmission capability and interaction costs are listed for various classes
of gates. With respect to their transmission capability the whole set of two-qubit gates resolves into a natural
hierarchy of four classes.

Interaction content Transmission capability Interaction cost
B B2 Bs chity_g qubity_g and cbig_,o qubita._.g Cu(l)
X
Controlledy X 0 0 X X X —
a
a1l
CNOT wl4 0 0 J X X R
4 oy
a1l
| 4 y z J X X P
4 oy
T 2
DCNOT w4 w4 0 J J X —
4 ayt+ap—|ag
T 2
Z a;t+ayp
1l w4 w4 z J J X for
T 2a3
B Z a;tayp
SWAP w4 w4 w4 J J J m 3
4 a1+ ay+|ag)

Ch(cbity, . p) (18) as for cbij.,g. The optimal interaction content and cost
— min [t(b)] to send a qubjt g is therefore the same as in result 5.
_be[fllz va min Regarding the transformations given in E8) it is ob-
o vious that this gate is also capable to send at the same time a
= min cbitz_.5. To do so Bob encodes his bit int6) or |1). Ap-
be[~1/2,1/2 plying & sends the bit to Alice. The qubit Bob gets from

Alice comes in faithfully if Bob sent “0.” In the other case
. he has to recover the qubit by a local transformation obeying
o o S _ V|w)=|0) and V|w')=|1). An interaction contentg
This is an exercise in linear optimization which has to be:(w/4,77/4,77/4_ 9) is therefore sufficient for the transmis-
solved under the condition/4=a;,=> a,>|a3|. An elemen-  gjon qubi 5 and cbit_., . This is also necessary since any
tary calculation yieldsCiy(cbita..g) = (7/2) U(ay+ a3) for  jnteraction content showing less thari4 in the first two
b=as/(ar+ay). entries is not sufficient to send a qubits. Again we can
refer to the values given in result 5 for the optimal interac-
tion content and cost.

Ximax —

4 a_l’E a1+ az—a3'§ a1+ a2+ ag

{’77 1= 1-b T 1+b

3. qubity_,g and (qubits_,g and cbitg_,4)
To reliably transmit a qubit we require

B This problem is trivial since the exchange of the two
|10)—|ox ). guantum states completely fixes the transformation of the
. . basis states and therefore also the gate.SMrer is the only
The remaining vector$01) and[11) may transform arbi- ga4e providing the required action. Interaction content and

trarily but have to stay orthogonal to both among themselvegq; gre given in Sec. Il D.
and with respect tdey) and|¢ex*). The least restrictive
choice yields similar to the foregoing section

10D — " o), C. Classes of gates
The results of the foregoing sections are summarized in
|11>—>|(piwi>_ Table I.
One can see that the capability of a gate to transmit infor-
Without loss of generality we can identifyp)=|0),|¢*) mation increases when the coefficiefs characterizing its
=|1),|x)=]0), and|x")=|1) ending up with the same gate interaction content approach their maximal valugd. Es-
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pecially when one of them takes on this maximum value, the APPENDIX: INTERACTION CONTENT OF NONLOCAL
corresponding gate acquires a new feature. The special gates GATES
CNOT, DCNOT, and swAP (and all their local equivalents In Lemma 1 we presented a decomposition for two-qubit
mark these thresholds and that is why we announced them =~ _in
being “landmarks” in the set of two-qubit gates. This allows gates 2f the forml{=U,2Vge "U,2Vg, where H
us to distinguish four classes of gates differing in their trans- ©XPEk=120®0y). Here we demonstrate a method based
mission capability:(i) gates with /4> B,=B,=|Bs| (no on Ref.[5] to determine they, for a general givedl.
transmission capabilijy (i) cNOT and type |, (iii) bCNOT In Sec: Il Awe gave an alternative representatlorh-l_oﬁ

. . Lo terms of its eigenvalues,. The method actually admits to
and type Il, and(iv) swap. This classification endows the

fficient ith ohvsical sianifi d theref compute theh, s and relies on the following two observa-
coefficients with - physical significance an relore 4ions: (i) Hamiltonians of the special form considered here

A . o . Nre diagonal in the magic basis as we have already shown in
Up was associated with its capability to create entanglemengq. || A (i) Local unitaries are real in the magic bafg§.

[5]. Especially they become real orthogonal matrices since of
course they stay to be unitary. This fact resembles the homo-
morphism SU(Z2;)®SU(2()=SO(4R) [14] becoming

manifest in the magic basis. Using these two facts the de-

In this work we addressed the problem of simulating two-COMPosition takes on the forb’i:iAOD_OixWh?irl written in the
qubit gates using some given interaction and local unitany"@dic basis wherd =diag(e '*+,e"2,e7%3,e7""4) and
transformations in the fast control limit. For this to be pos-O.0O are real orthogonal matrices correspondindJ{oo Vg
sible we presented a necessary and sufficient condition linkand U,®Vg. Therefore ¢/Ti4=0"DOTODO=0"TD?0.
ing the gate, the Hamiltonian characterizing the interactiorHence, if we compute the eigenvaluestofi/ we will find
and the total time of simulation. Optimization with respect tothem to be{e™2*1,e~2*2,e~2"3 g=24} Taking the argu-
time gave a measuré,(i)—termed interaction cost—for ments of these phases and dividing by two will give us the
how costly such a simulation in terms of time of interactionA\«S and via Eq(4) the a;s.
is and thereby recovered a result already attained in[Rgf. As an example let us determine thgs for thecNOT gate.
The interaction cost has been computed for various gates aﬁ? the  computational  basis [in the  order
was shown to induce a partial order in a region of the set of 11),/10),/01),|00))] and the magic basigin the order
two-qubit gates thus establishing a meaningful notion of an@iven by the enumeration in E)] we find respectively
measure for the nonlocality of a gate.

To give an application, as well as a supplementation of
these results we then turned to the problem of transmitting 0
information between two parties using two-qubit gates. Nec- 1
essary and sufficient conditions on gates were established to URE =e 1 0
be capable of transferring classical and quantum bits in all
combinations and directions. This allowed us to compute ex- 0 cB
plicitly the interaction costs for these tasks. Beyond it the

V. CONCLUSIONS

o O O -
o » O O
=~ O O O

transmission capability of a gate provided a classification of 1 -1 -1 -
two-qubit gates. e i Al 1 i -1

All results derived here concern two-qubit systems. All ~T o 1 —j 1 -1
the underlying problems can naturally be extended to higher ) )
dimensional systems and therefore, it would be desirable to -1 1/ ve

generalize the results. The main obstacle to do so is that in
higher dimensions there is no decomposition like in B9. The overall phase included assures thatldgto) =1 and

for a general unitary operator. thereforeldcyore SU(4). Theeigenvalues off tyorlicnot
turn out to be{i,i,—i,—i}. Taking the square root and
then ordering the arguments in decreasing order we
ACKNOWLEDGMENTS find X=m/4(1,1~1,—1). Solving Eq. (4) we get a
=7/4(1,0,0).

K.H. would like to thank Barbara Kraus for kind and gen-  However, in some cases simple algebraic considerations
erous help. We thank C.H. Bennett, A. Harrow, D.W. Leung,provide a more elegant way to find the interaction content.
and J.A. Smolin for communications about their results onWe shall demonstrate this on the basis of the class of
the use of bipartite Hamiltonians to communicate informa-controlled gates. These gates are of the fordd
tion [13]. This work was supported by the European Com-=Py+P;1®U, whereP;=|i)A(i|® 1z as we mentioned in
munity project EQUIP(Contract No. 1ST-1999-11053and  Sec. Il D. If we now take the transposdtH,U in the magic
by the National Science Foundation, Grant No. EIA-basis and take into account thBf=P; and (e U)"=1
0086038. @UT we find UL, Ustri—u=(P1+PolaU")(Py+P;1
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@U)=PoleUT+ P11®U=|0><0|®UT+|1><1|®U. This are the eigenvalues ofl. Solving Egs.(4) for N{=\,
operator is block diagonal in the computational basis and=8,A3=\,=— 8 we find a=(;,0,0] a=(m/2— 3,0,0)]
therefore has the same eigenvaluet/dsit with multiplicity ~ for B<«/4] = m/4]. For thecNOT we have especially
2, i.e., has a spectrufe'??,e'?#,e12# e 128} wheree*'?#  =¢, and thusB= /4 as it shall be.
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