19,580 research outputs found

    Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator

    Full text link
    Topological phases in frustrated quantum spin systems have fascinated researchers for decades. One of the earliest proposals for such a phase was the chiral spin liquid put forward by Kalmeyer and Laughlin in 1987 as the bosonic analogue of the fractional quantum Hall effect. Elusive for many years, recent times have finally seen a number of models that realize this phase. However, these models are somewhat artificial and unlikely to be found in realistic materials. Here, we take an important step towards the goal of finding a chiral spin liquid in nature by examining a physically motivated model for a Mott insulator on the Kagome lattice with broken time-reversal symmetry. We first provide a theoretical justification for the emergent chiral spin liquid phase in terms of a network model perspective. We then present an unambiguous numerical identification and characterization of the universal topological properties of the phase, including ground state degeneracy, edge physics, and anyonic bulk excitations, by using a variety of powerful numerical probes, including the entanglement spectrum and modular transformations.Comment: 9 pages, 9 figures; partially supersedes arXiv:1303.696

    Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model

    Get PDF
    We establish a relation between several entanglement properties in the Lipkin-Meshkov-Glick model, which is a system of mutually interacting spins embedded in a magnetic field. We provide analytical proofs that the single-copy entanglement and the global geometric entanglement of the ground state close to and at criticality behave as the entanglement entropy. These results are in deep contrast to what is found in one- dimensional spin systems where these three entanglement measures behave differently.Comment: 4 pages, 2 figures, published versio

    Characterization of non-local gates

    Get PDF
    A non-local unitary transformation of two qubits occurs when some Hamiltonian interaction couples them. Here we characterize the amount, as measured by time, of interaction required to perform two--qubit gates, when also arbitrarily fast, local unitary transformations can be applied on each qubit. The minimal required time of interaction, or interaction cost, defines an operational notion of the degree of non--locality of gates. We characterize a partial order structure based on this notion. We also investigate the interaction cost of several communication tasks, and determine which gates are able to accomplish them. This classifies two--qubit gates into four categories, differing in their capability to transmit classical, as well as quantum, bits of information.Comment: revtex, 14 pages, no pictures; proof of result 1 simplified significantl

    Pairing of Cooper Pairs in a Fully Frustrated Josephson Junction Chain

    Full text link
    We study a one-dimensional Josephson junction chain embedded in a magnetic field. We show that when the magnetic flux per elementary loop equals half the superconducting flux quantum ϕ0=h/2e\phi_0=h/2e, a local \nbZ_2 symmetry arises. This symmetry is responsible for a nematic Luttinger liquid state associated to bound states of Cooper pairs. We analyze the phase diagram and we discuss some experimental possibilities to observe this exotic phase.Comment: 4 pages, 4 EPS figure

    Genralized Robustness of Entanglement

    Full text link
    The robustness of entanglement results of Vidal and Tarrach considered the problem whereby an entangled state is mixed with a separable state so that the overall state becomes non-entangled. In general it is known that there are also cases when entangled states are mixed with other entangled states and where the sum is separable. In this paper, we treat the more general case where entangled states can be mixed with any states so that the resulting mixture is unentangled. It is found that entangled pure states for this generalized case have the same robustness as the restricted case of Vidal and Tarrach.Comment: Final version. Editorial changes and references added to independent wor

    Transmission through quantum networks

    Full text link
    We propose a simple formalism to calculate the conductance of any quantum network made of one-dimensional quantum wires. We apply this method to analyze, for two periodic systems, the modulation of this conductance with respect to the magnetic field. We also study the influence of an elastic disorder on the periodicity of the AB oscillations and we show that a recently proposed localization mechanism induced by the magnetic field resists to such a perturbation. Finally, we discuss the relevance of this approach for the understanding of a recent experiment on GaAs/GaAlAs networks.Comment: 4 pages, 5 EPS figure

    Symmetric Periodic Solutions of the Anisotropic Manev Problem

    Get PDF
    We consider the Manev Potential in an anisotropic space, i.e., such that the force acts differently in each direction. Using a generalization of the Poincare' continuation method we study the existence of periodic solutions for weak anisotropy. In particular we find that the symmetric periodic orbits of the Manev system are perturbed to periodic orbits in the anisotropic problem.Comment: Late

    Deuterium Toward WD1634-573: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    Get PDF
    We use Far Ultraviolet Spectrocopic Explorer (FUSE) observations to study interstellar absorption along the line of sight to the white dwarf WD1634-573 (d=37.1+/-2.6 pc). Combining our measurement of D I with a measurement of H I from Extreme Ultraviolet Explorer data, we find a D/H ratio toward WD1634-573 of D/H=(1.6+/-0.5)e-5. In contrast, multiplying our measurements of D I/O I=0.035+/-0.006 and D I/N I=0.27+/-0.05 with published mean Galactic ISM gas phase O/H and N/H ratios yields D/H(O)=(1.2+/-0.2)e-5 and D/H(N)=(2.0+/-0.4)e-5, respectively. Note that all uncertainties quoted above are 2 sigma. The inconsistency between D/H(O) and D/H(N) suggests that either the O I/H I and/or the N I/H I ratio toward WD1634-573 must be different from the previously measured average ISM O/H and N/H values. The computation of D/H(N) from D I/N I is more suspect, since the relative N and H ionization states could conceivably vary within the LISM, while the O and H ionization states will be more tightly coupled by charge exchange.Comment: 23 pages, 5 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty; accepted by ApJ Supplemen
    • 

    corecore