View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Wilfrid Laurier University

Wilfrid Laurier University

Scholars Commons @ Laurier

Mathematics Faculty Publications Mathematics

2002

Symmetric Periodic Solutions of the Anisotopic Manev Problem

Manuele Santoprete
Wilfrid Laurier University, msantopr@wlu.ca

Follow this and additional works at: https://scholars.wlu.ca/math_faculty

Recommended Citation

Santoprete, Manuele, "Symmetric Periodic Solutions of the Anisotopic Manev Problem" (2002).
Mathematics Faculty Publications. 45.

https://scholars.wlu.ca/math_faculty/45

This Article is brought to you for free and open access by the Mathematics at Scholars Commons @ Laurier. It has
been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of Scholars
Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca.


https://core.ac.uk/display/143679938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.wlu.ca/
https://scholars.wlu.ca/math_faculty
https://scholars.wlu.ca/math
https://scholars.wlu.ca/math_faculty?utm_source=scholars.wlu.ca%2Fmath_faculty%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/math_faculty/45?utm_source=scholars.wlu.ca%2Fmath_faculty%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 6 JUNE 2002

Symmetric periodic solutions of the anisotropic
Manev problem

Manuele Santoprete?
Department of Mathematics and Statistics, University of Victoria,
P.O. Box 3045, Victoria, British Columbia V8W 3P4, Canada

(Received 7 January 2002; accepted for publication 12 February) 2002

We consider the Manev potential in an anisotropic space, i.e., such that the force
acts differently in each direction. Using a generalization of the Poinuaménua-

tion method we study the existence of periodic solutions for weak anisotropy. In
particular we find that the symmetric periodic orbits of the Manev system are
perturbed to periodic orbits in the anisotropic problem.2@02 American Institute

of Physics. [DOI: 10.1063/1.1469670]

[. INTRODUCTION

In this article we consider the anisotropic Manev probleaMP) that was introduced by
Diacu' in the early 1990s. The work on the AMP was inspired by the anisotropic Kepler problem
introduced by Gutzwiller in the early 1970s. Gutzwiller aimed to find connections between clas-
sical and quantum mechanics. His interest was stimulated by an old unsolved quantum mechanical
problem formulated in a paper written by Einstéiaven if the Born—Sommerfeld—Einstein con-
dition (e.g., see Ref. 2yvere appropriate to describe the semi-classical limit of quantum theory, it
was unclear how to find a classical approximation for nonintegrable systems.

Similarly the main reason for considering the AMP is to further analyze similarities between
classical mechanics and quantum theory. Moreover, as it was remarked in Ref. 1, the AMP also
brings general relativity into the game, since the Manev potential explains the perihelion advance
of the inner planets with the same accuracy as general relatiVitghould be remarked that
bringing general relativity into the game is of particular importance since a satisfactory quantum
theory of gravitation does not exist.

Some of the qualitative features of the anisotropic Manev problem have already been studied.
In Ref. 1, a large class of capture-collision and ejection-escape solutions is studied by means of the
collision and infinity manifold techniques. In particular that paper also brought arguments favoring
the chaoticity and nonintegrability of the system by showing the existence of heteroclinic orbits
within the zero energy manifold. In Ref. 4 the occurrence of chaos on the zero energy manifold
and the nonintegrability are finally proved, putting into evidence that the AMP is a very complex
problem.

In this work, to gain a better understanding of the complicated dynamics of the AMP, we find
the symmetric periodic orbits. Analyzing those orbits is especially important since, by now, it is
well known that studying periodic orbits is a valuable general approach to tackle complex prob-
lems in classical mechanics. The existence of periodic orbits for small values of the anisotropy is
proved using generalizations of the Poincaomtinuation method developed in Refs. 5(s@e
also Refs. 9-11).

The (planar)anisotropic Manev problem is described by the Hamiltonian

1, 1 b
H=>p?- (1)

2P W+ py? Xt py?’

where u>1 is a constant and=(x,y) is the position of one body with respect to the other
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considered fixed at the origin of the coordinate system,@adp,,py) is the momentum of the
moving particle. The constapt measures the strength of the anisotropy anduferl we recover
the classical Manev problem. Furthermore, the equation of motion can be expressed as

a=p,
2)
oH

p=- 9
Now consider weak anisotropies, i.e., choose the parametet close to 1. Introducing polar
coordinatex=r cos#, y=r sin# and the notatiore= x— 1 with e<1 we can expand the Hamil-
tonian (1) in powers ofe and obtain

H=-p’——— 5+e¢ cogO=Hq+ eW(r, ). (3)

_J’__
2r  r?

It should be pointed out that the teWi(r, #) becomes unbounded as-0 so that a perturbation
analysis is not correct on the ejection-collision orbits. This means that the global dynamics of the
AMP cannot be completely described by perturbations to the Manev problem even at the limit
e—0. However, many interesting results concerning the Hamiltoflarfor weak anisotropies

(i.e., €<1) can be found studying the Hamiltoni&s), some of which are presented in this article.

In the next section we describe the symmetries of the AMP and we find some properties that
will be useful to find symmetric periodic orbits. In Sec. Il we prove a continuation theorem for
the symmetric periodic orbits of “second kind,” i.e., the noncircular ones. In Sec. IV we prove a
continuation theorem for the orbits of “first kind,” i.e., the circular ones, following the method
developed in Ref. 8.

II. SYMMETRIES OF THE ANISOTROPIC MANEV PROBLEM

To find periodic orbits in the anisotropic problem it is peculiarly important to know the
symmetries of the system, as it was, for example observed in Refs. 5 and 6. The symmetries of the
problem under discussion have been examined in Ref. 1 and they are the same as the ones found
in Ref. 7 for the anisotropic Kepler problem:

E o (XY,Px:Py 1) = (XY, Px, Py 1),

So 1 (X,Y,Px:Py 1) = (XY, = Px, =Py, — 1),

Sp 1 (XY, Px.Py )= (X, =Y, = Px, Py, — 1),

S2 1 (%Y,PxsPy )= (=X, Py, — Py, — 1),

Sz 1 (XY.PxsPy )= (=X, =Y, = Px, = Py.t), @
Sit (XY, Px,Py )= (XY, =Py, Py, 1),

Ss 1 (XY, Pxs Py )= (X, =Y, Px, = Py,t),

Ss 1 (X,Y,Px:Py )= (=X, =Y, Px,Py, 1),

whereE is the identity.

The symmetries above can be interpreted in the following way»I(€t be a solution of2).
ThenS(y(t)) is another solution fore{0,1,2,3,4,5,6. Fori €{0,1,2,3,4,5,6 the orbity(t) will
be called symmetric if and only & (y(t)) = y(t).
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Let us remark that the symmetries(4), together with the composition of functions, denoted
by O, form an Abelian group in which the operation acts according to the table below.

o {E S Si S» S3 Si S5 S
E{E Sy S Sy S3 5S4 S5 Se
So|So E S5 Si Se S2 S1 83
Si|St Ss E S3 S; Se So Sy
Sy1Se Sy S3 E Sy Sy S S
S318 S¢ So S1 E S5 5S4 So
S4|S8s S2 Se So S5 E S35
Ss|Ss S1 So S¢ Si Sz E S
Se|Se S3 Sy S5 So S1 S E

From the table above it is easy to deduce the following.

Proposition 1: The symmetries of the anisotropic Manev problem form an elementary Abelian
group of order eight, i.e., a group isomorphic Zp X Z,X Z,.

The symmetries irf4), (exceptE and Sg) are very useful to find symmetric periodic orbits,
especially by means of the continuation method, as we show in the next two sections. Some
important properties of the symmetric orbit, summarized in Ref. 7, are expressed in the following
lemma:

Lemma 1: (i) For =1 (resp. i=2) we have that an orbit(t) is §-symmetric if and only if
it crosses the x axis (resp. y axis) orthogonally.

(ii) An orbit y(t) is S;-symmetric if and only if it has a point on the zero velocity curve.

(iii) For i =4,5an orbit y(t) is §-symmetric if and only if it is §symmetric.

(iv) All the S;-symmetric orbits are periodic.

The properties of th&;-symmetric orbits were first studied by Birkhdffor the restricted
three body problem and later by many other authors. In particular Casasayas and dthbeea
proposition that gives a technique useful to obtain symmetric periodic orbits with respggt to
S;, S, for the anisotropic Kepler problem that are verified also for the problem under discussion
in this article:

Proposition 2: (i) For i=1 (resp. i=2) we have that an orbity(t) is an S-symmetric
periodic orbit if and only if it crosses the x axis (resp. y axis) orthogonally at two distinct points.

(ii) An orbit y(t) is an-§ symmetric periodic orbit if and only if it meets the zero velocity
curves at two distinct points.

(i) An orbit y(t) is an-§ and S-symmetric periodic orbit if and only if it crosses the x axis
and the y axis orthogonally.

(iv) Fori=1,2an orbit y(t) is a §- and S-symmetric periodic orbit if and only if it meets the
zero velocity curve and crosses thergspectively y axis, orthogonally

(v) For i=4,5, if an orbit y(t) is §-symmetric, then it is g§symmetric and periodic.

Now we want to find the symmetric periodic orbit for the unperturbed proklem0 or u
=1) and continue them to periodic solutions of the anisotropic sydteme<1). First we
observe that, by Proposition 2, te-symmetric orbits with = 0,4,5 must meet the zero velocity
curve at two points, i.e., there must be a point where the angular moméatuxp, —y p, is zero,
but sinceK is a constant of motion it must be zero along the orbit. Therefore such orbits are
ejection-collision orbits, are not periodic and cannot be studied by means of the continuation
method. Hence we are going to consider the symmetric periodic orbitsi with2, and also the
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ones withi = 3 that are the circular orbits of the unperturbed problem. To exploit those properties
of the symmetric periodic orbits it is convenient to write the equation of motion in different
coordinates.

For theS; symmetric orbits with = 1,2, as it was noted in Ref. 5, it is convenient to write the
canonical equations of the restricted three body problem using the Delaunay variables in the
rotating frame> Also the Poincareynodic variables can be used to find symmetric periodic orbits
of the restricted three body probléhiThe anisotropic Manev problem is different since the
Hamiltonian that describes it is time independent, hence the idea of using rotating coordinates in
the present case cannot be applied. Moreover, our problem is nondegenerate; however, even in our
case it is advantageous to perform a change of variables and apply a variation of the action angle
variables used in Refs. 4 and 12. Here the nondegeneracy of the problem plays a role similar to the
rotating coordinate system in the restricted three body problem.

For theS;-symmetric orbits we can instead consider the equations in the rotating frame, and
prove a theorem similar to the one proved in Ref. 8 for the anisotropic Kepler prabieRef. 8
the author remarks that the analysis of the Kepler problem can be redone in the Manev case, but
he does not provide a proof).

lll. THE S-SYMMETRIC ORBITS WITH j=1,2
We recall that the action variables introduced in Refs. 4 and 12 are given by

1 1 /2
= — = JK?— A/ —
I 5 %prdr VK“—=2b+ > VThp

K:Xpy_ypxr

(5)

whereh is the energy constant aril is the angular momentum. These variables are defined for
h<0 andK?>2b, | >0, to avoid collision orbits as well as circular orbits. The related frequencies
are

1

I VKZ=2p)%

K
JKZ=2b(1 + JKZ—2b)3’

WK =

and 6 and ¢ are the angle variables associatedKt@and|, respectively.
The unperturbed Hamiltonian in the new variables can be written as

1
201+ JKZ—2p)2’

Now we can consider new variables that are linear combination of the previous ones. They are
defined by the following canonical transformation

HO:

L=K+I,

G=-1,
-0 (6)

g=0-¢.

Wherel is the mean anomalyvherel (t) = o, (t—1tp) andt, is the time of pericenter passagg],
is the longitude of pericenter as they are defined for the Manev problem in Ref. 13. Moreover, also
the action variables can be written in terms of the orbital elements of the Manev problem. If we set
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1
= = _ 2_
A= 31 and e=\1-2(K2—2h)|h|

as in Refs. 4 and 13, then

G=—a{1-(1-e>¥?] and L=-G=\a(l—e?) +2b,

wherea is the pseudo-semimajor axisjs the pseudo-eccentricity, and the sigfresp.—) holds
for K>0 (resp.<0). The conditions to avoid collision orbits and circular orbits, on wigch
becomes meaningless, can be written in terms of the orbital elemeats @sand 0<e<1. The
new unperturbed Hamiltonian is

1
Ho=— : 7
O 2(—G+(G+L)?—2b)? @)
so the perturbed equations of motion become
I(HoteW) W
N a  a
_ d(Hotew) oW
w0 Cag
8
.I_a(H0+eW)_ . oW
B JL CeLTESL
. d(HoteW) dW
9= st

whereW is expressed in the new variables and

- G+L
(=G+(G+L)2—2b)3(G+L)2—2b

G+L—(G+L)>-2b

T (—G+\(GTL)?—2b)°(G+L)2-2b

W= Wk

WG= WK~ W

With these preparations, i.e., the introduction of the action angle varié®lese are well on our
way to establishing the following result:

Theorem 1: Let y(t) be an $-symmetric periodic orbit of the Manev problem with1,2. Let
the period ber and sete= u— 1 with e<1. Then there exists aperiodic solution of the aniso-
tropic Manev problemy(t) such thaty(t)= y(t)+O(e).

Proof: Let us consider arg;-symmetric orbit of periodr=2m7m/k (m, k relatively prime
integers). We remark that, since the equations of motion are autonomous, we can reduce to study
the symmetric orbits that have either the pericenter or the apocenter on the prsitie att
=0.

If at t=0, e=0, the pericenter of this orbit is on the positixeaxis, and it is crossing the
axis perpendicularly, we have

g(0)=0 and 1(0)=0. 9)

Since the periodic orbit i$;-symmetric, by Proposition 2, at the half period one has
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T = 1| 2] =k 10
g| 5| =mm, 5| =k, (10)
which follows from the solution of8) for e=0:
L=const, G=const
(11)

|=(1)|_t, g=th

Now if, for e#0, we consider only5;-symmetric solutions of8), it follows from the implicit
function theorem that if the functional determinant

al ol

JL G
D =det #0 (12)

Jdg d9

L 4G

at

7 =0 13
t—i, e=0, (13)

then(10) would be satisfied foe>0. To compute the determinant we can by analyticity substitute
(10) into (11) to find out at the timeé = 7/2 that

. 6b(1/2)? 0
(=G+(G+L)2=2b)7((G+L)2—2p)32"

Thus the existence o8;-symmetric periodic orbits of perioa obtained from ther periodic
S;-symmetric solutions of the unperturbed problem, that=a® have the pericenter on the posi-
tive x axis, is readily established.

On the other hand, if at=0, e=0, the apocenter is on the positixeaxis, and it is crossing
the x axis perpendicularly, we have

(14)

0)=— and 1(0)=—— 15
9(0)=+ and 1(0)==+, (15)
where\ =(w_ — wg)/ w_ . By Proposition 1, at the half period we have

ofg (s3] (3]-

Instead of computing the functional determinant directly, in this case, it is easier to consider the
new variables given by the relations

1

~Z 4k

m+—|m, |
N

A

. (16)

7
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which define a family of canonical transformations parametrized ¢y 4,Gg). For each orbit
choose a different transformation from the faniily’), where\ o=\ is a fixed quantity defined by
the value of the action variables along the periodic orbit under consideration.

The equation$16), expressed in the new variables, are of the same form @®)nThus the
functional determinant, in the new variables, is exa@ly and the existence of the remaining
S;-symmetricr-periodic orbits follows.

Now the proof for theS,-symmetric orbits can be done along the same lines. Consider an
S,-symmetric periodic orbit of period=27m/k. If att=0, e=0 the pericenter of the orbit is on
the positivey axis and it is crossing thg axis perpendicularly, we have

g(0)=7—27 and 1(0)=0. (18)

Since the periodic orbit i§,-symmetric one has, at the half period,

T a T
g<§)=m7r+§, | E)Zk’ﬁ. (19)
Now we consider only5,-symmetric solutions of8) for e+ 0. Again it follows from the implicit
function theorem that if the determinabt computed at=7/2 for e=0 is nonzero, theri19)
would be satisfied fore>0. It is trivial to see from(14) that D+#0, and hence we found
S,-symmetric periodic orbits for the perturbed problem.

For theS,-symmetric orbits having the apocenter on the posixivaxis att=0 the canonical
transformation(17) can be used. Again we find the same expression for the functional determinant
and, hence, by the implicit function theorem, the existence of the remafisgmmetric periodic
orbits is proved.

It is interesting to remark that Theorem 1 and its proof can be easily extended to consider any
S-symmetric perturbation with=1,2 and a very general class of nondegenerate integrable
Hamiltonians, however such a generalization is trivial and not strictly related to the problem under
consideration and hence it will not be discussed any further.

We can also observe that for=0, i.e., for the Kepler problem, the determinantld) is zero.

Thus in the case of the anisotropic Kepler problem, the continuation theorem proved above cannot
be applied, and the existence of symmetric periodic orbits of the “second Kifud”weak
anisotropiesyemains unclear. On the other hand, the continuation theorem that we prove in the
next section(for the circular orbitscan be applied to the anisotropic Kepler probfeand hence

at least the existence of symmetric periodic orbits of the first kind is a well established fact.

IV. THE S;-SYMMETRIC ORBITS

Again we can consider the anisotropic Manev problem taking the parameiese to 1. Let
d(t,(r,1),u) be the flow of the equation of motiofl). In this section we prove the following
theorem:

Theorem 2: Letr?(t) be an $-symmetric periodic orbit of the Manev problem, i.e., a circular
one. Sete=u—1, and let 7 be the period ofr°(t). Then there exists a-periodic solution
d(t,(r(e),r(e)),e) of the anisotropic Manev problem such thab(t,(r(0),r(0)),0)
=(ro(t),r°(1)).

A. The equation of motion

Now using the same notation as in Ref. 8ri(tt) be a circular solution of the Manev problem
which corresponds tae=1 in the xy-plane,w its angular speed ard its radius. Fore=pu—1
#0 we set
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r(t,e)=rot)+es(t,e). (20)

ExpandingVH in powers ofu— 1 sufficiently small, after substituting the expressionrfaiven
above, considering the notatiof(t) = x,(t) +iyo(t) ands=u-+iv we have that(t,e) is a solu-
tion of equation of motion defined bil) if, and only if, s(t,€) is a solution of the equations

3XoYo = 8bXgYo

) 1 3x5 8bx; 2b
u=— + ?—FT U+7](t)+0(6),

a a5 a8 )
(21)
. [3XaYo  8bXoyo| (1 8bys 3y 2b
Ul T U@ e e )Tl
where
3XoY5  4bXoy§
n(t)= B T
(= o _Yo 0% 2byo
&)= PP P
Consider the orthonormal frame R?, e;(t) ande,(t) defined by
o
el=W=e""t=c03wt+isinwt, e=ie,
and, using the same notation as in Ref. 8 where
S=X18 X268, S=Y181Y76,,
Eqg. (21) can be written in an equivalent form as
z=Aq(t)+Az+0O(e), (22)

wherez=(x1.X2,y1,Y2)T, and

0 ) 1 0
8 —w 0 o0
= b
Ao=| () |- 20°+2— 0 0 o]
B(t) a

where
a(t)coswt— B(t)sinwt= n(t),
a(t)sinwt+ B(t)coswt= &(1),
or, equivalently,

(1 2
a(t)=sin“wt ﬁ—*—?

(23)
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2b

B(t)=—sinwt coswt 22 + =

The eigenvalues ok are 0, with multiplicity two,i/a®? and— i/a®2. One of the two eigenvalues

vanishes because the system is autonomous, and the second due to the presence of the first integral
H.

Now consider the real Jordan forth of A. The matrixJ is defined by the relatiord
=T AT whereTis

2.3 w?a*+2b
2 wea 0 0
a
(3 w?a*+2b) wa’(w?a*+2b)
a (a)
7= 1 4 a(w?a*+b)+2 (w2a*+2b)? (w?a*+2b)?
0 > 5 0 B/ E—
2 a a
o(w?a*+2b) 0 o(w?a*+2b) 0
a a

and the columns of are the generalized eigenvectorsAof
The vectory=7'A, and the matrixJ are

0 0 0

i) 1 0 0 0
] B EE

Ja(t) 0 o _;/1_5 o

where the fact thaj;(t) = (2w3a’— w(w?a*+2b)/a?) "1A(t) is the only information aboud,
that we need to retain. Furthermore, we remark thé*—a—2b=0 gives the relation between
a and w and solving this equations gives only one positive solutfon b>0).

Letting z=7¢, the equation of motion becomes

{=Jo(t)+I¢+O(e), (24)

and its flow is given by

P(t,8,€)=y(t)+e’'+0(e), (25)

where by the variation of constants

y(t)=e3‘f;e‘JsJo(s)ds. (26)

Therefore, we have
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1 0 0
t 0 0

a

el'=[ 0 0 cos_7 t sm\/_t ,

a’

a

0 0 —sin— t cos\/—t

a’ a’

and from(26) we obtain

y1(t)
t
r(= Ziti ' @7
ya(t)
where we retain only the information that
yl(t)=<2w3a2— “’(“’Z—Hb) f B(s)ds. (28)

B. The periodicity equation

Since the HamiltoniarH of the anisotropic Manev problem S;-symmetric, as we have
shown, we can write the periodicity equation a$ in

=—(r,T). (29)

T .
(I)(E,(r,r),e

Then it easy to check thab(t,(r,t),e) is a periodic solution of the equation of motion with
period 7. To find periodic solutions we have to verify th@9) is satisfied for a family of initial
conditions. Equatiori29) in ¢ coordinates is

w(g.é,e) -¢=0, (30)

where(t,,€) is the flow of(24). Let us denote bfP({,€) the left hand side of the periodicity
equation(29), that is, let

-
P(g,e)=w(§, ) (=9|3]+E@7=D=0. (31)
Using (25) we notice that the requirement
P(E*0=7|3 |+ (&= =0 (32)
imposes the restrictions
2 T . .
7|5 =0, = — 72| 3]s {5 =arbitrary, (33)

and
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T\ .,
2Slnoz

T *
5 (cosa —1)),

1 T
e :m( - 73(5)(00%* —D+y,

(34)
* -1 T\ . n
L T 2(1—cosa®) | Y3\ 2/ T4
wherea* = 7(1+2b/a) Y2 It easy to see froni23) and(28) that y,(7/2) =0, therefore, we take
&=(0.6.8.0)70 (35)

with £ arbitrary, for the moment. Now using the fld&5), we determine that the Jacobian matrix
of P with respect to the variablesevaluated at the poin{,0) is given by

0 O 0 0

72 0 0 0
0 0 cose*—-1 sina* (36)
0 0 -—sina* cosa*—1

Consider the system of three equations formed by thod81hcorresponding to the indicas
=2,3,4, and fix the variablg,= {3 . Its Jacobian matrix has determinar(tl —cosa*) that is
always positive since € 7(1+2b/a) ~?< . Therefore, the implicit function theorem guaran-
tees the existence of analytic functiofis= ¢;(€), i=1,3,4, in a neighborhood @&f=0, satisfying
the equations

Pi(L,e)=0 (i=2,3,9), (37)
where
{(€)=(£1(€),83 . L3(€) . Lule)) (38)
and such that
Go)=¢F (i=1,234. (39)

It remains to show, in order to have periodicity, that also the remaining equation
P1(L(e),v(e),€)=0 (40)

is satisfied in a possibly smaller, neighborhoodesf0. That will be done employing a first
integral of the system under discussion, i.e., the Hamiltonian.

C. Integral of motion

Since the Hamiltonian is an integral of motion of the problem under discussion we can apply
the same analysis as in Refs. 8 and 14. In particular, using the same notations as in Ref. 8 we can
define

H(z,t)=H(r,T,e),

whereH (z,t) is a time-dependent-periodic first integral for systent22). The above integral
satisfies the following relation,

He

z,t+%) =H/z) (41)
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for all t, sinceH(—r, —1)=H(r,t), r(t)=r°t)+ e s(t) and

r0

t=] = —rot t+o)= t
2_ I’(), S\ Z, 2_8(21)-

Performing a change of coordinates we can defifi¢{,t)=H (7¢,t), hence(41) can be
written as

H(L 1+ 712)=H(L,1). (42)
Moreover, sinceH, is an integral of motion it verifies that

Hd($(L,€,1)=H(£,0). (43)
Thus applying Eqs(42) and (43) it follows that

H(p(712,,€),00=H(£,0),
and by means of the mean value theorem we obtain
VH{£,0)-P(¢,€)=0, (44)

whereV/H. is the gradient of{. with respect ta, and? is a point on the segment joiningto

P(712,,€).
ExpandingWV (€)= (71/2,{,€) in power of e sufficiently small it is easy to shovsee Ref. 8)

that W (€)= ¢* +O(€) and consequently

{=s{(e)+(1-5)V(e)={*+0(e)
for somese (0,1). Moreover, if we also expand the Hamiltonidln(z,0) in powers ofe we get
H.(z,0=Hy+ e(H;+H,-2)+ O(€?)
or, in ¢ coordinates
H(£,0)=Ho+ e(Hy+Hy- §)+O(€?), (45)
where Ho=Hy=(1/2w?a®— 1/a— b/a?), Hy=H, and H,=T"H,=7"(a ?+2ba 3,0,0,a0)
=(aw?{,,0,0,0). Hence we obtain

1 -
—VHAL.0=Hy+O(e). (46)

With these preparations E¢44) reduces to the equation in the unkno®n
[aw?+O(€)]P,=0, (47)

since, for small, we already found in Sec. IV B th& =0 fori=2,3,4. It is easy to see that for
€=0 the equation above has soluti®y=0. Thus, by continuity]aw?+ O(e)] is different from
zero for e sufficiently small. Therefore, for such values gfthis equation has a unique solution
that is the trivial one. Consequently, the remaining equation,

P1((€),€)=0,
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is also satisfied in a possibly smaller neighborhoodeef0. Hence all the equations of the
periodicity system(31) are satisfied whef={(€), as long as is sufficiently small. This com-
pletes the proof of Theorem 2.
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