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Symmetric periodic solutions of the anisotropic
Manev problem

Manuele Santopretea)

Department of Mathematics and Statistics, University of Victoria,
P.O. Box 3045, Victoria, British Columbia V8W 3P4, Canada

~Received 7 January 2002; accepted for publication 12 February 2002!

We consider the Manev potential in an anisotropic space, i.e., such that the force
acts differently in each direction. Using a generalization of the Poincare´ continua-
tion method we study the existence of periodic solutions for weak anisotropy. In
particular we find that the symmetric periodic orbits of the Manev system are
perturbed to periodic orbits in the anisotropic problem. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1469670#

I. INTRODUCTION

In this article we consider the anisotropic Manev problem~AMP! that was introduced by
Diacu1 in the early 1990s. The work on the AMP was inspired by the anisotropic Kepler problem
introduced by Gutzwiller in the early 1970s. Gutzwiller aimed to find connections between clas-
sical and quantum mechanics. His interest was stimulated by an old unsolved quantum mechanical
problem formulated in a paper written by Einstein:2 even if the Born–Sommerfeld–Einstein con-
dition ~e.g., see Ref. 2!were appropriate to describe the semi-classical limit of quantum theory, it
was unclear how to find a classical approximation for nonintegrable systems.

Similarly the main reason for considering the AMP is to further analyze similarities between
classical mechanics and quantum theory. Moreover, as it was remarked in Ref. 1, the AMP also
brings general relativity into the game, since the Manev potential explains the perihelion advance
of the inner planets with the same accuracy as general relativity.3 It should be remarked that
bringing general relativity into the game is of particular importance since a satisfactory quantum
theory of gravitation does not exist.

Some of the qualitative features of the anisotropic Manev problem have already been studied.
In Ref. 1, a large class of capture-collision and ejection-escape solutions is studied by means of the
collision and infinity manifold techniques. In particular that paper also brought arguments favoring
the chaoticity and nonintegrability of the system by showing the existence of heteroclinic orbits
within the zero energy manifold. In Ref. 4 the occurrence of chaos on the zero energy manifold
and the nonintegrability are finally proved, putting into evidence that the AMP is a very complex
problem.

In this work, to gain a better understanding of the complicated dynamics of the AMP, we find
the symmetric periodic orbits. Analyzing those orbits is especially important since, by now, it is
well known that studying periodic orbits is a valuable general approach to tackle complex prob-
lems in classical mechanics. The existence of periodic orbits for small values of the anisotropy is
proved using generalizations of the Poincare´ continuation method developed in Refs. 5–8~see
also Refs. 9–11!.

The ~planar!anisotropic Manev problem is described by the Hamiltonian

H5
1

2
p22

1

Ax21my2
2

b

x21my2 , ~1!

where m.1 is a constant andq5(x,y) is the position of one body with respect to the other

a!Electronic mail: msantopr@math.uvic.ca
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considered fixed at the origin of the coordinate system, andp5(px ,py) is the momentum of the
moving particle. The constantm measures the strength of the anisotropy and form51 we recover
the classical Manev problem. Furthermore, the equation of motion can be expressed as

q̇5p,
~2!

ṗ52
]H

]q
.

Now consider weak anisotropies, i.e., choose the parameterm.1 close to 1. Introducing polar
coordinatesx5r cosu, y5r sinu and the notatione5m21 with e!1 we can expand the Hamil-
tonian ~1! in powers ofe and obtain

H5
1

2
p22

1

r
2

b

r 2 1eS 1

2r
1

b

r 2D cos2u[H01eW~r ,u!. ~3!

It should be pointed out that the termW(r ,u) becomes unbounded asr→0 so that a perturbation
analysis is not correct on the ejection-collision orbits. This means that the global dynamics of the
AMP cannot be completely described by perturbations to the Manev problem even at the limit
e→0. However, many interesting results concerning the Hamiltonian~1! for weak anisotropies
~i.e.,e!1! can be found studying the Hamiltonian~3!, some of which are presented in this article.

In the next section we describe the symmetries of the AMP and we find some properties that
will be useful to find symmetric periodic orbits. In Sec. III we prove a continuation theorem for
the symmetric periodic orbits of ‘‘second kind,’’ i.e., the noncircular ones. In Sec. IV we prove a
continuation theorem for the orbits of ‘‘first kind,’’ i.e., the circular ones, following the method
developed in Ref. 8.

II. SYMMETRIES OF THE ANISOTROPIC MANEV PROBLEM

To find periodic orbits in the anisotropic problem it is peculiarly important to know the
symmetries of the system, as it was, for example observed in Refs. 5 and 6. The symmetries of the
problem under discussion have been examined in Ref. 1 and they are the same as the ones found
in Ref. 7 for the anisotropic Kepler problem:

E : ~x,y,px ,py ,t !→~x,y,px ,py ,t !,

S0 : ~x,y,px ,py ,t !→~x,y,2px ,2py ,2t !,

S1 : ~x,y,px ,py ,t !→~x,2y,2px ,py ,2t !,

S2 : ~x,y,px ,py ,t !→~2x,y,px ,2py ,2t !,

S3 : ~x,y,px ,py ,t !→~2x,2y,2px ,2py ,t !,

S4 : ~x,y,px ,py ,t !→~2x,y,2px ,py ,t !,

S5 : ~x,y,px ,py ,t !→~x,2y,px ,2py ,t !,

S6 : ~x,y,px ,py ,t !→~2x,2y,px ,py ,2t !,

~4!

whereE is the identity.
The symmetries above can be interpreted in the following way: Letg(t) be a solution of~2!.

ThenSi(g(t)) is another solution fori P$0,1,2,3,4,5,6%. For i P$0,1,2,3,4,5,6% the orbitg(t) will
be called symmetric if and only ifSi(g(t))5g(t).
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Let us remark that the symmetries in~4!, together with the composition of functions, denoted
by s, form an Abelian group in which the operation acts according to the table below.

From the table above it is easy to deduce the following.
Proposition 1: The symmetries of the anisotropic Manev problem form an elementary Abelian

group of order eight, i.e., a group isomorphic toZ23Z23Z2 .
The symmetries in~4!, ~exceptE andS6! are very useful to find symmetric periodic orbits,

especially by means of the continuation method, as we show in the next two sections. Some
important properties of the symmetric orbit, summarized in Ref. 7, are expressed in the following
lemma:

Lemma 1: (i) For i51 ~resp. i52! we have that an orbitg(t) is Si-symmetric if and only if
it crosses the x axis (resp. y axis) orthogonally.

(ii) An orbit g(t) is S0-symmetric if and only if it has a point on the zero velocity curve.
(iii) For i 54,5 an orbit g(t) is Si-symmetric if and only if it is S0-symmetric.
(iv) All the S3-symmetric orbits are periodic.
The properties of theSi-symmetric orbits were first studied by Birkhoff9 for the restricted

three body problem and later by many other authors. In particular Casasayas and Llibre7 state a
proposition that gives a technique useful to obtain symmetric periodic orbits with respect toS0 ,
S1 , S2 for the anisotropic Kepler problem that are verified also for the problem under discussion
in this article:

Proposition 2: (i) For i51 ~resp. i52) we have that an orbitg(t) is an Si-symmetric
periodic orbit if and only if it crosses the x axis (resp. y axis) orthogonally at two distinct points.

(ii) An orbit g(t) is an-S0 symmetric periodic orbit if and only if it meets the zero velocity
curves at two distinct points.

(iii) An orbit g(t) is an-S1 and S2-symmetric periodic orbit if and only if it crosses the x axis
and the y axis orthogonally.

(iv) For i 51,2an orbit g(t) is a S0- and Si-symmetric periodic orbit if and only if it meets the
zero velocity curve and crosses the x, respectively y axis, orthogonally.

(v) For i54,5, if an orbit g(t) is Si-symmetric, then it is S0-symmetric and periodic.

Now we want to find the symmetric periodic orbit for the unperturbed problem~e50 or m
51! and continue them to periodic solutions of the anisotropic system~for e!1!. First we
observe that, by Proposition 2, theSi-symmetric orbits withi 50,4,5 must meet the zero velocity
curve at two points, i.e., there must be a point where the angular momentumK5xpy2ypx is zero,
but sinceK is a constant of motion it must be zero along the orbit. Therefore such orbits are
ejection-collision orbits, are not periodic and cannot be studied by means of the continuation
method. Hence we are going to consider the symmetric periodic orbits withi 51,2, and also the
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ones withi 53 that are the circular orbits of the unperturbed problem. To exploit those properties
of the symmetric periodic orbits it is convenient to write the equation of motion in different
coordinates.

For theSi symmetric orbits withi 51,2, as it was noted in Ref. 5, it is convenient to write the
canonical equations of the restricted three body problem using the Delaunay variables in the
rotating frame.5 Also the Poincare´ synodic variables can be used to find symmetric periodic orbits
of the restricted three body problem.6 The anisotropic Manev problem is different since the
Hamiltonian that describes it is time independent, hence the idea of using rotating coordinates in
the present case cannot be applied. Moreover, our problem is nondegenerate; however, even in our
case it is advantageous to perform a change of variables and apply a variation of the action angle
variables used in Refs. 4 and 12. Here the nondegeneracy of the problem plays a role similar to the
rotating coordinate system in the restricted three body problem.

For theS3-symmetric orbits we can instead consider the equations in the rotating frame, and
prove a theorem similar to the one proved in Ref. 8 for the anisotropic Kepler problem~in Ref. 8
the author remarks that the analysis of the Kepler problem can be redone in the Manev case, but
he does not provide a proof!.

III. THE Si-SYMMETRIC ORBITS WITH iÄ1,2

We recall that the action variables introduced in Refs. 4 and 12 are given by

I 5
1

2p R prdr52AK222b1
1

2
A 2

uhu
,

~5!
K5xpy2ypx ,

whereh is the energy constant andK is the angular momentum. These variables are defined for
h,0 andK2.2b, I .0, to avoid collision orbits as well as circular orbits. The related frequencies
are

v I5
1

~ I 1AK222b!3
,

vK5
K

AK222b~ I 1AK222b!3
,

andu andf are the angle variables associated toK and I , respectively.
The unperturbed Hamiltonian in the new variables can be written as

H052
1

2~ I 1AK222b!2
.

Now we can consider new variables that are linear combination of the previous ones. They are
defined by the following canonical transformation

L5K1I ,

G52I ,
~6!

l 5u,

g5u2f.

Wherel is the mean anomaly@wherel (t)5vL(t2t0) andt0 is the time of pericenter passage#,g
is the longitude of pericenter as they are defined for the Manev problem in Ref. 13. Moreover, also
the action variables can be written in terms of the orbital elements of the Manev problem. If we set
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a5
1

2uhu
and e5A122~K222b!uhu

as in Refs. 4 and 13, then

G52a1/2@12~12e2!1/2# and L52G6Aa~12e2!12b,

wherea is the pseudo-semimajor axis,e is the pseudo-eccentricity, and the sign1(resp.2) holds
for K.0 (resp.,0). The conditions to avoid collision orbits and circular orbits, on whichg
becomes meaningless, can be written in terms of the orbital elements asa.0 and 0,e,1. The
new unperturbed Hamiltonian is

H052
1

2~2G1A~G1L !222b!2
, ~7!

so the perturbed equations of motion become

L̇52
]~H01eW!

] l
52e

]W

] l
,

Ġ52
]~H01eW!

]g
52e

]W

]g
,

~8!

l̇ 5
]~H01eW!

]L
5vL1e

]W

]L
,

ġ5
]~H01eW!

]G
5vG1e

]W

]G
,

whereW is expressed in the new variables and

vL5vK5
G1L

~2G1A~G1L !222b!3A~G1L !222b

vG5vK2v I5
G1L2A~G1L !222b

~2G1A~G1L !222b!3A~G1L !222b

With these preparations, i.e., the introduction of the action angle variables~6!, we are well on our
way to establishing the following result:

Theorem 1: Let g(t) be an Si-symmetric periodic orbit of the Manev problem with i51,2.Let
the period bet and sete5m21 with e!1. Then there exists at-periodic solution of the aniso-
tropic Manev problemge(t) such thatge(t)5g(t)1O(e).

Proof: Let us consider anS1-symmetric orbit of periodt52pm/k ~m, k relatively prime
integers!. We remark that, since the equations of motion are autonomous, we can reduce to study
the symmetric orbits that have either the pericenter or the apocenter on the positivex axis at t
50.

If at t50, e50, the pericenter of this orbit is on the positivex axis, and it is crossing thex
axis perpendicularly, we have

g~0!50 and l ~0!50. ~9!

Since the periodic orbit isS1-symmetric, by Proposition 2, at the half period one has
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gS t

2D5mp, l S t

2D5kp, ~10!

which follows from the solution of~8! for e50:

L5const, G5const
~11!

l 5vLt, g5vGt.

Now if, for eÞ0, we consider onlyS1-symmetric solutions of~8!, it follows from the implicit
function theorem that if the functional determinant

D5detS ] l

]L

] l

]G

]g

]L

]g

]G

D Þ0 ~12!

at

t5
t

2
, e50, ~13!

then~10! would be satisfied fore.0. To compute the determinant we can by analyticity substitute
~10! into ~11! to find out at the timet5t/2 that

D5
6b~t/2!2

~2G1A~G1L !222b!7~~G1L !222b!3/2
Þ0. ~14!

Thus the existence ofS1-symmetric periodic orbits of periodt obtained from thet periodic
S1-symmetric solutions of the unperturbed problem, that att50 have the pericenter on the posi-
tive x axis, is readily established.

On the other hand, if att50, e50, the apocenter is on the positivex axis, and it is crossing
the x axis perpendicularly, we have

g~0!5
p

l
and l ~0!52

p

l
, ~15!

wherel5(vL2vG)/vL . By Proposition 1, at the half period we have

gSt2D5S m1
1

l Dp, l S t

2D5S 2
1

l
1kDp. ~16!

Instead of computing the functional determinant directly, in this case, it is easier to consider the
new variables given by the relations

L̃5L,

G̃5G,
~17!

l̃ 5 l 1
p

l0
,

g̃5g2
p

l0
,
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which define a family of canonical transformations parametrized byl0(L0 ,G0). For each orbit
choose a different transformation from the family~17!, wherel05l is a fixed quantity defined by
the value of the action variables along the periodic orbit under consideration.

The equations~16!, expressed in the new variables, are of the same form as in~10!. Thus the
functional determinant, in the new variables, is exactlyD, and the existence of the remaining
S1-symmetrict-periodic orbits follows.

Now the proof for theS2-symmetric orbits can be done along the same lines. Consider an
S2-symmetric periodic orbit of periodt52pm/k. If at t50, e50 the pericenter of the orbit is on
the positivey axis and it is crossing they axis perpendicularly, we have

g~0!5
p

2
and l ~0!50. ~18!

Since the periodic orbit isS2-symmetric one has, at the half period,

gS t

2D5mp1
p

2
, l S t

2D5kp. ~19!

Now we consider onlyS2-symmetric solutions of~8! for eÞ0. Again it follows from the implicit
function theorem that if the determinantD computed att5t/2 for e50 is nonzero, then~19!
would be satisfied fore.0. It is trivial to see from~14! that DÞ0, and hence we found
S2-symmetric periodic orbits for the perturbed problem.

For theS2-symmetric orbits having the apocenter on the positivex axis att50 the canonical
transformation~17! can be used. Again we find the same expression for the functional determinant
and, hence, by the implicit function theorem, the existence of the remainingS2-symmetric periodic
orbits is proved.

It is interesting to remark that Theorem 1 and its proof can be easily extended to consider any
Si-symmetric perturbation withi 51,2 and a very general class of nondegenerate integrable
Hamiltonians, however such a generalization is trivial and not strictly related to the problem under
consideration and hence it will not be discussed any further.

We can also observe that forb50, i.e., for the Kepler problem, the determinant in~14! is zero.
Thus in the case of the anisotropic Kepler problem, the continuation theorem proved above cannot
be applied, and the existence of symmetric periodic orbits of the ‘‘second kind’’~for weak
anisotropies!remains unclear. On the other hand, the continuation theorem that we prove in the
next section~for the circular orbits!can be applied to the anisotropic Kepler problem8 and hence
at least the existence of symmetric periodic orbits of the first kind is a well established fact.

IV. THE S3-SYMMETRIC ORBITS

Again we can consider the anisotropic Manev problem taking the parameterm close to 1. Let
F(t,(r, ṙ ),m) be the flow of the equation of motion~1!. In this section we prove the following
theorem:

Theorem 2: Let r0(t) be an S3-symmetric periodic orbit of the Manev problem, i.e., a circular
one. Sete5m21, and let t be the period ofr0(t). Then there exists at-periodic solution
F(t,(r( e), ṙ(e)),e) of the anisotropic Manev problem such thatF(t,(r(0), ṙ (0)),0)
5(r0(t), ṙ0(t)).

A. The equation of motion

Now using the same notation as in Ref. 8 letr0(t) be a circular solution of the Manev problem
which corresponds tom51 in the xy-plane,v its angular speed anda its radius. Fore5m21
Þ0 we set
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r ~ t,e!5r0~ t !1es~ t,e!. ~20!

Expanding¹H in powers ofm21 sufficiently small, after substituting the expression forr given
above, considering the notationr0(t)5x0(t)1 iy0(t) ands5u1 iv we have thatr( t,e) is a solu-
tion of equation of motion defined by~1! if, and only if, s(t,e) is a solution of the equations

ü52S 1

a3 2
3x0

2

a5 2
8bx0

2

a6 1
2b

a4 Du1S 3x0y0

a5 1
8bx0y0

a6 D v1h~ t !1O~e!,

~21!

v̈5S 3x0y0

a5 1
8bx0y0

a6 Du2S 1

a3 2
8by0

2

a6 2
3y0

2

a5 1
2b

a4 D v1j~ t !1O~e!

where

h~ t !5
3x0y0

2

a5 1
4bx0y0

2

a6

j~ t !5
3y0

2

2a5 2
y0

a3 1
4by0

3

a6 2
2by0

a4 .

Consider the orthonormal frame inR2, e1(t) ande2(t) defined by

e15
r0

ur0u
5eivt5cosvt1 i sinvt, e25 ie1 ,

and, using the same notation as in Ref. 8 where

s5x1e11x2e2 , ṡ5y1e11y2e2 ,

Eq. ~21! can be written in an equivalent form as

ż5A0~ t !1Az1O~e!, ~22!

wherez5(x1 ,x2 ,y1 ,y2)T, and

A05S 0
0

a~ t !
b~ t !

D , A5S 0 v 1 0

2v 0 0 1

2 v212
b

a4 0 0 v

0 2v2 2v 0

D ,

where

a~ t !cosvt2b~ t !sinvt5h~ t !,

a~ t !sinvt1b~ t !cosvt5j~ t !,

or, equivalently,

a~ t !5sin2vtS 1

2a2 1
2b

a3 D ,

~23!
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b~ t !52sinvt cosvtS 1

a2 1
2b

a3 D .

The eigenvalues ofA are 0, with multiplicity two,i /a3/2 and2 i /a3/2. One of the two eigenvalues
vanishes because the system is autonomous, and the second due to the presence of the first integral
H.

Now consider the real Jordan formJ of A. The matrix J is defined by the relationJ
5T 21AT whereT is

T5S 2 v2a3 0
v2a412 b

a
0

0 2
v~3 v2a412 b!

a
0 22

va2~v2a412 b!

~a!3/2

0
1

2

4 a~v2a41b!12 ~v2a412 b!2

a5 0
~v2a412 b!2

a7/2

2
v~v2a412 b!

a
0 2

v~v2a412 b!

a
0

2
and the columns ofT are the generalized eigenvectors ofA.

The vectorJ05T 21A0 and the matrixJ are

J05S j 1~ t !
j 2~ t !
j 3~ t !
j 4~ t !

D , J5S 0 0 0 0

1 0 0 0

0 0 0
Aa

a2

0 0 2
Aa

a2 0

D ,

where the fact thatj 1(t)5(2v3a22 v(v2a412b)/a2)21b(t) is the only information aboutJ0

that we need to retain. Furthermore, we remark thatv2a42a22b50 gives the relation between
a andv and solving this equations gives only one positive solution~for b.0!.

Letting z5Tz, the equation of motion becomes

ż5J0~ t !1Jz1O~e!, ~24!

and its flow is given by

c~ t,z,e!5g~ t !1eJt1O~e!, ~25!

where by the variation of constants

g~ t !5eJtE
0

t

e2JsJ0~s!ds. ~26!

Therefore, we have
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eJt5S 1 0 0 0

t 1 0 0

0 0 cos
Aa

a2 t sin
Aa

a2 t

0 0 2sin
Aa

a2 t cos
Aa

a2 t

D ,

and from~26! we obtain

g~ t !5S g1~ t !
g2~ t !
g3~ t !
g4~ t !

D , ~27!

where we retain only the information that

g1~ t !5S 2v3a22
v~v2a412b!

a2 D 21E
0

t

b~s!ds. ~28!

B. The periodicity equation

Since the HamiltonianH of the anisotropic Manev problem isS3-symmetric, as we have
shown, we can write the periodicity equation as in8

FS t

2
,~r, ṙ !,e D52~r, ṙ !. ~29!

Then it easy to check thatF(t,(r, ṙ ),e) is a periodic solution of the equation of motion with
periodt. To find periodic solutions we have to verify that~29! is satisfied for a family of initial
conditions. Equation~29! in z coordinates is

cS t

2
,z,e D2z50, ~30!

wherec(t,z,e) is the flow of ~24!. Let us denote byP(z,e) the left hand side of the periodicity
equation~29!, that is, let

P~z,e!5cS t

2
,z,e D2z5gS t

2D1~eJt/22I !50. ~31!

Using ~25! we notice that the requirement

P~z* ,0!5gS t

2D1~eJt/22I !z* 50 ~32!

imposes the restrictions

g1S t

2D50, z1* 52
2

t
g2S t

2D , z2* 5arbitrary, ~33!

and
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z3* 5
1

2~12cosa* ! S 2g3S t

2D ~cosa* 21!1g4S t

2D sina* D
~34!

z4* 5
21

2~12cosa* ! S g3S t

2D sina* 1g4S t

2D ~cosa* 21! D ,

wherea* 5p(112b/a)21/2. It easy to see from~23! and~28! thatg1(t/2)50, therefore, we take

z* 5~z1* ,z2* ,z3* ,z4* !T, ~35!

with z2* arbitrary, for the moment. Now using the flow~25!, we determine that the Jacobian matrix
of P with respect to the variablesz evaluated at the point (z* ,0) is given by

S 0 0 0 0

t/2 0 0 0

0 0 cosa* 21 sina*

0 0 2sina* cosa* 21

D . ~36!

Consider the system of three equations formed by those in~31! corresponding to the indicesi
52,3,4, and fix the variablez25z2* . Its Jacobian matrix has determinantt(12cosa* ) that is
always positive since 0,p(112b/a)21/2<p. Therefore, the implicit function theorem guaran-
tees the existence of analytic functionsz i5z i(e), i 51,3,4, in a neighborhood ofe50, satisfying
the equations

Pi~z,e!50 ~ i 52,3,4!, ~37!

where

z~e!5~z1~e!,z2* ,z3~e!,z4~e!! ~38!

and such that

z i~0!5z i* ~ i 51,2,3,4!. ~39!

It remains to show, in order to have periodicity, that also the remaining equation

P1~z~e!,n~e!,e!50 ~40!

is satisfied in a possibly smaller, neighborhood ofe50. That will be done employing a first
integral of the system under discussion, i.e., the Hamiltonian.

C. Integral of motion

Since the Hamiltonian is an integral of motion of the problem under discussion we can apply
the same analysis as in Refs. 8 and 14. In particular, using the same notations as in Ref. 8 we can
define

He~z,t !5H~r, ṙ ,e!,

whereHe(z,t) is a time-dependent,t-periodic first integral for system~22!. The above integral
satisfies the following relation,

HeS z,t1
t

2D5He~z,t ! ~41!
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for all t, sinceH(2r, 2 ṙ )5H(r, ṙ ), r( t)5r0(t)1e s(t) and

r0S t1
t

2D52r0~ t !, sS z,t1
t

2D52s~z,t !.

Performing a change of coordinates we can defineHe(z,t)5He(Tz,t), hence~41! can be
written as

He~z,t1t/2!5He~z,t !. ~42!

Moreover, sinceHe is an integral of motion it verifies that

He~f~z,e,t !!5He~z,0!. ~43!

Thus applying Eqs.~42! and ~43! it follows that

He~c~t/2,z,e!,0!5He~z,0!,

and by means of the mean value theorem we obtain

¹zHe~ z̃,0!•P~z,e!50, ~44!

where¹zHe is the gradient ofHe with respect toz, and z̃ is a point on the segment joiningz to
c(t/2,z,e).

ExpandingC(e)5c(t/2,z,e) in power ofe sufficiently small it is easy to show~see Ref. 8!
that C(e)5z* 1O(e) and consequently

z̃5sz~e!1~12s!C~e!5z* 1O~e!

for somesP(0,1). Moreover, if we also expand the HamiltonianHe(z,0) in powers ofe we get

He~z,0!5H01e~H11H2•z!1O~e2!

or, in z coordinates

He~z,0!5H01e~H11H2•z!1O~e2!, ~45!

where H05H05(1/2v2a22 1/a2 b/a2), H15H1 and H25T TH25T T(a2212ba23,0,0,av)
5(av2z1,0,0,0). Hence we obtain

1

e
¹zHe~ z̃,0!5H21O~e!. ~46!

With these preparations Eq.~44! reduces to the equation in the unknownP1

@av21O~e!#P150, ~47!

since, for smalle, we already found in Sec. IV B thatPi50 for i 52,3,4. It is easy to see that for
e50 the equation above has solutionP150. Thus, by continuity,@av21O(e)# is different from
zero fore sufficiently small. Therefore, for such values ofe, this equation has a unique solution
that is the trivial one. Consequently, the remaining equation,

P1~z~e!,e!50,
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is also satisfied in a possibly smaller neighborhood ofe50. Hence all the equations of the
periodicity system~31! are satisfied whenz5z(e), as long ase is sufficiently small. This com-
pletes the proof of Theorem 2.
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