35 research outputs found

    Pollination of Pagamea duckei Standl. (Rubiaceae): a functionally dioecious species

    Get PDF
    The floral biology, pollination and breeding system of Pagamea duckei Standl. (Rubiaceae) were studied at the Reserva Biológica da Campina, Manaus, Amazonas, Brazil. Floral morphology suggested that P. duckei is a distylous species. However, crossing experiments revealed that it is functionally dioecious. The flowers are actinomorphic, yellowish, produce nectar and a sweet odor, which is more intense in the morning. Anthesis started in the morning between 5.00 and 6.00 AM and extended until dusk, when the corolla tube abscissed. The flowers were visited mostly by bees of the genus Melipona. Pagamea duckei is not agamospermic and thus needs pollen vectors for effective pollination. The results of this study strengthen the idea that, in Pagamea, species with distylous flower morphology are actually functionally dioecious

    Histologia hepática e produção em tanques-rede de tilápia-do-nilo masculinizada hormonalmente ou não masculinizada

    Get PDF
    O objetivo deste trabalho foi avaliar o desempenho e a sanidade da estrutura hepática de tilápia-do-nilo, masculinizada hormonalmente ou não masculinizada, criada em tanques-rede com dois níveis proteicos. Tilápias-do-nilo da linhagem Tailandesa (total de 2.400), com peso médio inicial de 127 g, foram distribuídas em delineamento inteiramente casualizado, com quatro tratamentos, em arranjo fatorial 2×2, correspondente aos grupos de tilápias masculinizadas hormonalmente ou não masculinizadas e ao teor proteico na dieta de 28 ou 32% de proteína bruta, com três repetições. Após 115 dias de alimentação, não houve interação entre os fatores quanto a peso final, ganho de peso, conversão alimentar, comprimento final e sobrevivência. Não houve diferença entre os peixes masculinizados hormonalmente e os não masculinizados, quanto a peso final, ganho de peso e sobrevivência, o que mostra a possibilidade de sua produção em tanques-rede, sem a necessidade de masculinização hormonal. A proteína bruta a 32% na dieta possibita melhor desempenho para ambos os grupos. Alterações histológicas no fígado - como o incremento do volume das células, o desarranjo da disposição cordonal e o aumento de vesículas nos hepatócitos - são encontradas nos peixes masculinizados hormonalmente e são mais acentuadas nos peixes alimentados com 32% de proteína bruta na dieta

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF
    Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.Naturali

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Author Correction: One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
    corecore